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Key Points

• Autoimmune
cytopenias are a
common manifestation
of IEIs.

• Although IEIs often
underlie pediatric
Evans syndrome, no
cases of IEI were
identified in this real-
world study of adults
with ITP and Evans
syndrome.
6275/blooda_adv-2023-0110
Inborn errors of immunity (IEIs) are monogenic disorders that predispose patients to immune

dysregulation, autoimmunity, and infection. Autoimmune cytopenias, such as immune

thrombocytopenia (ITP) and Evans syndrome (a combination of ITP and autoimmune

hemolytic anemia), are increasingly recognized phenotypes of IEI. Although recent findings

suggest that IEIs may commonly underlie pediatric ITP and Evans syndrome, its prevalence in

adult patients with these disorders remains undefined. This study sought to estimate the

prevalence of underlying IEIs among adults with persistent or chronic ITP or Evans syndrome

using a next-generation sequencing panel encompassing >370 genes implicated in IEIs. Forty-

four subjects were enrolled from an outpatient adult hematology clinic at a tertiary referral

center in the United States, with a median age of 49 years (range, 20-83). Fourteen subjects

(31.8%) had secondary ITP, including 8 (18.2%) with Evans syndrome. No cases of IEI were

identified despite a high representation of subjects with a personal history of autoimmunity

(45.5%) and early onset of disease (median age at diagnosis of 40 years [range, 2-77]), including

20.5% who were initially diagnosed as children. Eight subjects (18.2%) were found to be

carriers of pathogenic IEI variants, which, in their heterozygous state, are not disease-causing.

One case of TUBB1-related congenital thrombocytopenia was identified. Although systematic

screening for IEI has been proposed for pediatric patients with Evans syndrome, findings from

this real-world study suggest that inclusion of genetic testing for IEI in the routine work-up of

adults with ITP and Evans syndrome has a low diagnostic yield.
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Introduction

The inborn errors of immunity (IEIs) are a heterogenous group of genetic disorders characterized by
immune deficiency and dysregulation, which lead to increased risk of infection, autoimmunity, and
malignancy. The advent of comprehensive and affordable next-generation sequencing (NGS) has led to
a rapid rise in the diagnosis and identification of IEIs, now numbering >450 monogenic defects.1

Immune thrombocytopenia (ITP) is a common manifestation of IEIs and can be the first presenting
symptom of an underlying IEI in adults and children.2-5 Approximately 20% of patients with pediatric
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Table 1. Targeted capture panel of genes associated with IEIs (n = 374), constitutional cytopenia (n = 21), and other monogenic disorders

(n = 179)

IEIs

Immunodeficiencies affecting cellular and humoral
immunity

ADA, AK2, B2M, BCL10, CARD11, CD247, CD3D, CD3E, CD3G, CD40, CD40LG, CD8A, CIITA, CORO1A,
DCLRE1C, DOCK2, DOCK8, FCHO1, ICOS, ICOSLG, IKBKB, IL21, IL21R, IL2RG, IL7R, IKZF1, ITK, JAK3, LAT,
LCK, LIG4, MALT1, MAP3K14, MSN, NHEJ1, PAX1, POLD1, POLD2, PRKDC, PTPRC, RAG1, RAG2, REL, RELA,
RELB, RFX5, RFXANK, RFXAP, RHOH, STK4, TAP1, TAP2, TAPBP, TFRC, TNFRSF4, and ZAP70

Combined immunodeficiencies with associated or
syndromic features

ARPC1B, ATM, BCL11B, BLM, CCBE1, CDCA7, CHD7, DNMT3B, EPG5, ERBIN, EXTL3, FAT4, FOXN1, GINS1,
HELLS, IL6R, IL6ST, KDM6A, KMT2A, KMT2D, LIG1, MCM4, MTHFD1, MYSM1, NBN, NFE2L2, NFKBIA, NSMCE3,
ORAI1, PGM3, PMS2, PNP, POLE, POLE2, RBCK1, RMRP, RNF168, RNF31, RNU4ATAC, SEMA3E, SKIV2L,
SLC46A1, SMARCAL1, SP110, SPINK5, STAT3, STAT5B, STIM1, TBX1, TCN2, TGFBR1, TGFBR2, TTC37, TTC7A,
WIPF1, ZBTB24, and ZNF341

