
Submitted 9 June 2022; accepted 13 Decem
Advances First Edition 3 January 2023; final
https://doi.org/10.1182/bloodadvances.2022

*S.M. and K.R.L. are joint senior authors.

Data sets are publicly available as indicated in
on request from the corresponding author, K

RESEARCH LETTER

1666
TO THE EDITOR:

Preclinical studies targeting CD74 with STRO-001 antibody-drug
conjugate in acute leukemia
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This study aims to identify targeted agents designed for treating other malignancies that can be
repurposed to treat acute leukemias. To identify potential therapeutic targets, we assembled a
transcriptome data set from 1915 pediatric and adult leukemias. By comparing leukemia-expressed
genes with a library of immunotherapy agents including antibody-drug conjugates (ADC) (www.
clinicaltrials.gov and www.adcreview.com), we identified 141 targets for which ADCs are currently in
clinical trials for a variety of cancers (see supplemental data). We then evaluated the transcript
expression of the 141 targets in the pediatric acute myeloid leukemia (AML) cohort (supplemental
Figure 1-2). Of these, CD74 was the most prevalent and highly transcribed (supplemental
Figure 1-2). The expression of CD74 is variable among AML subtypes and is usually elevated in
pediatric AML expressing RUNX1-CBFA2T3, NUP98-NSD1, and CBFB-MYH11 fusion proteins, AML
with monosomy 7 or CBL deletion as well as immature adult AML (supplemental Figures 3 and 4).

CD74 is a type II transmembrane glycoprotein involved in antigen presentation, the formation of major
histocompatibility complex class II proteins, and the regulation of B-cell maturation, proliferation, and
survival (see supplemental data).1-5 It is expressed in a variety of immune cells, including B cells,
monocytes, macrophages, dendritic cells, a subset of T cells and thymic epithelium.6 The expression of
CD74 has been reported in several AML cell lines and patient samples that are sensitive to anti-CD74
induced cytotoxicity (milatuzumab).7,8 CD74 is an excellent target for ADC because the cell surface
form is rapidly internalized through the endosomal pathway.9,10 CD74 can be targeted by STRO-001,
an anti-CD74 ADC containing a tubulin inhibitor (maytansinoid) with efficacy against B-cell lymphomas
and multiple myeloma in preclinical studies.11 Currently, STRO-001 is being evaluated in a phase 1
clinical trial for mature B-cell malignancies (NCT03424603).

We first demonstrated cell surface CD74 protein by flow cytometry of primary cells from pediatric
patients with AML enrolled in Children’s Oncology Group (COG) trials. Pediatric AML biological
samples were collected with informed consent (and in accordance with the Declaration of Helsinki)
from patients enrolled on COG trials AAML0531 (NCT00372593), or AAML1031 (NCT01371981).
Each protocol was approved by the National Cancer Institute’s central institutional review board (IRB)
and the local IRB at Fred Hutchinson Cancer Center (Protocol 9950). CD74 was detected on AML
blasts in 26.2% (297 of 1134) of the samples, with a median mean fluorescent intensity of 22.7 (range,
8.2-95.4). CD74 expression was not restricted to AML blasts but was also expressed in a subset of
normal lymphocytes; mature myeloid cells did not express CD74 (supplemental Figure 1B). Studies of
ber 2022; prepublished online on Blood
version published online 26 April 2023.
008303.

the article. Additional data are available
eith R. Loeb (kloeb@fredhutch.org).

The full-text version of this article contains a data supplement that includes additional
details on identification of targeted therapies, background on CD74 and material and
methods.
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Figure 1. STRO-001 therapy demonstrates preclinical efficacy against CD74 expressing NOMO-1 AML cell line and primary AML cells. (A) Flow cytometric analysis

of CD74 cell surface expression on K562 and NOMO-1 cell lines. (B) In vitro cytotoxicity of STRO-001 against K562 and NOMO-1 cells. Cells were treated with increasing doses

of STRO-001 alone (blue) or excess of naked antibody SP7219 (1 uM, red). After 3 days of continuous exposure, viability was assessed by Cell Titer-Glo assay. Data are

normalized to untreated controls. Error bars denote standard deviation from 2 technical replicates at each dose. Experiments were repeated at least twice (supplemental Figure 5).

