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The CDKN2A and CDKN2B (CDKN2A/B) locus on 9p21, a tumor suppressor hub, is the second most
common genetically inactivated region after TP53 in cancer.1 CDKN2A/B deletion has been described
in a wide variety of malignancies, including B-cell malignancies; acute lymphocytic leukemia and diffuse
large B-cell lymphoma.1-6 In chronic lymphocytic leukemia (CLL), CDKN2A/B loss has been described
in a small subset of patients, but its significance is not well understood. It has been reported as the most
common acquired abnormality found in ~19% to 30% of samples by single nucleotide polymorphism
microarray or next-generation sequencing (NGS) at the time of transformation of CLL to an aggressive
B-cell lymphoma (Richter transformation [RT]).7-12 Previously, loss of CDKN2A/B was thought to only
occur at RT but was later reported in 13 patients with CLL with high-risk disease, defined by either
TP53 aberration or refractory to purine analogs.7,9,10 Homozygous loss of CDKN2A/B has been
described in 3 patients who acquired resistance to venetoclax.13 Most frequently, CDKN2A/B loss co-
occurs with TP53 deletion, with the concurrent loss of both tumor suppressors being a potential
pathway for RT.10,14 Because of the negative clinical impact of RT and the rarity of this genetic
abnormality, we examined a large cohort of patients with CLL using fluorescence in situ hybridization
(FISH) for CDKN2A/B deletion to identify the frequency of occurrence, population and genetic char-
acteristics, and outcomes.

After Institutional Review Board approval, a retrospective study with chart review was conducted to
identify patients with 1 or more samples submitted for CLL FISH panel analysis over a 3.5-year period.
FISH and conventional chromosome analysis were performed on cells stimulated with pokeweed
mitogen, phorbol myristate acetate, and CpG oligonucleotides in either peripheral blood or bone
marrow aspirate or biopsy. FISH was performed using probes, according to the manufacturer’s rec-
ommendations (supplemental Table 1). Patients were screened for abnormal CDKN2A/B results at
diagnosis or on subsequent testing at a later stage of the disease. Abnormal CDKN2A/B results
included homozygous loss, heterozygous loss, loss of 1 copy with loss of the chromosome 9 centro-
mere, and relative loss of CDKN2A/B in a polyploid background (ie, 2 signals of CDKN2A/B with 4
signals of centromere 9). Karyotype complexity was counted as previously described.15,16 Immuno-
globulin heavy-chain variable region (IGHV) mutational status was determined using polymerase chain
reaction. For patients who started therapy with a Bruton tyrosine kinase (BTK) inhibitor, mutational
testing was performed using NGS or digital droplet polymerase chain reaction. A 50-gene hematologic
sequencing panel was performed via ion torrent sequencing and annotated using the GenomOncology
platform (supplemental Methods). A Cox regression model was used to evaluate overall survival (OS)
after CDKN2A/B deletion. The Fine and Gray model was used to examine the correlation of variables
regarding transformation, treating death without transformation as a competing risk.
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We identified 636 patients with CLL FISH panel analysis, of whom
43 (6.8%) had CDKN2A/B deletion. The cohort with CDKN2A/B
deletion consisted of 28 (65.1%) males and 15 (34.9%) females,
with a median age at diagnosis of 54.9 years (range, 41.9-77.7
years). Detection of CDKN2A/B loss occurred at a median of
7.8 years from diagnosis (range, diagnosis to 26.1 years). Five
patients (11.6%) had CDKN2A/B loss within 1 year of diagnosis
before receiving any therapy. For those who had been previously
treated at the time of CDKN2A/B loss detection, the median
number of lines of treatment was 5 (range, 1-13). Thirty-two
(74.4%) patients had received prior therapy with a BTK inhibi-
tor. BTK C481 mutation testing was performed for 27 (84.4%)
patients, with alterations detected in 11 (34.4%). Of the patients
with a known IGHV mutational status (n = 33), 30 (90.9%) had
unmutated status.

Regarding CDKN2A/B deletion, 33 (76.7%), 7 (16.3%), and 3
(7.0%) patients had heterozygous, homozygous, or subclonal
populations of heterozygous as well as homozygous loss, respec-
tively. Complex (3-4 abnormalities), highly complex (5-9 abnor-
malities), and ultra complex (>10 abnormalities)15 karyotypes were
found in 6 (14.0%), 13 (30.2%), and 20 (46.5%) patients,
respectively (Figure 1). A chromosomal abnormality involving the
9p21 locus was visible by conventional karyotyping in 72.1% of
patients (supplemental Table 2). Additional FISH testing showed
that 27 patients (62.8%) had TP53 deletion; 25 (58.1%) had
deletion of 13q14; 16 (37.2%) had gain, rearrangement, or
amplification of MYC; 10 (23.3%) had gain of REL; 7 (16.3%) had
BCL6 gain or rearrangement; 7 (16.3%) had ATM deletion; 6
(14.0%) had SEC63 deletion; and 6 (14.0%) had trisomy 12.
Sequencing data were available for 15 (34.9%) patients; of note,
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Figure 1. Genetic profiles of patients with CLL with CDKN2A/B deletion. Bone ma
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10 (66.7%) had mutations in TP53, with 4 (26.7%) also having
mutations in SF3B1. BRAF mutations occurred in 2 patients, and 1
patient had mutations in NOTCH1 and XPO1.