Predominantly antibody deficiencies AICDA, ARHGEF1, ATP6AP1, BLNK, BTK, CD19, CD79A, CD79B, CD81, CR2, FNIP1, IGLL1, IRF2BP2, MOGS,
MS4A1, MSH6, NFKB1, NFKB2, PIK3CD, PIK3R1, PTEN, SEC61A1, SH3KBP1, SLC39A7, TCF3, TNFRSF13B,
TNFRSF13C, TNFSF12, TOP2B, TRNT1, and UNG

Diseases of immune dysregulation AIRE, AP3B1, AP3D1, BACH2, CARMIL2, CASP10, CASP8, CD27, CEBPE, CTLA4, CTPS1, DEF6, FADD, FAS,
FASLG, FERMT1, FOXP3, IL10, IL10RA, IL10RB, IL2RA, IL2RB, ITCH, LRBA, LYST, MAGT1, NFAT5, PEPD, PRF1,
PRKCD, RAB27A, RASGRP1, RIPK1, SH2D1A, SLC7A7, STX11, STXBP2, TET2, TGFB1, TNFRSF9, TPP2,
UNC13D, and XIAP

Congenital defects of phagocyte number or function ACTB, CFTR, CLPB, CSF2RA, CSF2RB, CSF3R, CTSC, CXCR2, CYBA, CYBB, EFL1, ELANE, FERMT3, FPR1,
G6PC3, G6PD, GATA2, GFI1, HAX1, HYOU1, ITGB2, JAGN1, LAMTOR2, MKL1, NCF2, NCF4, RAC2, SLC35C1,
SLC37A4, SMARCD2, SRP54, TAZ, USB1, VPS13B, VPS45, WAS, and WDR1

Defects in intrinsic and innate immunity CARD9, CIB1, CLCN7, CXCR4, DBR1, HMOX1, IFIH1, IFNAR1, IFNAR2, IFNGR1, IFNGR2, IL12B, IL12RB1, IL12RB2,
IL17F, IL17RA, IL17RC, IL23R, IL18BP, IRAK4, IRF4, IRF7, IRF8, IRF9, ISG15, JAK1, MYD88, NBAS, NCSTN,
OSTM1, POLR3A, POLR3F, PSENEN, RANBP2, RORC, RPSA, SNX10, SPPL2A, STAT1, STAT2, TCIRG1, TICAM1,
TLR3, TLR7, TMC6, TMC8, TNFRSF11A, TNFSF11, TRAF3, TRAF3IP2, TYK2, and UNC93B1

Autoinflammatory disorders ACP5, ADA2, ADAM17, ADAR, CARD14, CDC42, COPA, DNASE1L3, DNASE2, IL1RN, IL36RN, LPIN2, MEFV, MVK,
NCKAP1L, NLRC4, NLRP1, NLRP12, NLRP3, NOD2, OAS1, OTULIN, PLCG2, POLA1, PSMB8, PSMG2, PSTPIP1,
RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, SH3BP2, SLC29A3, TMEM173, TNFAIP3, TNFRSF1A, and
TREX1

Complement deficiencies C1QA, C1QB, C1QC, C1S, C2, C3, C5, C6, C7, C8A, C8B, C9, CD46, CD55, CD59, CFB, CFD, CFH, CFI, CFP,
SERPING1, and THBD

Bone marrow failure ACD, BRCA1, BRCA2, BRIP1, CTC1, DKC1, DNAJC21, ERCC4, ERCC6L2, FANCA, FANCB, FANCC, FANCD2,
FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, MAD2L2, NOP10, PALB2, PARN, RAD51, RAD51C, RFWD3,
RTEL1, SAMD9, SAMD9L, SLX4, SRP72, STN1, TERC, TERT, TINF2, TP53, UBE2T, WRAP53, and XRCC2

Constitutional cytopenia

ABCG5, ABCG8, ACTN1, ANKRD26, BLOC1S6, CDAN1, CYCS, DIAPH1, ETV6, FLI1, GATA1, GP1BA, GP6, GP9, ITGA2B, ITGB3, MECOM, MPL, MYH9, RBM8A, RUNX1, THPO,
TUBB1, VIPAS39, and VPS33B

