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Standard hydroxyurea treatment for sickle cell anemia (SCA) is often initiated at an oral dose of 15
to 20 mg/kg once daily. In 2014, the Expert Panel Report of the National Heart, Lung, and Blood
Institute recommended starting doses of 15 to 20 mg/kg per day for adults and children, with increases
of 5 mg/kg per day every 8 weeks “if dose escalation is warranted.”1 However, escalating the dose to
the maximum tolerated dose (MTD) vs maintaining a fixed dose has been controversial,2 and relatively
little has been published regarding hydroxyurea treatment for infants.3-6

We developed the Hydroxyurea Management in Kids: Intensive vs Stable Dosage Strategies
(HUGKISS; NCT03020615), a single-blinded, multi-institutional trial, to determine the feasibility of
enrolling, randomizing, and treating very young children with SCA with either a fixed or intensified dose
of hydroxyurea. Secondary objectives of HUGKISS were comparisons of the laboratory effects, clinical
outcomes, and toxicities from fixed dose vs intensified treatment.

HUGKISS was approved by the 4 centers’ institutional review boards. The study was conducted in
accordance with the Declaration of Helsinki. Eligibility criteria were: hemoglobin SS (HbSS) or HbSβ0

thalassemia, aged 9 to 36 months, Hb ≥ 6.0 g/dL, absolute reticulocyte count (ARC) ≥ 80 × 109/L,
absolute neutrophil count (ANC) ≥ 1.5 × 109/L, platelet count ≥ 100 × 109/L, creatinine and alanine
transaminase < 2 × normal upper limit, and no transfusion within 2 months.

Hydroxyurea powder was distributed to clinical centers in prefilled bottles and was reconstituted locally
to 100 mg/mL.7 Participants underwent clinical and laboratory assessments every 4 (±2) weeks and
were monitored for excessive myelosuppression: ANC < 1.0 × 109/L, platelets < 80 × 109/L, or
Hb < 6.0 g/dL (with ARC < 80×109/L). In both treatment arms, participants began hydroxyurea at 20
(±2.5) mg/kg per day, and subsequent dose adjustments were made for growth. No additional dose
escalation occurred in the standard arm, but intensive arm doses were escalated by increments of
5 mg/kg per day to a maximum of 35 mg/kg per day, adjusting every 8 weeks to maintain an ANC of
1.5 × 109/L to 3.0 × 109/L. If toxicity occurred, hydroxyurea was temporarily discontinued.

After the first 8 (±2) weeks, participants were randomized to receive standard or intensive therapy (1:1
ratio, stratified based on the clinical center and age) by the data coordinating center. The medical
coordinating center and local principal investigators were blinded to treatment allocation, but each local
center had an experienced medical provider who had access to treatment allocation, allowing for real-
time dose adjustment.

Participants received standard management for SCA,8 including a complete blood count and ARC, at
4-week visits. HbF, chemistry panel, and urinalysis were performed every 20 weeks. Adverse clinical
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212 patients assessed for eligibility

154 declined participation

58 consented

51 randomized

7 withdrew prior to randomization
-1 screen failure
-2 withdrew prior to starting
hydroxyurea
-4 withdrew after starting
hydroxyurea

25 allocated to Intensive hydroxyurea

-25 received hydroxyurea

26 allocated to Standard hydroxyurea

-26 received hydroxyurea

2 lost to follow-up

-1 lost to follow-up (week 20)

-1 moved

5 lost to follow-up

-3 withdrew consent (weeks 12, 24, 36)

-1 lost to follow up (week 44)

-1 death (week 16)

2 discontinued hydroxyurea

-1 underwent bone marrow transplant
(week 24)

-1 placed on chronic transfusion
(after week 8)

23 analyzed 19 analyzed

Figure 1. CONSORT diagram for HUGKISS trial.

Fifty-eight subjects gave consent, 51 were randomized, and

42 completed the study.
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event definitions were those used in the BABY HUG trial.6

Medication adherence was defined by medication possession
ratio (MPR; days medication possessed / days medication
prescribed × 100).9

Feasibility of a phase 3 trial was defined by successful enrollment
(50 patients randomized within a 27-month period) and by having
≥80% of randomized subjects with a ≥80% MPR over the study’s
course. Categorical variables were compared using the χ2 test
or Fisher exact test, and continuous variables using the 2-sample
t test or Mann-Whitney/Wilcoxon test.

