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Gene expression profiling and FDG-PET radiomics uncover
radiometabolic signatures associated with outcome in DLBCL
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Key Points

• A gene expression
signature related to
mitochondrial
metabolism is
associated with
specific FDG-PET
radiomics profiles and
outcome in DLBCL.

• Integration of FDG-
PET radiomics with
metabolic tumor
volume refines PET–
based prognostication
in DLBCL.
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Emerging evidence indicates that chemoresistance is closely related to altered metabolism

in cancer. Here, we hypothesized that distinct metabolic gene expression profiling (GEP)

signatures might be correlated with outcome and with specific fluorodeoxyglucose positron

emission tomography (FDG-PET) radiomic profiles in diffuse large B-cell lymphoma

(DLBCL). We retrospectively analyzed a discovery cohort of 48 consecutive patients with

DLBCL treated at our center with standard first-line chemoimmunotherapy by performing

targeted GEP (T-GEP)– and FDG-PET radiomic analyses on the same target lesions at

baseline. T-GEP–based metabolic profiling identified a 6-gene signature independently

associated with outcomes in univariate and multivariate analyses. This signature included

genes regulating mitochondrial oxidative metabolism (SCL25A1, PDK4, PDPR) that were

upregulated and was inversely associated with genes involved in hypoxia and glycolysis

(MAP2K1, HIF1A, GBE1) that were downregulated. These data were validated in 2 large

publicly available cohorts. By integrating FDG-PET radiomics and T-GEP, we identified a

radiometabolic signature (RadSig) including 4 radiomic features (histo kurtosis, histo

energy, shape sphericity, and neighboring gray level dependence matrix contrast),

significantly associated with the metabolic GEP–based signature (r = 0.43, P = .0027) and

with progression-free survival (P = .028). These results were confirmed using different

target lesions, an alternative segmentation method, and were validated in an independent

cohort of 64 patients. RadSig retained independent prognostic value in relation to the

International Prognostic Index score and metabolic tumor volume (MTV). Integration of

RadSig and MTV further refined prognostic stratification. This study provides the proof of

principle for the use of FDG-PET radiomics as a tool for noninvasive assessment of cancer

metabolism and prognostic stratification in DLBCL.
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data can be found in the supplemental

Raw data are available on request from the corresponding authors, Enrico Derenzini
(enrico.derenzini@ieo.it), Stefano Pileri (stefano.pileri@ieo.it), and Francesco Ceci
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The full-text version of this article contains a data supplement.
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Introduction

Metabolic rewiring is a hallmark of cancer and a predominant feature
of aggressive lymphoproliferative disorders, such as diffuse large
B-cell lymphoma (DLBCL), which need a reshaped metabolism to
meet the increased demands related to rapid cell proliferation.1-4

Emerging evidence indicates that cancer, including lymphoma, is
characterized by highmetabolic heterogeneity, with diversemetabolic
pathways differentially active across cancer types or in the context of
specific tumor types.5,6 In line with this notion, although the occur-
rence of altered glycolysis in the presence of oxygen, known as the
Warburg effect,7 is one of the main metabolic alterations observed in
tumors, some cancer types rely on mitochondrial respiration and
oxidative metabolism for survival.8,9

Oxidative stress is an unavoidable consequence of oxidative
metabolism, playing an important role in cancer progression and
chemoresistance.9-13 In fact, oxidative reprogramming has been
mechanistically associated with the development of chemo-
resistant phenotypes through enhanced nicotinamide adenine
phosphate biosynthesis, which counteracts reactive oxygen spe-
cies generation, allowing cancer cells to survive oxidative
stress.13,14 Despite these notions, the relationship between meta-
bolic rewiring and chemoresistance in lymphoma is poorly defined.
DLBCL is a biologically heterogeneous disease as demonstrated
by molecular profiling studies, which uncovered distinct DLBCL
subsets characterized by specific oncogenic and metabolic
dependencies.15-20 However, despite major advances in the bio-
logic characterization, molecular classifications centered on gene
expression profiling (GEP)–based definition of the cell of origin
(COO)15,16 or onMYC/BCL-2 status,17-19 did not translate yet into
tailored therapeutic strategies, because recent precision therapy
clinical trials failed to demonstrate significant improvements in
outcome compared with standard chemoimmunotherapy.21-24

Fluorodeoxyglucose positron emission tomography (FDG-PET) is
a metabolism-based functional imaging technique, which is
considered the standard of care for initial staging and response
evaluation in DLBCL.25 Recently, FDG-PET radiomic analysis
gained attention as a noninvasive biologic profiling tool in cancer,26

and conventional parameters, such as metabolic tumor volume
(MTV), are widely accepted prognostic predictors in lymphoma.27-29