Miscellaneous

ABCB7, ACAN, ADAMTS13, ADGRE2, AK7, ALAS2, ALG6, ALPK1, ANGPT1, ANKZF1, ANO6, ARMC4, ASAH1, ATR, BLOC1S3, C11orf70, C15orf41, C17orf62, CARD8, CBL,
CCDC103, CCDC114, CCDC151, CCDC39, CCDC40, CCDC65, CCNO, CEP164, CFAP298, CHEK2, COL7A1, CYP27A1, DDX41, DDX58, DGAT1, DGKE, DNAAF1, DNAAF2,
DNAAF3, DNAAF4, DNAAF5, DNAH1, DNAH11, DNAH5, DNAH8, DNAH9, DNAI1, DNAI2, DNAJB13, DNAL1, DRC1, DSG1, DTNBP1, DUOX2, EIF2AK3, EPCAM, ERCC2,
ERCC3, FOXI3, G6PC, GAS8, GLRX5, GTF2H5, GTF2E2, GUCY2C, HPS1, HPS3, HPS4, HPS5, HPS6, HTRA2, ITGAM, JAK2, KAT6A, KDM1A, KIF23, KIT, KLF1, KLHDC8B,
LARS2, LCT, LIPA, LRRC56, LRRC6, LRRC8A, LYN, MBD4, MCIDAS, MLH1, MPLKIP, MSH2, MYO5B, NAF1, NDUFB11, NEUROG3, NF1, NHP2, NME8, NPAT, NOTCH2, OFD1,
P2RY12, PIH1D3, PLA2G4A, PLG, PLVAP, PMM2, PNLIP, POMP, POT1, PSMA3, PSMB4, PUS1, RASGRP2, RECQL4, RNF113A, RPGR, RPL11, RPL15, RPL18, RPL19, RPL23,
RPL26, RPL27, RPL31, RPL35, RPL35A, RPL5, RPL9, RPS10, RPS15A, RPS19, RPS24, RPS26, RPS27, RPS28, RPS29, RPS7, RSPH1, RSPH3, RSPH4A, RSPH9, SAR1B, SBF2,
SCO2, SEC23B, SGPL1, SI, SIAE, SLC10A2, SLC19A2, SLC25A38, SLC26A3, SLC5A1, SLC51B, SLC9A3, SPAG1, SPINT2, STAT4, STX3, TAOK2, TBXA2R, TERF2IP, TIMM50,
TMPRSS15, TNFRSF6B, TONSL, TP63, TSR2, UNC45A, VAV1, WNT2B, YARS2, ZCCHC8, and ZMYND10

The panel was expanded from 473 to 574 genes during the study, with the added genes denoted by underlining. Twenty-three patients (56%) underwent testing on the 574-gene panel.
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chronic ITP and 40% of patients with pediatric Evans syndrome (a

combination of ITP and autoimmune hemolytic anemia) harbor an
underlying IEI.6-9 In adults with immune cytopenias, the prevalence
of underlying IEIs has not been defined, and IEIs may go unrec-
ognized in these patients because of broad phenotypic heteroge-
neity and a lack of provider familiarity.10

Patients with autoimmune cytopenias are recommended to
undergo quantitative immunoglobulin testing to assess the risk of
immunosuppression.11 Formal diagnosis of an IEI may have addi-
tional utility as IEI-related autoimmune cytopenias are less
responsive to standard therapies and often associate with other
12 DECEMBER 2023 • VOLUME 7, NUMBER 23
immunopathologic manifestations, such as immune-mediated
gastrointestinal disease in children.8,12,13 Molecular diagnosis
may also guide treatment given the mounting success of targeted
therapies14-17 and hematopoietic stem cell transplantation for
select patients with challenging IEI-associated sequelae, including
refractory ITP.18

The purpose of this study was to estimate the prevalence of IEIs
among a real-world cohort of adult patients from the United
States with persistent or chronic ITP or Evans syndrome by
applying an NGS panel encompassing >370 genes implicated in
IEIs.10
IEI IN ITP 7203



Table 2. Baseline demographics and clinical characteristics of the

study population

Characteristics Subjects (n = 44)

Median age (range), y 49 (20-83)

Sex, n (%)

Female 25 (56.8)

Male 19 (43.2)