Between May 2017 and May 2019, 58 patients enrolled in the
study and 55 began treatment with hydroxyurea (Figure 1). Of
6932 RESEARCH LETTER
these, 51 patients were randomized over 24 months, thereby
reaching the targeted accrual rate and number. In total, 25 patients
were randomized to intensive hydroxyurea, and 26 to continued
standard hydroxyurea. There were no significant differences
between the intensive and standard arm subjects regarding
age, genotype, sex, growth, or blood counts (supplemental
Tables 1 and 2).

Forty-two subjects (23 in the intensive and 19 in the standard arm)
completed the 1-year study. Nine subjects (18%) withdrew or were
lost to follow-up after randomization (2 in the intensive and 7 in the
standard arm). More than 80% of randomized subjects had ≥80%
MPR. At exit (Table 1), higher median values for HbF (38.8% vs
26.1%; P = .002), mean corpuscular volume, mean corpuscular
28 NOVEMBER 2023 • VOLUME 7, NUMBER 22



Table 1. HUGKISS group characteristics at exit and changes from entry (baseline) to exit

Variable

Characteristics at exit Change from entry to exit

Intensive hydroxyurea Standard hydroxyurea Intensive hydroxyurea Standard hydroxyurea

n Median (IQR) n Median (IQR) P value n Median (IQR) n Median (IQR) P value

White blood cell count (×109/L) 23 6.7 (5.9-7.5) 19 8.4 (6.3-12.2) .053* 23 −4.50 (−7.29 to −2.61) 19 −0.77 (−3.25 to 1.54) < .001*

ANC (×109/L) 23 1.8 (1.2-2.7) 18 2.6 (1.7-3.7) .016* 23 −1.43 (−2.49 to −0.52) 18 0.35 (−0.36 to 1.20) < .001*

Hb (g/dL) 23 10.0 (9.6-11.5) 19 9.9 (8.9-10.8) .35 23 1.20 (0.40-1.90) 19 0.40 (−0.10 to 1.20) .033

Mean corpuscular volume (fL) 23 91.5 (86.7-97.4) 19 85.2 (77.9-90.4) .01 23 9.60 (7.60-16.60) 19 8.00 (−0.40 to 9.50) .011*

Mean corpuscular hemoglobin (pg) 23 31.7 (30.1-34.2) 19 28.9 (27.1-31.0) .002 23 5.20 (3.20-6.55) 19 2.40 (0.60-3.90) .003

Mean corpuscular Hb concentration (g/dL) 23 35.1 (34.1-35.9) 19 34.3 (33.1-34.8) .012 23 1.10 (0.20-2.10) 19 0.30 (−0.30 to 1.00) .14*

ARC (×109/L) 23 131.2 (94.2-169.1) 19 177.0 (107.7-265.1) .081* 22 −175.9 (−232.4 to −57.05) 19 −91.6 (−126.6 to −36) .03

Platelet count (×109/L) 23 275.0 (190.0-342.0) 19 255.0 (183.0-422.0) .98* 23 −18 (−76 to 45) 19 −48 (−77 to 24) .75*

Creatinine (mg/dL) 23 0.3 (0.2-0.3) 18 0.2 (0.2-0.3) .63 23 0.03 (0.00-0.05) 18 0.03 (0.01-0.07) .87

Total bilirubin (mg/dL) 23 0.9 (0.7-1.8) 17 1.2 (1.1-1.7) .21* 23 −0.30 (-0.80 to −0.05) 17 0.30 (0.00-0.50) .001*

Lactate dehydrogenase (units/L) 23 422 (359-538) 18 435 (374-510) .97* 23 −94 (−210 to −9) 18 4.5 (−77 to 56) .013

Alanine aminotransferase (units per L) 23 19.0 (15.0-25.0) 17 16.0 (14.0-21.0) .47 23 −5.0 (−9.0 to −2.0) 17 −4.0 (−8.0 to 0.0) .69*

HbF (%) 23 38.8 (31.8-43.3) 19 26.1 (25.0-30.9) .002 23 8.0 (1.5-18.4) 19 0.20 (−3.80 to 0.80) < .001*

HbS (%) 22 54.3 (51.8-61.5) 19 65.6 (60.9-67.9) < .001 22 −9.95 (−17.3 to −2.2) 19 −0.40 (−2.3 to 2.3) < .001*

Weight (kg) 23 12.0 (10.6-13.1) 19 11.0 (10.2-13.4) .78* 23 2.8 (2.4-3.1) 19 2.8 (2.3-3.6) .93

Height (cm) 23 84.0 (82.5-87.1) 18 83.0 (80.2-90.3) .54* 23 12.0 (10.6-12.5) 18 11.95 (9.0-14.5) .58