(C) Top, experimental schema evaluating STRO-001 in vivo efficacy in NOMO-1 xenograft model. Bottom, leukemia burden measured by bioluminescence (IVIS) imaging in

NOMO-1 xenograft mice untreated (left) or treated with STRO-001 at 3 mg/kg weekly for 3 weeks (right). Shown are representative timepoints. N = 5 mice per group. X denotes

death. (D) Kaplan-Meier survival curves of NOMO-1 xenografts untreated or treated with STRO-001. N = 5 per group. Statistical differences in survival were evaluated using Log-

rank Mantel-Cox. (E) Flow cytometric analysis of CD74- (AML-4) and CD74+ AML patient specimens (AML-5-7). (F) In vitro cytotoxicity of STRO-001 primary AML specimens.

Cells were treated as described above. Error bars denote standard deviation from 3 technical replicates at each dose. (G) Experimental design to assess in vivo activity of STRO-

001 against a PDX model transplanted with a primary AML sample, AML-7. Peripheral blood was obtained every other week following the last dose of STRO-001, bone marrow

aspirate was obtained 4 and 13 weeks after transplant. (H) Percent AML cells in the bone marrow at indicated weeks following leukemia injection determined by flow cytometry. (I)

Kaplan-Meier survival curves of PDX mice untreated (n = 3) or treated with STRO-001 (n = 3). Statistical differences in survival were evaluated using Log-rank Mantel-Cox.
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additional CD74+ AML samples (N = 17) revealed that CD74 is
expressed more frequently and at higher levels on AML blasts than
in lymphocytes, and with a rare dim expression on mature myeloid
cells (supplemental Figure 1C-D).

We then evaluated the cytotoxicity of STRO-001 in the CD74+

AML cell line (NOMO-1) and in a control CD74- line (K562;
Figure 1A). Treatment with STRO-001 showed potent, target-
dependent cytotoxicity in NOMO-1 cells with half maximal inhibi-
tory concentration (IC-50) of 1.3 nm but had no significant effect
on control K562 cells (Figure 1B; supplemental Figure 5). In
addition, STRO-001 therapy (3 weekly doses with 3 mg/kg)
significantly inhibited leukemia growth in NSG mice transplanted
9 MAY 2023 • VOLUME 7, NUMBER 9
with NOMO-1 cells with 2 of 5 mice remaining disease free until
the study endpoint of 112 days, with a median survival of 107 days
after leukemia injection (Figure 1C-D). These results demonstrate
that STRO-001 therapy effectively eradicates CD74+ NOMO-1
leukemia cells in culture and in xenograft models.

We also evaluated the in vitro efficacy of STRO-001 against pri-
mary AML patient samples with variable CD74 expression (AML4-
7; Figure 1E). Primary cells were incubated for 3 days with
increasing concentrations of STRO-001. No cytotoxicity was
observed with the control CD74- patient sample, whereas STRO-
001 exhibited potent, antileukemic activity against other samples
(IC50 of 4.1, 12.8 and 17.4 nm). Target-specific cytotoxicity of
RESEARCH LETTER 1667
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STRO-001 was confirmed by incubation with excess anti-CD74
blocking antibody (SP7219) that inhibited the binding of STRO-
001(Figure 1F).