Secondary ITP,* n (%) 14 (31.8)

Evans syndrome 8 (18.2)

Systemic lupus erythematosus 3 (6.8)

Inflammatory bowel disease 2 (4.5)

Rheumatoid arthritis 1 (2.3)

Antiphospholipid syndrome 1 (2.3)

Common variable immunodeficiency 1 (2.3)

Inflammatory disorder NOS 1 (2.3)

Median duration of ITP (range), y 8.2 (0.3 – 32.9)

Median age at diagnosis of ITP (range), y 40 (2-77)

Mean baseline platelet count (range), x 109/L 161 (16-646)

Median no. of previous ITP therapies (range) 4 (0-13)

History of splenectomy, n (%) 14 (31.8)

Prior rituximab, n (%) 21 (47.7)

Most common current therapy, n (%)

Thrombopoietin receptor agonists 23 (52.3)

Not on therapy 15 (34.1)

Corticosteroids 11 (25.0)

Mycophenolate mofetil 9 (20.5)

Lymphadenopathy or splenomegaly, n (%) 9 (20.5)

Personal history of autoimmunity, n (%) 20 (45.5)

Family history of autoimmunity

In a first-degree relative, n (%) 19 (43.2)

In any relative, n (%) 25 (56.8)

*One patient was concurrently diagnosed with Evans syndrome, systemic lupus
erythematosus, and antiphospholipid syndrome; 1 was diagnosed with primary sclerosing
cholangitis, ulcerative colitis, and rheumatoid arthritis.
NOS, not otherwise specified.
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Methods

Patient selection and study design

This was a prospective, single-center study conducted at the Fred
Hutchinson Cancer Center from September 2021 to September
2022. The study protocol was approved by the University of
Washington Institutional Review Board. All subjects provided
written informed consent before enrollment.

Eligible patients were ≥18 years of age with a diagnosis of
persistent or chronic ITP, defined as a platelet count of <100 ×
109/L for 3 to 12 months or >12 months, respectively, in the
absence of other causes.19 Subjects were excluded if they carried
a diagnosis of a clonal lymphoproliferative disorder (eg, lymphoma
or monoclonal B-cell lymphocytosis) or had prior genetic testing for
IEIs. Potential subjects were recruited sequentially during clinic
visits or approached for consent by phone or electronic mail in
random order using a computerized number generator. Medical
record review was conducted for relevant clinical data, including
7204 JIANG et al
medical comorbidities, ITP history (ie, date of diagnosis, primary or
secondary disease, prior lines of therapy, and history of splenectomy),
the presence of persistent (≥3 months of) lymphadenopathy or
splenomegaly on imaging, and laboratory results (ie, complete blood
counts, mean platelet volume, immature platelet fraction, complement
components 3 and 4, antinuclear antibodies, quantitative immuno-
globulins, bone marrow aspirate and biopsy findings, and peripheral
blood flow cytometry). Family history was obtained by interview, and a
3-generation pedigree was generated for each subject.

Genetic testing and analysis

DNA was isolated from peripheral blood or buccal swab samples.
Targeted gene capture and massively parallel sequencing were
performed at Invitae Corporation (San Francisco, CA), using an
assay initially targeting mutations in 473 genes implicated in IEIs,
congenital thrombocytopenia, inherited bone marrow failure, and
other monogenic disorders (Table 1). In February 2022, halfway
through enrollment, the panel was expanded to include 574 genes.

Genetic analysis and variant curation were obtained via the com-
mercial analytics pipeline. NGS data were also independently
analyzed and interpreted by the research team. Raw NGS data files
from each subject were obtained and aligned to the human refer-
ence genome (hg19) using the Burrows-Wheeler aligner,20 and
single nucleotide and small insertion-deletion (indel) variants were
identified with genome analysis toolkit,21 using best practice
guidelines and annotated using an in-house pipeline, as previously
described.22 Large indels and complex rearrangements were
identified with Pindel23 and Delly.24 Copy number variants were
called by read depth information using Confier,25 eXome-Hidden
Markov Model,26 and in-house scripts developed in the laboratory.
Variants with >5 variant reads and variant allele fraction consistent
with heterozygosity (≥0.30) were retained. Somatic mutations
defined by a variant allele fraction of <0.30 were excluded from the
analysis. For known variants, we obtained allele frequencies from
the Genome Aggregation Database (gnomAD) with 125 748
individuals and our in-house database of 2000 exomes from gene
discovery projects that do not include hematologic disorders. Rare
(minor allele frequency <0.001) nonsense, frameshift, splice site–
altering variants, and predicted damaging missense variants were
included. To assess the potential occurrence of a pathogenic allele
in gnomAD, we conducted a comparative analysis of the fre-
quencies of unequivocally pathogenic variants within specific
subgroups of gnomAD, namely controls, individuals without cancer,
and nonparticipants of the Trans-Omics for Precision Medicine
program, which targeted subjects with underlying heart, lung,
blood, and sleep disorders.