Head circumference (cm) 19 49.0 (48.0-50.0) 15 49.0 (46.3-49.7) .12 17 2.9 (2.5-3.6) 14 3.25 (2.5-3.5) .37*

Hydroxyurea dose at exit, mg/kg per day 23 28.1 (22.7-30.5) 19 19.0 (18.3-20.0) < .001* 23 7.71 (2.20-10.56) 19 −1.02 (−1.70 to −0.02) < .001*

IQR, interquartile range. Bold values indicate statistical significance (P < 0.05).
*Characteristics at exit and changes from entry to exit were compared using either the t test or exact Mann-Whitney/Wilcoxon test.
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Hb, and mean corpuscular Hb concentration and lower median
values for ANC and HbS were found with intensive therapy. The
median increases from the entry to the exit for HbF, hemoglobin,
mean corpuscular volume, and mean corpuscular Hb level were
greater in the intensive arm, but the white blood cell count, ANC,
ARC, bilirubin, and lactate dehydrogenase levels had greater
decreases in that arm. The median hydroxyurea doses (mg/kg
per day) at exit were 28.1 (intensive arm) and 19.0 (standard
arm).

After randomization, 13 of 25 (52%) in the intensive arm and 6 of
26 (23%) in the standard arm experienced neutropenia toxicity
(P = .033). In the intensive arm, the only severe adverse event was
thrombocytopenia. In the standard arm, severe adverse events
were norovirus/rotavirus, removal of a foreign object, and 1 fatality,
which occurred in a 1-year-old patient with HbSS and methicillin-
resistant Staphylococcus aureus sepsis (without neutropenia).

Sickle cell disease–related event rates (pain, acute chest
syndrome, splenic sequestration, dactylitis, priapism, and unantici-
pated transfusion) were not significantly different between the
2 arms (supplemental Table 3). Pain event rates per 100 patient-
years were 52 in the intensive arm and 96 in the standard arm
(P = .13). Adverse event rates unrelated to sickle cell disease were
most commonly infection related (667 in the intensive group and
578 in the standard group; P = .21).

After randomization, 13 of 25 patients (52%) in the intensive arm
and 6 of 26 patients (23%) in the standard arm had neutropenia
toxicity (P = .033), but there was no significant difference in the
infection rate.

The attainment of enrollment and follow-up goals in the HUGKISS
study indicated that a phase 3 randomized trial is feasible. After 1
year of treatment, the most remarkable difference in response was
in HbF, which reached a median of 38.8% in the intensive arm
(compared with 26.1% in the standard arm). In addition, the
median Hb level in the intensive arm increased by 1.2 g/dL (vs
increase of 0.4 g/dL in the standard arm).

However, we acknowledge that increased HbF is not equivalent to
clinical efficacy. In the randomized, multicenter, double-blind trial in
children (mean age, 4.7 years) with SCA in Uganda, hydroxyurea at
a fixed dose (20 mg/kg per day) was compared with dose esca-
lation to reach an Hb level ≥ 9.0 g/dL or HbF ≥ 20%.2 End points
were reached in the dose-escalation group in 86% (vs 37% for
fixed dose), and this group had fewer pain events, acute chest
syndrome episodes, transfusions, and hospitalizations. In other
longitudinal cohort studies, greater HbF resulted in decreased
hospitalization, pain events, and mortality, and increased intelli-
gence quotient.10-13

Regarding hydroxyurea toxicity, a meta-analysis found that neu-
tropenia was more frequent with MTD dosing.14 We noted
increased neutropenia without an increase in significant infection in
the intensive dose arm.

In HUGKISS, hydroxyurea treatment began at a median age of
9 months. This early age of initiation is common clinical practice in
North America15 but is substantially lower than the age of children
in the African MTD trial.2,5 HUGKISS, therefore, may provide a
template for future clinical trials in very young children with SCA
who are treated with hydroxyurea as frontline therapy.
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Our trial had limitations. It was a feasibility study that enrolled a
relatively small number of subjects, probably too few to demon-
strate differences in clinical events. The 1-year length of treatment
may not have allowed adequate time for evaluation of organ func-
tion, quality of life, or toxicities. Furthermore, HbF is a surrogate
marker, not a clinical effectiveness end point.

We conclude that HUGKISS demonstrates the feasibility of
enrolling and treating very young children with SCA with intensive
dose hydroxyurea. The potential benefit of greater HbF from early
intensive hydroxyurea dosing should be confirmed in larger phase 3
trials that include serial evaluation of organ function, quality of life,
and newer antisickling agents.
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