To determine whether STRO-001 is active against primary AML
cells in vivo, we generated a PDX model with an aggressive CD74+

primary AML sample (AML7) carrying the NUP98-NSD1 fusion,
FLT3-ITD, and WT1 mutations.12 One week after transplant, PDX
mice were treated with STRO-001 (3 mg/kg) weekly for 4 weeks
(Figure 1G). The additional week of therapy for the AML PDX mice
was added based on the lower efficacy of STRO-001 in the in vitro
studies with primary samples. Bone marrow aspiration showed
significant AML engraftment in untreated control mice, whereas
AML engraftment was undetected in STRO-001–treated mice at
the indicated timepoints (Figure 1H). Most significantly, STRO-001
monotherapy induced complete remission in the AML PDX model
(>280 days after therapy; Figure 1I). In addition, STRO-001 ther-
apy selectively eliminated the CD74+ AML population whereas
normal engrafted myeloid cells (CD74-) were preserved
(supplemental Figure 6A-D). Together, these results show potent
and selective antileukemia activity of STRO-001 against primary
AML cells.

Analysis of the publicly available B-cell acute lymphocytic
leukemia (B-ALL) and T-cell ALL (T-ALL) data sets revealed
1668 RESEARCH LETTER
significant CD74 expression in B-ALL whereas only a paucity of
expression in T-ALL (supplemental Figure 7A). Furthermore, among
the B-ALL cases, CD74 transcript levels are higher in Philadelphia
chromosome (Ph+) B-ALL than in other B-ALL subtypes
(supplemental Figure 7B). Flow cytometric analysis confirmed cell
surface expression of CD74 in B-ALL cells (B-ALL1-3) with limited
to no expression in T-ALL cells (T-ALL1-3; supplemental
Figure 7C). Analysis of additional samples showed that CD74
cell surface expression was present in 16 out of 16 B-ALL samples
but in only 1 of 6 T-ALL samples (supplemental Figure 7D-E).

To determine whether STRO-001 demonstrates antileukemia
activity against B-ALL cells, we evaluated in vitro and in vivo
cytotoxicity of STRO-001 against REH and RS4;11 B-ALL cell
lines that express cell surface CD74 (Figure 2A). Both cell lines
were highly sensitive to STRO-001 (IC50 of 0.7 nm and 3 nm,
respectively; Figure 2B, supplemental Figure 5). In addition, treat-
ment of REH xenograft mice with STRO-001 targeted the tumor
effectively, with complete survival throughout the study duration
(112 days after leukemia injection) whereas the untreated mice
succumbed to the disease 22 days after leukemia injection (P =
.003; Figure 2C-E). STRO-001 was less effective in the RS4;11
xenograft mice extending survival from 23 to 57 days after leukemia
injection (P = .003, Figure 2C-E).
9 MAY 2023 • VOLUME 7, NUMBER 9
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We generated PDX B-ALL models by transplanting NSG-SGM3
mice with a CD74+ primary B-ALL sample encoding a KMT2A/
MLL fusion (B-ALL-3; Figure 2F). One week after transplant, PDX
mice were treated with STRO-001 (3 mg/kg) weekly for 3 weeks.
Bone marrow aspiration showed the marrow to be completely
replaced by malignant cells (>90% marrow cellularity) in untreated
mice, whereas B-ALL was undetected in STRO-001–treated mice
(Figure 2G). Most significantly, STRO-001 therapy extended the
survival of B-ALL PDXmice till the end of the study (>112 days after
leukemic injection, Figure 2H). STRO-001 therapy also induced
complete remission in a second high-risk B-ALL PDX model with a
Ph-like immunophenotype (B-ALL-4) (supplemental Figure 8A-B).
Together, these results demonstrate potent, selective antileukemia
activity of STRO-001 against PDX models of primary B-ALL.

To accelerate identification of new antileukemic therapies, we have
leveraged our large AML and ALL transcriptome data set to identify
targets of ADCs in clinical trials for other malignancies. The highest
expressed target was CD74 that is recognized by STRO-001, an
anti-CD74 ADC. Here, we showed that primary AML and B-ALL
express high levels of CD74. STRO-001 therapy induces target-
dependent cytotoxicity against AML and B-ALL primary cells and
cell lines in vitro, and in xenograft models with complete remissions
in AML and B-ALL PDX models. These studies support STRO-001
as a promising therapeutic for CD74+ AML and B-ALL.
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