In fact, although FDG-PET uptake is related to glucose metabolism,
the application of radiomic analysis to digital FDG-PET images may
provide additional information on metabolic rewiring, such as tumor
oxygenation status.30,31

Furthermore, recent studies have integrated FGD-PET imaging
with molecular profiling data to develop more refined patient risk
stratification tools in DLBCL.32,33

Given these premises, radiomic analysis applied to functional FDG-
PET imaging could provide a unique opportunity to explore DLBCL
metabolism. In addition, the fact that current first-line chemotherapy
regimens are based on oxidative damage–inducing agents makes
DLBCL a suitable model to study metabolic determinants of che-
moresistance. In this study, we hypothesized that distinct metabolic
GEP signatures might be correlated with specific FDG-PET
radiomic profiles and outcome following first-line standard che-
moimmunotherapy in DLBCL. By integrating targeted GEP
(T-GEP) and FDG-PET radiomics, we developed an oxidative
28 FEBRUARY 2023 • VOLUME 7, NUMBER 4
metabolism–related GEP signature associated with treatment fail-
ure and with a specific FDG-PET radiomic signature, hereafter
defined as radiometabolic signature (RadSig), which in turn was
found to be an independent outcome predictor. When integrated
with MTV, the RadSig further refined prognostic stratification,
identifying a subgroup of patients with extremely poor outcome
following standard chemoimmunotherapy. These data provide the
proof of principle for the use of FDG-PET radiomics as a tool for
noninvasive assessment of cancer metabolism and prognostication
in DLBCL.

Patients and methods

Study design and patients cohorts

In this retrospective study, we aimed at integrating T-GEP–based
metabolic profiling with FDG-PET radiomics to explore the theo-
retical feasibility of noninvasive metabolic profiling and prognostic
stratification in DLBCL. The primary endpoint of this study was the
development of an FDG-PET radiomic signature associated with
GEP–based metabolic profiling and with progression-free survival
(PFS). A 2-phase computational approach was applied, using a
discovery cohort for model signature development and an inde-
pendent validation cohort for model signature validation. We first
explored the correlation between GEP–based metabolic profiling
and outcome in the discovery cohort performing in silico validation.
Then, we assessed the correlation between T-GEP–based meta-
bolic profiling and FDG-PET radiomic signatures and evaluated
their prognostic relevance in discovery and validation cohorts. The
study design is depicted in Figure 1. Two-hundred thirty consec-
utive patients with DLBCL with complete clinical and follow-up
data were treated with standard R-CHOP (rituximab, doxorubicin,
cyclophosphamide, incristine, prednisone)/R-CHOP–like chemo-
immunotherapy at IEO, from 2010 to 2018. Baseline FDG-PET
performed at IEO was available in 120 cases. Fifty-six patients
underwent FDG-PET before the initial diagnostic biopsy, with
available FFPE tissue for molecular analyses. Because T-GEP
success rate was 85.7% (n = 48), with 8 cases not yielding
enough high-quality mRNA to undergo successful GEP assess-
ment, the discovery cohort included 48 consecutive patients. The
clinical characteristics of the discovery cohort are shown in
Table 1. A second independent cohort including 64 patients
treated at our center in the same time frame was used to validate
the FDG-PET radiomic signature developed in the discovery cohort
(validation cohort). FFPE tissue from initial diagnosis was not
available in the validation cohort. Patient characteristics of the
validation cohort are summarized in Table 2. In summary, the dis-
covery cohort (n = 48 patients) was profiled with integrated T-GEP
and FDG-PET radiomics analyses. Only FDG-PET radiomics data
were available in the validation cohort (n = 64 patients).

Two large, independent, publicly available DLBCL cohorts were
used for in silico validation of the GEP–based MetSig: a data set
from Sha and coworkers (n = 469 patients treated with R-CHOP)34

with available PFS and overall survival (OS) data, and a data set from
Lenz et al (n = 233 patients treated with R-CHOP)35 with available
OS data. Characteristics of patients considered in in silico validation
analyses are shown in supplemental Tables 1 and 2.

The study was approved by the institutional review board (protocol
number 2863) in accordance with the Declaration of Helsinki.
RADIOMETABOLIC SIGNATURES IN DLBCL 631
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Figure 1. Study design. A total of 230 patients with DLBCL were treated at the IEO, Milan, Italy, from 2010 to 2018. Only patients with available FFPE tissue and baseline FDG-

PET scan performed at IEO were initially considered in this analysis. Fifty-six patients had a FDG-PET scan performed before the initial diagnostic biopsy, with available FFPE

tissue for molecular analyses. T-GEP success rate was 85.7% (n = 48), with 8 cases not yielding enough high-quality mRNA to undergo successful GEP assessment. Only cases

of not otherwise specified (NOS) histology (including those originally diagnosed as DLBCL-NOS and now included in the high-grade B-cell lymphoma provisional category) were

considered. Forty-eight patients with NOS-DLBCL with available baseline FDG-PET and mRNA extracted from FFPE tissue samples were finally included in the discovery cohort.

