
Submitted 31 December 2021; accepted 23
Blood Advances First Edition 1 December
March 2023. https://doi.org/10.1182/blooda

*V.D. and C.V.W. contributed equally to this

Data are available on request from the corre
dill@tum.de).

RESEARCH LETTER

11 APRIL 2023 • VOLUME 7, NUMBER 7
TO THE EDITOR:

Elevated RIPK3 correlates with disease burden in myelofibrosis
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Recent work has strengthened the central role of inflammatory signaling in the pathogenesis and
maintenance of myeloproliferative neoplasms (MPN).1,2 In myelofibrosis (MF) particularly, symptom
burden, fibrogenesis, and prognosis are tightly linked to the secretion of proinflammatory cytokines such
as interleukin-8, vascular endothelial growth factor and basic fibroblast growth factor (b-FGF).3-6 Above
all, tumor necrosis factor (TNF) is a disease driver.5,7 The inflammatory phenotype of MF and the
common presence of cytopenia suggest a role in inflammatory cell death, such as regulated necrosis
(necroptosis), which has not been studied further. So far, TNF signaling has been the best-
characterized necroptotic pathway with receptor-interacting protein kinase 3 (RIPK3) serving as
inducer and mixed lineage kinase domain like pseudokinase (MLKL) as executor of necroptotic cell
death.8-11 Furthermore, RIPK3 possesses strong, cell death-independent inflammatory capacity.8,12,13

Despite recent advances in understanding the molecular mechanisms of necroptotic signaling, its
relevance for the initiation and progression of hematologic malignancies is still uncertain.

Here, we aimed to elucidate the role of RIPK3 signaling in MF. Therefore, RIPK3 protein expression was
quantified by flow cytometry in permeabilized peripheral blood mononuclear cells (PBMCs) from a
cohort of 48 patients with MPN, compared with healthy individuals. The detailed experimental approach
is explained in the supplemental Files. At the protein level, RIPK3 was significantly increased in the
blood of patients with MF, when compared with other MPN subtypes and healthy controls (Figure 1A).
By contrast, disease progression from MF to secondary acute myeloid leukemia (sAML) was accom-
panied by a significant decrease in RIPK3 expression in line with RIPK3 being a potent tumor sup-
pressor in FLT3-ITD+ AML.14 When focusing on the MF subgroup, increased RIPK3 protein levels were
detected across all MF samples including primary myelofibrosis, post-essential thrombocythemia (ET)
MF, and post-polycythemia vera (PV) MF (supplemental Figure 2A). Moreover, the RIPK3 protein
expression pattern was independent of the individual driver mutation (Figure 1A; supplemental
Figure 2B). This is not unexpected because mutations in JAK2 V617F, CALR, or MPL all result in
the activation of STAT signaling promoting cytokine production.15,16 Notably, therapy with ruxolitinib did
not affect RIPK3 levels in patients with MF (supplemental Figure 2C). The study was approved by the
local ethics committee of the Technical University Munich (362/19S) and conducted by the Declaration
of Helsinki.
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Gene expression data of RIPK3 were analyzed in a cohort sample
of patients with MF and healthy control subjects from a public
database (GEO: GSE53482). Messenger RNA analysis revealed a
significant increase in RIPK3 gene expression in CD34+ PBMCs
for patients with MF (Figure 1B), again without demonstrating an
influence of the JAK2 V617F mutational status. Of note, elevated
RIPK3 levels were detected in MF bone marrow (BM) by flow
cytometry and immunohistology (supplemental Figures 2D and 4).
Immunohistochemical staining also showed elevated protein levels
of the necroptotic effector MLKL in granulopoiesis of patients with
MF compared to other MPN subtypes (supplemental Figure 5).
Interestingly, MLKL was also highly expressed in healthy gran-
ulopoiesis, possibly consistent with the known dependence of
neutrophil extracellular traps formation on MLKL.17,18 Analyzing
single-cell RNA sequencing data of human CD34+ hematopoietic
stem and progenitor cells from a public database (GEO:
GSE144568),19 we found an increased RIPK3 expression in MF
megakaryocytes and myeloid cells (Figure 1C), mediated by an
increased expression within RIPK3 positive cells (Figure 1D;
supplemental Figure 6). Elevated RIPK3 in myeloid cells might be
due to excessive TNF in MPN monocytes.20