All in-house and commercially reported variants were indepen-
dently reviewed by an expert review panel using the American
College of Medical Genetics and Genomics (ACMG) standards
and guidelines for variant classification.27 Commercially reported
pathogenic or likely pathogenic variants were closely reviewed and
reclassified as variants of unknown significance (VUSs) if there was
insufficient evidence for pathogenicity as defined by ACMG.

To assess the impact of a splice site mutation on transcription, we
designed reverse transcription polymerase chain reaction primers
to amplify the aberrant transcript. Purified transcription polymerase
chain reaction products were compared with transcripts from the
unaffected allele and interpreted for predicted functional impact.
12 DECEMBER 2023 • VOLUME 7, NUMBER 23



Table 3. List of 9 pathogenic variants identified in genes implicated in IEIs with their associated phenotypic classification as outlined in 2022

by the International Union of Immunological Societies,
1
coding DNA reference sequence, protein-level amino acid sequences (if applicable),

gene transcript, and variant-specific references denoted by PubMed Identifier

IUIS phenotypic classification Gene cDNA (protein) Transcript Zygosity Disease Inheritance PMID

Autoinflammatory disorders MVK c.1129G>A (p.Val377Ile) NM_000433.3 Het Mevalonate kinase
deficiency (hyper-IgD
syndrome)

AR 10369261

Diseases of immune dysregulation PRF1 c.853_855del (p.Lys285del) NM_001083116.1 Het Perforin deficiency AR

Combined immunodeficiencies
with associated or syndromic
features

PMS2 c.746_753del (p.Asp249Valfs*2) NM_000535.5 Het PMS2 deficiency AR 20487569 and
27435373

RMRP n.239C>T NR_003051.3 Het Cartilage hair hypoplasia AR 11940090

WAS c.1203del (p.Pro402Argfs*43) NM000377.2 Het (female) Wiskott-Aldrich
Syndrome

XL

Predominantly antibody deficiencies TNFRSF13B c.542C>A (p.Ala181Glu) NM_012452.2 Het TACI deficiency AR 16007086;
16007087;
and 20156508

Congenital defects of phagocyte
number or function

CFTR (2) c.2052del (p.Lys684Asnfs*38) NM_000492.3 Het Cystic fibrosis AR 23974870

c.1521_1523del (p.Phe508del) Het 2475911; 15371902;
and 23974870

Bone marrow failure FANCL c.296_297del
(p.Gln99Argfs*17)

NM_018062.3 Het Fanconi anemia type L AR

All variants in the heterozygous state are not associated with disease. One patient harbored 2 different pathogenic variants in IEI genes (CFTR and FANCL).
AR, autosomal recessive; cDNA, coding DNA reference sequence; Het, heterozygous; IgD, immunoglobulin D; IUIS, International Union of Immunological Societies; PMID, PubMed Identifier;

XL, X-linked.
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Statistical analysis

Differences in continuous and categorical values were assessed
using t tests and Fisher exact tests, respectively. All analyses were
conducted in R (version 4.1.0).