A GEP–based metabolic signature (MetSig) was generated in the discovery cohort and validated in silico in 2 large, publicly available DLBCL cohorts (Sha et al and Lenz

et al).34,35 A RadSig was generated in the discovery cohort and validated in an independent series of 64 patients with available baseline FDG-PET scan performed at IEO in the

same time frame. FFPE tissue for T-GEP was not available in the validation cohort. IEO, European Institute of Oncology; SUV max, standardized uptake value maximum.
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Table 1. Patients’ characteristics (discovery cohort)

Variable Discovery cohort (N = 48 patients)

COO (NanoString), n (%)

ABC 7 (15)

GCB 33 (69)

UNC 8 (16)

MYC/BCL-2 DEXP mRNA, n (%)

Yes 10 (21)

No 38 (79)

IPI, n (%)

Low (0-2) 25 (52)

High (3-5) 23 (48)

Sex, n (%)

Female 24 (50)

Male 24 (50)

Age, y, median (range) 63 (17-89)

Stage, n (%)

I 3 (6)

II 10 (21)

III 5 (10)

IV 30 (62)

Follow-up, mo, median (range) 53.97 (2.66-110.85)

ABC, activated B-cell; DEXP, double expressor; GCB, germinal center B-cell; IPI,
international prognostic index; UNC, unclassified.

Table 2. Patients’ characteristics (validation cohort)

Variable Validation cohort (N = 64 patients)

COO (NanoString)

ABC N/A

GCB N/A

UNC N/A

MYC/BCL-2 DEXP mRNA

Yes N/A

No N/A

IPI, n (%)

Low (0-2) 45 (70)

High (3-5) 19 (30)

Sex, n (%)

Female 29 (45)

Male 35 (55)

Age, y, median (range) 61.6 (18.1-83.4)

Stage, n (%)

I 6 (9)

II 20 (31)

III 3 (5)

IV 35 (55)

Follow-up, mo, median (range) 50.26 (0.89-135.48)

N/A, not applicable.
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GEP

Digital gene expression quantification was performed in the dis-
covery cohort using the NanoString platform. Total RNA was
extracted from 3 sections of 15μm of each FFPE sample using
RecoverAll Total Nucleic Acid Isolation Kit for FFPE (Invitrogen).
Yield of extracted RNA was assessed using NanoDrop ND 1000
Spectrophotometer (NanoDrop Technologies). RNA quality was
scored according to DV200 value (percentage of RNA fragments
>200 nucleotides) with the Agilent RNA 6000 Nano Chip Kit
(BioAnalyzer, Agilent Technologies); only the samples with a
DV200 value >20% passed the quality control step. Gene
expression was measured by the NanoString nCounter Analysis
System (NanoString Technologies). Two T-GEP panels were used,
probing 23 and 180 genes, respectively: 23 genes for COO
subtyping and assessment of MYC, BCL-2, and NFKBIA mRNA
levels, and 180 target genes involved in metabolic functions.
Complete gene lists and normalized log2 data are available in
supplemental Tables 3 and 4. The system computes the relative
abundance of each mRNA transcript of interest through a multi-
plexed hybridization assay and digital readouts of fluorescent-
barcoded probes hybridized to each transcript. The nCounter
CodeSet containing capture and reporter probes was hybridized to
400 ng of total RNA for 20 hours at 65◦C, according to the
manufacturer’s instructions. Hybridized samples were loaded into
the nCounter Prep Station for posthybridization processing. Target
mRNA was assessed with nCounter Digital Analyzer. For MYC,
BCL-2, and NFKBIA gene expression levels, the definition of high
28 FEBRUARY 2023 • VOLUME 7, NUMBER 4
and low values was based on the respective median mRNA levels
in the entire cohort.