We also aimed to detect clinical parameters correlating with RIPK3
expression in patients with MF (including primary myelofibrosis,
post-ET MF, and post-PV MF). When stratified according to the
common clinical Dynamic International Prognostic Scoring System,
patients with advanced MF disease (classified as “intermediate-risk
II” and “high-risk”) featured significantly higher RIPK3 protein levels
than patients with lower-risk MF disease (classified as “intermedi-
ate-risk I”) (Figure 1E), suggesting that RIPK3 expression increases
with disease progression. When correlated with clinical parame-
ters, RIPK3 protein expression was associated with leukocytosis
(Figure 1F) and spleen size (Figure 1G) in patients with MF. These
data propose that RIPK3 might be involved in inflammation-driven
proliferation and extramedullary hematopoiesis. Several studies
have reported that leukocytosis in MPN itself is associated with
increased levels of proinflammatory cytokines such as TNF and
b-FGF.21-23. Splenomegaly has been attributed to specific cyto-
kines,21,22 as well as the expansion of the malignant clone from the
BM to extramedullary organs, which is thought to be particularly
Figure 1. RIPK3 is significantly increased in MF and correlates with disease burde
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mediated by TNF.5 Unlike a recent study showing that gene
expression of the necroptotic effector MLKL correlated with ane-
mia in myelodysplastic syndromes,24 no significant correlation of
RIPK3 with hemoglobin levels (supplemental Figure 3A) or
thrombocyte count (supplemental Figure 3B) was detected.
Remarkably, there was no significant correlation observed between
RIPK3 levels and age (supplemental Figure 3C) suggesting that
chronic age-related inflammation, often referred to as “inflammag-
ing,”25 does not influence RIPK3 protein levels.

To assess the inflammatory phenotype of patients with MF, central
proinflammatory cytokines were quantified via cytometric bead
assay (CBA) in the serum of patients with MF and healthy controls
(supplemental Figure 7). Here, levels of interleukin-8 (Figure 2A)
and vascular endothelial growth factor (Figure 2B) were signifi-
cantly elevated in MF. Interestingly, RIPK3 protein levels correlated
positively with the b-FGF levels of the respective MF patient sample
(Figure 2C). These data confirm that RIPK3 is particularly elevated
in patients with MF with an inflammatory phenotype and highlight
the close connection between inflammation, proliferation, and
RIPK3 signaling in this disease.

To functionally characterize the role of RIPK3, PBMCs from
patients with MF, patients with sAML after a history of MPN, and
healthy controls were treated with the RIPK3-inhibitor GSK’843
(1 μM) for 72 hours. Dimethyl sulfoxide (dimethyl sulfoxide
[DMSO]; 1:1000) was used as soluble control. Cytokine analysis
of the supernatant revealed that RIPK3 inhibition significantly
reduced TNF levels of 6 patients with MF compared to DMSO
control in vitro (Figure 2D). Additionally, the viability of PBMCs after
RIPK3 inhibition was analyzed by flow cytometry. Here, RIPK3
inhibition significantly increased the viability of PBMCs from
patients with MF compared to DMSO control in vitro (Figure 2E).
Of note, pharmacological inhibition of RIPK3 did not affect the
viability of PBMCs from healthy controls or patients with sAML.
Furthermore, the increase in cell viability was significantly higher in
patients with MF than in healthy individuals, and patients with
sAML, suggesting a disease-specific effect of RIPK3.

To evaluate the longer-term effects of RIPK3 inhibition on the stem/
progenitor cell level, BM mononuclear cells from patients with
n. (A) Intracellular RIPK3 protein expression of PBMCs from 9 healthy control subjects,

d 3 patients with sAML after a history of MPN were quantified via flow cytometry.

otype control MFI. Shown are the mean and error bars denoting standard deviation.

ient samples. One-way ANOVA P < .0001; P values from post hoc analysis with

primary human CD34+ PBMCs from 39 patients with PMF (including 18 JAK2 V16F

Human Genome U219 Array (GEO: GSE53482). Shown are the mean and error bars

nalysis of single-cell RNA sequencing data of primary human CD34+ HSPCs from a

all MF and control cells analyzed. Each dot represents a single cell. Left panel: t-SNE
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in the figure. (D) Boxplots indicating RIPK3 expression within positive cells in MF and

PBMCs was analyzed and calculated as described in Figure 1A. (E) RIPK3 protein
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pre-MF and healthy controls were treated with GSK’843 (1 μM) for
72 hours before being transferred in growth-factor supplemented
methylcellulose. DMSO (1:1000) was used as soluble control.
Assessing colony-forming capacity after 14 days, no statistically
1222 RESEARCH LETTER
significant difference was revealed between healthy, and MF BM
(Figure 2F). Despite mediating a short-term survival benefit of
PBMCs, RIPK3 appears not to promote relevant levels of cell death
at the MF stem/progenitor cell compartment.
11 APRIL 2023 • VOLUME 7, NUMBER 7
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In summary, our work shows that RIPK3 is elevated in MF and
associated with disease burden. Peripheral RIPK3 levels might pre-
dominantly result from myeloid cells. We postulate that RIPK3 pro-
motes MF disease progression by maintaining inflammatory signaling.
The degree to which RIPK3 might also contribute to the reduction of
healthy hematopoiesis via MLKL-dependent cell death remains less
elusive. In the future, additional studies including in vivo models will be
required to confirm our findings and to further evaluate the role and
prognostic significance of RIPK3 signaling in this disease.
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