Results

Among 104 eligible participants, 61 were approached for consent
and 44 were enrolled (supplemental Figure 1). The median age
was 49 years (range, 20-83), and 56.8% were female (Table 2).
Fourteen (31.8%) had secondary ITP, including 8 with Evans
syndrome, 1 with common variable immunodeficiency, and 1 with
an ill-defined inflammatory disorder, characterized by ≥5 years of
persistent night sweats, diffuse fluorodeoxyglucose-avid lymph-
adenopathy, and repeated biopsies demonstrating only reactive
changes (Table 2). An additional 8 subjects with primary ITP had a
history of autoimmunity: 3 were diagnosed with a systemic auto-
immune disease more than 1 year after the onset of ITP (systemic
lupus erythematosus [n = 1], psoriatic arthritis [n = 1], and
inflammatory bowel disease [n = 1]), and 5 had preexisting diag-
noses of other autoimmune conditions (Raynaud disease [n = 2],
Hashimoto thyroiditis [n = 1], neurosarcoidosis [n = 1], multiple
sclerosis [n = 1], and autoimmune neutropenia [n = 1]). The
median duration of ITP was 8.2 years (range, 0.3-32.9 years), and
subjects had received a median of 4 lines of ITP-directed therapy
(range, 0-13). At enrollment, 52% were receiving thrombopoietin
receptor agonist therapy, and 14 participants (31.8%) had previ-
ously undergone splenectomy.

Forty-one subjects completed genetic testing: 23 (56%) on the
expanded 574-gene panel. There were no cases of IEI identified.
Eight participants (18.2%) were found to be carriers of pathogenic
IEI variants, including 1 who harbored 2 IEI-associated variants in
12 DECEMBER 2023 • VOLUME 7, NUMBER 23
different genes (Table 3). There were no significant clinical differ-
ences between carriers and noncarriers of a pathogenic IEI variant.
An additional 6 subjects were carriers of pathogenic variants in
genes associated with non-IEI monogenic disorders ranging from
primary ciliary dyskinesia to inborn errors of metabolism
(supplemental Table 1). One participant with a family history of
thrombocytopenia was found to harbor a pathogenic variant in
TUBB1 (p.Phe260Ser), consistent with a diagnosis of congenital
thrombocytopenia.28

In total, 288 VUSs were identified (238 reported by the commercial
analytics pipeline, 8 commercially reported pathogenic variants that
were reclassified as VUSs by the in-house analytics pipeline
(supplemental Table 2), and 42 VUSs identified by the in-house
analytics pipeline), with a mean of 7 VUSs per subject (Figure 1).
The TUBB1 p.Phe260Ser mutation was reported as a VUS by the
commercial analytics pathway and was reclassified as pathogenic
based on existing literature, which reports this variant in an affected
family and provides functional data demonstrating the variant’s
deleterious effect on platelet microtubule structure and proplatelet
formation.28,29 The expert panel judged that 8 of 23 (34.8%)
commercially reported pathogenic or likely pathogenic variants
were VUSs based on insufficient data supporting pathogenicity
according to ACMG guidelines. We performed RNA analysis on a
VUS in DIAPH1 (c.3149-1 G>T) predicted to impact splicing and
did not observe any effect.
Discussion

Despite estimates that IEIs commonly underlie pediatric ITP and
Evans syndrome, no cases were identified by an NGS panel,
encompassing >370 genes implicated in IEI in this real-world,
single-center cohort of adult patients with persistent or chronic
IEI IN ITP 7205



VUS identified by commercial pipeline Additional VUS identified by in-house pipeline

VUS reported as P/LP by commercial pipeline P/LP identified by commercial pipeline

Pathogenic, identified as VUS by commercial pipeline

0 5 10

Number of variants identified
15

Figure 1. Sequencing results for 41 patients with chronic or

persistent ITP. Each row represents an individual subject. In

total, there were 16 pathogenic variants (9 in genes implicated in

IEIs, 1 variant associated with congenital thrombocytopenia, and 6

associated with miscellaneous disorders, such as primary ciliary

dyskinesia and inborn errors of metabolism) and 288 VUSs. The

commercial analytics pipeline reported 239 VUSs (green). Of the

23 commercially reported pathogenic or likely pathogenic variants,

8 were reclassified as VUSs by the research team (blue). The

remaining 15 were assessed as pathogenic or likely pathogenic in

agreement with the commercial interpretation (orange). The

research team also identified 1 disease-causing pathogenic

mutation associated with congenital thrombocytopenia (TUBB1)

that was curated as a VUS by the commercial pipeline (red). An

additional 42 VUSs (purple) were identified by the in-house

analytics pipeline and not reported by the commercial analytics

pipeline. P/LP, pathogenic or likely pathogenic.
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ITP. Although the prevalence was anticipated to be lower than in
a pediatric population,9 the negative finding was surprising as the
study cohort was unintentionally enriched for characteristics likely
to be associated with an underlying IEI, including a high propor-
tion of patients with heavily pretreated and longstanding ITP on
par with contemporary interventional trials,30,31 personal and
family history of autoimmunity, and early onset of disease,
including 9 (20.5%) who presented in childhood, 2 of whom had
pediatric Evans syndrome. Nearly one-third of the study popula-
tion had ITP secondary to a systemic autoimmune disease,
compared with a rate of ~10% in population-based studies of
adult ITP.32,33