Image analysis and feature extraction

FDG-PET/computed tomography images were acquired on Dis-
covery ST or Discovery 600 PET/CT scanner (GE Healthcare,
Waukesha, WI) with standard procedure according to European
guidelines.36 Quantitative PET image analysis was performed with
LifeX package, version 5.1 (INSERM, Alternative Energies and
Atomic Energy Commission [CEA], National Centre for Scientific
Research [CNRS], Université Paris Sud, Paris, France).37 First,
lesion segmentation was performed by an experienced nuclear
medicine physician, identifying all the areas of pathological uptake.
The LifeX tool allowed an efficient initial manual segmentation
(obtained by inserting “large” spherical regions over the patho-
logical uptake areas), with subsequent refinement automatically
applied by the software (thresholding method 1 or 2). More pre-
cisely, after manually drawing a region of interest (ROI) totally
encompassing each lesion, a SUV threshold was applied within
each ROI to identify the lesion boundary. Two different thresh-
olding methods were applied: a percentage threshold equal to
25% of the maximum SUV in the ROI (method 1) and a fixed 2.5
SUV threshold (method 2).38 MTV was calculated as the sum of all
lesions’ volumes for each segmentation method. For both seg-
mentation methods, radiomic features were extracted for the
following lesions: the lesion investigated with T-GEP analysis (for
patients with FFPE tissue available), the lesion with the highest
SUV, and the largest FDG-avid lesion.
RADIOMETABOLIC SIGNATURES IN DLBCL 633
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Before calculation, the 0 to 80 SUV interval was discretized into
256 bins, resulting in a fixed bin size equal to 0.31 SUV. Fifty-five
radiomic features were calculated: 3 belonging to the shape
category, 15 to the first-order (histogram) category, 37 to the
second-order (texture) category. Texture features were obtained
from the gray level cooccurrence matrix (calculated twice,
considering either 1 or 2 voxels offset), gray level run length matrix,
neighboring gray level dependence matrix, and gray level zone
length matrix. The full list of extracted features and raw data are
reported in supplemental Tables 5 and 6.

Image acquisition modalities and clinical parameters (scanner
model, frame duration, injected activity/body weight, time between
injection and acquisition, and glucose level), which might have
affected image texture and consequently the radiomic features
values, were collected for each patient to allow a feature repro-
ducibility analysis (supplemental Table 7).

Development and validation of a RadSig

We first profiled our discovery cohort of 48 patientswith available FFPE
tissue and baseline PET scans, investigating the association between
gene expression levels and PFS. Only genes with P < .05 were
considered as candidates to develop a predictive metabolic gene
signature.We combined the expression levels of significant prognostic
genes in a synthetic predictor called MetSig reflective of the balance
between protective and risk factors. The prognostic relevance of
MetSig was validated in silico in 2 independent publicly available
cohorts (GSE117556 and GSE10846).34,35 Next, we verified the
reproducibility and redundancy of radiomic features extracted from
baseline FDG-PET images (25% maximum SUV segmentation
method) to reduce the risk of false-positive associations.We evaluated
feature reproducibility using 4 parameters (scanner, frame, interval, and
glycemia levels) using a nonparametric test (analysis of variance or
Mann-Whitney test); features with significantly different means
according to at least one of the considered parameters were consid-
ered not robust and therefore were excluded. Furthermore, a hierar-
chical clustering analysis of the features’ correlation matrix was carried
out to identify groups of similar features with high intracluster redun-
dancy and low intercluster correlation,39 and a Spearman correlation
analysis was performed to analyze the correlation between the MetSig
and each imaging feature. Radiomic features which were significantly
correlated (either positively or negatively) with MetSig were selected
(P < .05). We tested all possible combinations of these features,
applying a stepwise feature selection procedure (detailed in
supplemental methods) to generate a synthetic predictor called Rad-
Sig characterized by the most significant correlation with the MetSig
and PFS.

The prognostic relevance of the RadSig was validated considering
different target lesions (the most FGD-avid and the largest lesion)
in the discovery cohort and in the validation cohort (n = 64
patients). To increase the sample size for multivariate analyses, a
combined analysis of the whole cohort with available FDG-PET
data (n = 112, discovery plus validation) was performed. Finally,
the robustness of the radiomic signature was evaluated using an
alternative segmentation method (the fixed 2.5 SUV threshold).

Statistical analysis

For survival analysis, we used Kaplan-Meier method to estimate OS
and PFS.40 OS was defined as the time between initial diagnosis
634 MAZZARA et al
and death as a result of any cause or last follow-up, whichever
occurred first. PFS was defined as the time between initial diag-
nosis and relapse/progression or death as a result of any cause or
last follow-up, whichever occurred first.

A log-rank test assessed significant differences between curves,
and the optimum threshold to stratify patients into low-risk and
high-risk groups was determined using the maxstat package41 to
yield the smallest log-rank P value. Multivariable and univariate
analyses were constructed with the Cox proportional hazards
regression model. Associations and differences in patients’ char-
acteristics were analyzed with the χ2 and Fisher exact test. P ≤ .05
was considered statistically significant. All statistical analyses were
performed using R version 3.6.2.42 Detailed information on gene
ontology analyses and receiver operating characteristic (ROC)
curve analyses is provided in the supplemental Data.