In terms of outcomes, there were 30 deaths (69.8%) in the cohort.
With a median follow-up period of 10.6 years among survivors,
there was a median OS of 10.8 years from diagnosis (95% con-
fidence interval [CI], 8.0-14.4). The median OS from the time of
detection of CDKN2A/B deletion was 1.7 years (95% CI, 0.3-4.7),
with a median follow-up period of 4.9 years. The treatments after
CDKN2A/B deletion are provided in supplemental Table 3. Of the
43 patients in the cohort, 21 (49%) progressed to RT (n = 20) or
prolymphocytic leukemia (n = 1). Two additional patients each
underwent a bone marrow biopsy which noted concern for pro-
lymphocytic leukemia transformation at the time of CDKN2A/B
deletion; however, no follow-up data were available for confirma-
tion. The median age at RT was 65.8 years (range, 56.0-83.9
years), and 1 patient was treatment naïve at the time of RT. The
characteristics at the time of RT are shown in supplemental
Figure 1. Of the 30 deaths, 17 occurred among those with RT
and 13 among those without RT due to progressive disease (n =
8), infection (n = 2), complications of CLL therapy (n = 1), sec-
ondary cancer (n = 1), and respiratory failure (n = 1).

The time from CDKN2A/B deletion detection to RT ranged from
0 to 5.5 years, with all but 2 patients progressing to RT within 2
years. The cumulative incidence rates of RT from the initial CLL
diagnosis were 4.7% (95% CI, 0.8-14.0) at 12 months and 9.3%
(95% CI, 2.9-20.3) at 24 months. The cumulative incidence rates
of RT after CDKN2A/B deletion were 23.5% (95% CI, 10.9-38.9)
at 12 months and 29.4% (95% CI, 15.1-45.3) at 24 months.
Although there were limited patients progressing to RT with the
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Table 1. Fine and Gray model for RT

21 events

Univariable models Multivariable model

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

Age at diagnosis, 1 y increase 1.06 (1.02-1.11) 0.0076 — —

Male vs female 0.88 (0.37-2.07) 0.77 — —

Rai stage, 1 unit increase 0.70 (0.38-1.32) 0.27 — —

IGHV unmutated vs mutated 1.60 (0.14-18.08) 0.70 — —

B2M at first visit, 1 unit increase 0.97 (0.77-1.23) 0.82 — —

BTK mutation vs no 1.13 (0.37-3.50) 0.83 — —

Complexity vs 0 — —

3-4 4.06 (0.35-46.71) 0.26

5-9 1.48 (0.14-15.67) 0.75

10-14 1.29 (0.12-14.54) 0.84

>15 6.92 (0.57-83.72) 0.13

REL gain vs no 1.44 (0.53-3.97) 0.48 — —

BCL6 abnormality vs no 1.49 (0.45-5.00) 0.52 — —

SEC63 deletion vs no 0.81 (0.27-2.39) 0.70 — —

CMYC abnormality vs no 1.07 (0.46-2.51) 0.88 — —

CDKN2A/B vs het

Hom 1.55 (0.49-4.92) 0.46 2.22 (0.65-7.61) 0.20

Both 7.22 (3.03-17.24) <.0001 6.08 (2.13-17.39) 0.0008

ATM deletion vs no 0.75 (0.14-3.95) 0.74 — —

TP53 deletion vs no 4.25 (1.22-14.86) 0.02 4.53 (1.33-15.43) 0.02

Trisomy 12 vs no 1.24 (0.32-4.82) 0.76 — —

D13S319 deletion vs no 0.95 (0.40-2.23) 0.90 — —

Lines of treatment, 1 increase 0.92 (0.80-1.06) 0.26 — —

Fine and Gray model for RT (n = 20) and prolymphocytic leukemia (n = 1).
B2M, beta-2-microglobulin; both, heterozygous and homozygous populations; het, heterozygous; hom, homozygous; IGHV, immunoglobulin heavy-chain variable region.
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detection of CDKN2A/B deletion, the multivariable model found
that loss of TP53 (P = .02; hazard ratio, 4.53 [95% CI, 1.33-
15.43]) and homozygous and heterozygous loss of CDKN2A/B
(P = .0008; hazard ratio, 6.08 [95% CI, 2.13-17.39]) were
independent significant variables associated with RT (Table 1).
The frequencies of MYC, REL, and BCL6 abnormalities and
karyotype complexity were similar between patients with and
without RT.

To our knowledge, this study examined the largest cohort of
patients with CLL and CDKN2A/B deletion and demonstrated
poor outcomes after detection. This retrospective study has various
limitations. Serial samples were unavailable for many patients
(supplemental Table 4); thus, the timing of acquisition of deletion
remains unclear. We were unable to assess whether CLL and
subsequent RT were clonally related, and NGS data were available
for a limited subset of patients with CDKN2A/B not part of the
panel. Loss of CDKN2A/B was a rare event in patients with CLL.
Among those with the abnormality, 18.6% died due to progressive
CLL and 48.8% progressed with RT. Here, we show that FISH
analysis is a clinically practical option that can be incorporated into
routine FISH testing for CLL, particularly for high-risk patients with
TP53 abnormalities. Our findings indicate that future prospective
analysis of CDKN2A/B deletion as a prognostic variable is
warranted.
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