Several issues surrounding the germ line genetic testing for IEIs
might have affected our results. Among patients with a high pretest
clinical suspicion for IEIs, the diagnostic yield of multigene panel
testing ranges from 15% to 79%.34 This wide variability is
explained partly by differences in methodology (eg, sequencing
technique, number of genes evaluated, analytic and variant classi-
fication approaches) and study populations (eg, varying rates of
carrier frequency and consanguinity).35 Compared with prior
studies in pediatric Evans syndrome, this study had no cases of
consanguinity8 and used an expert panel, which defined pathoge-
nicity according to ACMG Standards and Guidelines, reclassifying
more than one-third of commercially reported pathogenic or likely
pathogenic variants as VUSs.8,9 Molecular diagnostic rates also
vary among IEI phenotypic classifications. Less than 20% of those
7206 JIANG et al
categorized as having autoinflammatory disease or predominantly
antibody deficiency are molecularly diagnosed.36,37 Diagnostic
yield is higher in early-onset highly penetrant disorders, such as
severe combined immunodeficiency (100%), inherited bone
marrow failure (55%), and syndromic IEIs (53%).36 We note that 6
patients who underwent screening for this study had previously
been tested for IEIs, presumably based on a phenotype prompting
a high pretest clinical suspicion. Two of the 6 were diagnosed with
pathogenic variants in CTLA4 and FOXP3, consistent with a
diagnosis of CTLA4 haploinsufficiency and immunodysregulation
polyendocrinopathy enteropathy X-linked syndrome, respectively.
The study population likely consisted of more subtle presentations.
The negative findings in the study highlight the complexity under-
lying genetic determinants of autoinflammation, which may have
greater variability in disease penetrance, expressivity, and poly-
genicity. Current knowledge of disease-causing variants might also
be skewed toward early-onset, highly penetrant disorders and
variants associated with subtle phenotypic presentation may be
unrecognized at present. Further studies expanding on the clinical
and genetic spectra of IEIs are critical. Whole-exome sequencing is
underway for 1 subject with a strong family history of pediatric ITP
and Evans syndrome (supplemental Figure 2).

Consistent with a prior study, we also observed a high rate of
VUSs, with at least 1 VUS identified in each subject and an
average of 7 per patient.35 The high rate may be partially
attributed to the variant curation practices of commercial
12 DECEMBER 2023 • VOLUME 7, NUMBER 23



D
ow

nloaded from
 http://ashpublications.net/bloodadvances/article-pdf/7/23/7202/21
laboratories38 and reflect the paucity of data surrounding IEI-
associated genes.

One commercially reported VUS (TUBB1 [p.Phe260Ser]) was
reclassified as pathogenic. The variant was identified in a 23-year-
old woman who carried a diagnosis of ITP after a 9-gene inherited
thrombocytopenia panel was nondiagnostic.29 At least 1% to 2%
of inherited thrombocytopenia can be misdiagnosed as ITP,
although the actual prevalence may be higher.33

In summary, no cases of IEI were identified in this single-center
cohort of adults with chronic ITP and Evans syndrome, despite
high representation from patients with heavily pretreated, long-
standing disease, underlying autoimmunity, and a young age of
onset. As the phenotypic and genetic spectra of IEI continue to
expand, disease-causing variants associated with adult immune
cytopenias may be uncovered. At present, this work does not
support implementation of routine testing for IEIs in adult patients
with ITP, and sequencing is best reserved for cases where there is
a high index of suspicion. Genetic testing for IEIs returns high rates
of VUSs, and variant curation is complex, underscoring the
importance of expert interpretation and efforts to advance disease-
specific standardized variant curation.
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