Results

Development and validation of a metabolic gene

expression signature associated with outcome

To investigate the relationship between metabolic rewiring and
chemoresistance in DLBCL, we first profiled our discovery cohort
(n = 48 patients) with a T-GEP panel (NanoString nCounter 3D
Cancer Metabolism panel) including 180 genes belonging to the
most relevant cancer metabolism pathways (supplemental Tables 3
and 4). We performed a supervised GEP analysis to identify genes
whose expression levels were associated with PFS (supplemental
Table 8). Based on these findings, we developed a 6-gene signa-
ture, MetSig, which was associated with clinical outcome in uni-
variate and multivariable analyses. The 6-gene MetSig included
genes regulating mitochondrial oxidative metabolism and fatty acid
oxidation (SLC25A1, PDK4, PDPR), which were upregulated, and
was inversely associated with genes involved in hypoxia and
glycolytic pathways (MAP2K1, HIF1A, GBE1), which were
downregulated (Figure 2A). Notably, as expected, the IPI score
was significantly associated with outcome in this cohort
(supplemental Figure 1). Although we could not find significant
associations between IPI score, COO, MYC, and BCL-2 mRNA
levels (high vs low) considered individually (data not shown), we
observed a significantly higher proportion of MYC/BCL-2 mRNA
DEXP patients in the MetSig-high compared with the MetSig-low
subset (supplemental Table 9). The cellular component of the
gene ontology analysis confirmed enrichment in oxidative- and
mitochondrial metabolism–related pathways (oxidoreductase
complex, TCA cycle, and NADPH oxidase complex) in the MetSig-
high subset (Figure 2B). MetSig-high patients had a significantly
worse outcome compared with MetSig-low patients in terms of
PFS (P < .0001) and OS (P = .0001) (Figure 2C-D). In multivari-
able analysis, we found that MetSig status was independently
associated with PFS (Figure 2E). Similar results were observed in
silico in 2 large, independent, publicly available DLBCL cohorts
from Sha et al34 and Lenz et al35 (GSE10846 and GSE117556), in
which the MetSig consistently retained its significance in univariate
and multivariable analyses (Figure 3). Of note, the prognostic value
of the COO was confirmed in multivariate analyses in the discovery
and Lenz et al35 cohort, but not in the Sha et al34 data set
(Figure 3B,D). As observed in the discovery cohort, in both vali-
dation sets, the proportion of MYC/BCL-2 DEXP patients was
28 FEBRUARY 2023 • VOLUME 7, NUMBER 4
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significantly increased in the MetSig-high subgroups (supplemental
Table 9). Focusing the analysis on the Sha et al34 cohort, no sig-
nificant differences in the proportion of molecular high-grade or
double-hit lymphoma cases were observed between the MetSig-
high and MetSig-low subgroups (supplemental Figure 2).
Figure 2. A T-GEP–based MetSig related to oxidative metabolism is significantly

the 6 genes representing the MetSig selected based on supervised PFS analysis. Each ro

corresponds to 1 patient. The expression change from left to right corresponds to the MetS

the T-GEP–based metabolic stratification. The node color changes from red to blue in desc

number of counts. (C) Kaplan-Meier curve for PFS in patients with DLBCL of the discovery

the maximally selected rank statistics. MetSig-high patients had significant worse outcome

according to the MetSig showing significant differences in outcome between MetSig-low an

(discovery cohort). According to this analysis, only the COO as determined by NanoString

AIC, Akaike information criterion; NADPH, nicotinamide adenine phosphate; ref, reference
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Development of FDG-PET radiomics signature

associated with the gene expression–based MetSig

With the aim of investigating the correlation between GEP–based
metabolic profiling and specific FDG-PET radiomic signatures, we
associated with outcome in DLBCL. (A) Heatmap showing the expression levels of

w corresponds to 1 Z score normalized gene expression levels and each column

ig stratification. (B) Gene ontology analysis showing the cellular component involved in

ending order according to the adjusted P values. The size of the node represents the

cohort. Patients were divided into 2 groups, MetSig-high vs MetSig-low, by applying

compared with MetSig-low patients. (D) OS of the 48 patients in the discovery cohort

d MetSig-high patient subsets. (E) Forest plot depicting multivariable analysis for PFS

-based T-GEP (COO Nano) and the MetSig retained statistical significance for PFS.

; TCA, tricarboxylic acid.

28 FEBRUARY 2023 • VOLUME 7, NUMBER 4



MetSig
RadSig

IPI

MTV
BCL2 Class
MYC Class
DEXP mRNA

Low
Low
Low

Low
Low

not DE

High
High
High
High
High
DE

LowHigh

IPI

MetSig
RadSig

MTV
BCL2 Class
MYC Class
DEXP mRNA

Histo Kurtosis

Histo Kurtosis

Histo Excess Kurtosis

Histo Energy

GLCM1 Homogeneity

GLCM2 Homogeneity

GLCM2 Dissimilarity

NGLDM Contrast

Shape Sphericity

Histo Energy

Shape Sphericity

NGLDM Contrast

RadSig

–2 0
log2 norm value

2

–1 0
correlation coefficient

1

4

2 GLCM1 Correlation

Sca
nn

er

Fr
am

e

Int
erv

al

Glyc
em

ia

GLCM1 Correlation HISTO Skeweness

GLZLM SZE

GLCM2 Correlation

–lo
g 1

0 
P 

va
lue

0

1.00

RadSig Low

RadSig High

0.75

0.50PF
S

Time (months)

0.25

0.00 P = .028

0 25 50 75 100

High 24 11 8 4 1

Low 24 17 13 6 1

Metabolic Signature
Ratio

NGLDM Contrast
(texture)

Histo Kurtosis
(histogram)

Histo Energy
(histogram)Shape Sphericity

(shape)

0

0

0.
1

0.2

0.3

0.4

0

0.1

0.2

00.10.
20.

3

0.1

0.2

0.3

1.0

0.9

Me
ta

bo
lic

 si
gn

at
ur

e 
ra

tio

0.8
High

Radiomic signature class
Low

E
xp

re
ss

io
n 

ra
tio 1.0

0.8

P = 4.0e–04

A B

C D

E F

Figure 4. Integration of the T-GEP–based MetSig with FDG-PET radiomics defines a RadSig significantly associated with outcome in DLBCL. (A) Graph illustrating

radiomic features considered not robust and excluded because of significantly different values according to scanner model, frame duration, time between injection and acquisition,
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first extracted PET radiomic features from the same target lesion
profiled by T-GEP in the discovery cohort. After semiautomatic
segmentation with a 25% SUV maximum threshold, a total of
55 radiomic features were extracted (supplemental Table 5). After
reproducibility and redundancy analyses (Figure 4A-B), by applying a
stepwise feature selection approach, we identified a radiomic
signature including 4 features (histo kurtosis, histo energy, shape
sphericity, and NGLDM contrast) (Figure 4C), which was signifi-
cantly associated with the GEP–based MetSig, and therefore
defined as a RadSig (Figure 4D-E). RadSig-high patients had a
significantly worse prognosis compared with RadSig-low patients in
terms of PFS (Figure 4F). Finally, with the same computational
strategy, we tested potential associations between alternative known
GEP–based prognostic signatures, such as the COO and theMYC,
BCL-2, and NFKBIA signature43 (MBN-Sig), radiomic features, and
outcome. Interestingly, none of the radiomic features found to be
correlated with the COO, and the MBN-Sig were significantly
associated with outcome. These data confirm the specificity of the
observed correlation between MetSig, RadSig, and disease
outcome (supplemental Figure 3; supplemental Table 10). The
RadSig retained its prognostic significance after adjusting for IPI and
MTV in multivariable analysis (supplemental Figure 4A).

Validation of the RadSig

To confirm the robustness of the RadSig, we first tested its prog-
nostic value using different target lesions (ie, the most FDG-avid
and the largest FDG-avid lesion) in the discovery cohort of
48 patients. By stratifying patients into RadSig-low and RadSig-
high subgroups, the RadSig of the most FGD-avid lesion was a
reliable predictor of PFS (P = .004) (Figure 5A). These data were
confirmed in the validation cohort of 64 patients (P = .029)
(Figure 5B). To increase the sample size, we performed a com-
bined analysis considering the whole cohort of 112 patients (dis-
covery plus validation), confirming the prognostic value of the
RadSig applied to the most FDG-avid lesion (P = .00032)
(Figure 5C). In the multivariable setting, RadSig retained indepen-
dent prognostic value for PFS after adjusting for MTV and IPI score
(Figure 5D). These observations were confirmed using a different
target lesion (the largest FDG-avid lesion) in univariate and multi-
variable frameworks (Figure 5E-F; supplemental Figure 4B). Finally,
the robustness of the RadSig was further validated by using a
second segmentation method (fixed 2.5 SUV threshold)
(supplemental Figure 5A-D). In addition, ROC curve analysis of
RadSig performed on the whole cohort applying the 25% SUV
maximum threshold showed an area under the curve (AUC) of 0.96
(95% confidence interval [CI], 0.94-0.99) for both most FDG-avid
and largest FDG-avid lesion–based radiomic analyses. Similar
performances were obtained using the fixed 2.5 SUV threshold
with AUCs of 0.87 (95% CI, 0.82-0.93) and 0.91 (95% CI, 0.86-
0.96) using the most FDG-avid lesion and largest FDG-avid lesion,
Figure 4 (continued) features were reordered by unsupervised hierarchical clustering fo

generated (the red blocks along the diagonal indicate high intracluster correlation, blue squ

circos plot showing correlation between the MetSig and radiomic features. Only radiomic fe

plot. (D) Heatmap representing the 4 informative radiomic features composing the RadSig s

cohort. (E) Box plot graph depicting MetSig ratio values in the RadSig-low and -high patien

the discovery cohort according to the RadSig status in RadSig-low vs RadSig-high patient s

matrix; NGLDM, neighboring gray level dependence matrix.
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respectively. These results were generated by using a 1000
resampling bootstrap procedure (supplemental methods). Predic-
tive metrics are shown in supplemental Table 11, and ROC curves
are displayed in supplemental Figure 6A-D. Overfitting was
excluded by introducing a permutation test with 1000 iterations,
which confirmed the statistical significance of the AUC value
(supplemental Figure 7A-D; supplemental methods).

Integration of MTV and RadSig for prognostic

stratification

Because RadSig and MTV were independent prognostic factors in
multivariable analyses, we combined these 2 parameters to define
a PET–based prognosticator able to further improve patient strat-
ification. By integrating MTV with RadSig status (most FDG-avid
lesion) in the whole cohort of 112 patients, we were able to
identify a subgroup of patients characterized by high RadSig and
high MTV, with an extremely poor outcome in terms of PFS and OS
(54% 5-year OS and 26% 5-year PFS) (Figure 6A-B). This FDG-
PET–based predictor outperformed the IPI score in multivariable
analyses (Figure 6C-D). Similar results were obtained using the
largest FDG-avid lesion as the target for the definition of RadSig
status and applying an alternative segmentation method (2.5 SUV
threshold) (supplemental Figures 8A-D and 9A-D).

Discussion

Here, we investigated the relationship between GEP–based meta-
bolic signatures, FDG-PET radiomic profiles, and outcome in
DLBCL. The main aims of this study were (1) to investigate the
association between metabolic rewiring and chemoresistance in
DLBCL, assessing the correlation between T-GEP–based meta-
bolic profiling, specific FDG-PET radiomic signatures, and PFS and
(2) to explore the theoretical feasibility of noninvasive assessment of
lymphoma metabolism and prognostic stratification by FDG-PET
radiomics.

First, we applied T-GEP to FFPE tissue from the initial diagnosis to
develop a GEP–based metabolic signature (MetSig) associated
with outcome, and then we integrated T-GEP with FDG-PET
radiomic data extracted from the same target lesions to develop
a RadSig associated with PFS. This study design implied the
availability of enough FFPE tissue for T-GEP and baseline FDG-
PET scan performed before the initial diagnostic biopsy. With
these stringent criteria, we identified 48 patients who were
included in our discovery cohort (Figure 1).

By using a dedicated T-GEP panel including 180 genes involved in
cancer metabolism, we first identified a 6-gene MetSig associated
with outcome in terms of PFS and OS in the discovery cohort, and
we confirmed these findings in silico in 2 large, publicly available
validation cohorts (Figures 2 and 3). This signature included
r visualizing highly intracorrelated features. Five clusters of radiomic features were

ares indicate negative correlation, and red squares indicate positive correlation). (C) A

atures with a significant correlation (P < .05) with the MetSig are shown in the circos

hown as rows, and patients with DLBCL samples shown as columns in the discovery

t subgroups. P value was calculated with the Mann-Whitney Wilcoxon test. (F) PFS of

ubsets. P value was calculated with the log-rank test. GLCM, gray level coorcuurence
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upregulated genes related to mitochondrial oxidative metabolism,
such as PDK4, SCL25A1, and PDPR, and was inversely associ-
ated with genes involved in hypoxia and glycolysis, such as
MAP2K1, HIF1A, and GBE1. Then, we identified a 4-feature
RadSig correlated with the GEP–based MetSig and clinical
outcome in terms of PFS (Figure 4). Importantly, the specificity of
the observed association between MetSig, RadSig, and outcome
Figure 5. RadSig validation. (A) Kaplan-Meier curve of PFS according to the RadSig stat

PFS of the independent validation cohort of 64 patients, according to RadSig status (mos

validation), according to the RadSig status (most FDG-avid lesion). (D) Forest plot depicti

depicting the RadSig performance using a different target lesion (largest FDG-avid lesion) in

64 patients, and combined cohort of 112 patients). (F) PFS according to RadSig status (

640 MAZZARA et al
was confirmed by testing alternative GEP–based signatures, such
as the COO and the MBN-Sig,43 which did not allow the identifi-
cation of outcome-associated radiomic predictors. The robustness
of this RadSig was validated in an independent cohort of 64
patients with available baseline FDG-PET scans treated at our
center during the same period, using different target lesions (most
FDG-avid and largest FDG-avid lesion) and different segmentation
us, as calculated by using a different target lesion, that is, the most FDG-avid lesion. (B)

t FDG-avid lesion). (C) PFS of the whole cohort of 112 patients (discovery and

ng multivariable analyses performed in the whole cohort of 112 patients. (E) Bar plot

the considered patients’ subsets (discovery cohort of 48 patients, validation cohort of

largest FDG-avid lesion) in the whole cohort of 112 patients.
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methods (25% SUV maximum and 2.5 SUV threshold) (Figure 5).
Furthermore, internal validation methods (bootstrap correction and
permutation model) confirmed the performance of RadSig. Notably, in
multivariable analyses, the RadSig was an independent prognostic
predictor with respect to known clinical prognosticators (IPI score) and
conventional parameters, such as MTV. Following these observations
and because MTV is a widely accepted prognostic predictor in
DLBCL,26-28 we integrated RadSig with MTV to refine our PET–based
prognosticator. The integration of RadSig and MTV identified a
patient’s subset (RadSig-high-MTV-high) with a dismal outcome (54%
5-year OS and 26% 5-year PFS) (Figure 6). The robustness of these
findings was confirmed using different target lesions to define RadSig
status and applying different segmentation methods. These data indi-
cate that baseline FDG-PET radiomics has the potential to identify
upfront those patients with dismal outcome following standard che-
moimmunotherapy and thus, are potentially eligible for alternative
treatment strategies.

Here, we demonstrate that a GEP-based signature related to
mitochondrial oxidative metabolism is associated with a poor
outcome following standard anthracycline-based chemo-
immunotherapy in DLBCL. These findings could suggest a func-
tional switch from glycolysis to oxidative metabolism in
chemoresistant DLBCL, in line with similar observations performed
in different tumor models.44-46 In particular, upregulation of PDK4
and SLC25A1 has been associated with chemoresistance and
radioresistance in multiple cancer types.47-50

It is noteworthy that anthracyclines induce oxidative stress and
DNA damage through increased reactive oxygen species genera-
tion,51 and in line with this, resistance to doxorubicin has been
associated with cell-intrinsic mechanisms counteracting oxidative
stress induction in poor prognosis DLBCL subsets, such as ABC–
derived DLBCL.52 Furthermore, we recently demonstrated that
overexpression of oxidative and replicative stress biomarkers
defines a MYC/BCL-2–positive DLBCL subpopulation enriched in
ABC and double-hit lymphoma characterized by a dismal outcome
following anthracycline-based chemotherapy.53 Interestingly, we
observed a significant enrichment of MYC/BCL-2 mRNA DEXP
DLBCL in the MetSig-high subset, confirming the presence of
oxidative metabolic rewiring in a significant proportion of MYC/
BCL-2–positive DLBCLs. Finally, recent data indicate that MYC-
driven DLBCLs rely on oxidative metabolism being exquisitely
sensitive to targeted inhibition of the mitochondrial respiratory
chain in preclinical models.54 These data are in line with the notion
that oxidative metabolic rewiring could be a powerful and unifying
determinant of poor prognosis in DLBCL, supporting the devel-
opment of treatment strategies based on pharmacologic distur-
bance of mitochondrial metabolism and antioxidant response to
overcome chemoresistance. In this light, it is worth noting that the
metabolic GEP signature identified in this study could be potentially
druggable because small-molecule inhibitors of PDK4 and
SLC25A1 are currently in preclinical development.47,55

This study has some intrinsic limitations, which may restrain the
generalizability of the results, such as the single-institution nature
and the small sample size of discovery and validation sets.
28 FEBRUARY 2023 • VOLUME 7, NUMBER 4
However, although PET image segmentation was performed by a
single operator, the use of thresholding methods could mitigate
reproducibility issues, and additional analyses such as boot-
strapping were used to confirm the robustness of the RadSig. In
any case, given the aforementioned limitations, these results need
to be validated in prospective studies.

In conclusion, this study represents a proof of concept for the use
of FDG-PET radiomics as a tool for noninvasive assessment of
cancer metabolic rewiring, providing the rationale for the devel-
opment of therapeutic strategies aimed at targeting mitochondrial
metabolism in DLBCL.
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