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Key Points

• Children aged 5 to 12
years with sickle cell
anemia (SCA) living in
low- and high-income
settings are at risk of
being underweight.

• Lower hemoglobin
levels and older age
are associated with
being underweight in
children with SCA,
irrespective of the
setting.
-2023-009711
Previously, we demonstrated that older children with sickle cell anemia (SCA) living in

Nigeria are at increased risk of death if they are underweight (weight-for-age z score < −1).

We now conducted a cross-sectional study in low- and high-income settings to determine

the risk factors for being underweight a in children aged 5 to 12 years with SCA. The

children from low- and high-income settings were eligible participants for the Primary

Prevention of Stroke in Children with Sickle Cell Disease in Nigeria (SPRING; N = 928) and

the Silent Cerebral Infarct (SIT, North America/Europe; N = 1093) trials, respectively. The

median age in the SPRING and SIT cohorts was 8.1 and 8.5 years, respectively (P < .001). A

total of 87.9% (n = 816) of participants in the SPRING trial (low-income) met the study

criteria for being underweight (weight-for-age z score < −1), and 22.7% (n = 211) for severely

underweight (weight-for-age z score < −3), significantly higher than the SIT (high-income)

cohort at 25.7% underweight (n = 281) and 0.7% severely underweight (n = 8; P < .001 for

both comparisons). In the combined cohort, older age (odds ratio [OR], 1.24; P < .001) and

lower hemoglobin level (OR, 0.67; P < .001) were associated with being underweight. Age

and hemoglobin level remained statistically significant in separate models for the SPRING

and SIT cohorts. Older age and lower hemoglobin levels in children aged 5 to 12 years with

SCA are associated with being underweight in low- and high-income settings.
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Introduction

Children with sickle cell anemia (SCA) are at increased risk of undernutrition from insufficient caloric
intake along with higher energy requirements associated with increased protein turnover and synthesis,
increased erythropoiesis, elevated myocardial expenditure, and a proinflammatory state.1-3 Anthropo-
metric values, including weight, height, and body mass index (BMI), indicate nutritional status.4,5 BMI
considers weight relative to height. Children with SCA have lower heights than an age- and sex-
matched comparison group.6-8 Thus, BMI may not optimally capture overall nutritional status,
eptember 2023; prepublished online on
2023; final version published online 16
odadvances.2023009711.

qualified investigator with an approved
anderbilt University Medical Center and
nding author, Lauren Jane Klein (lauren.

The full-text version of this article contains a data supplement.

© 2023 by The American Society of Hematology. Licensed under Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0),
permitting only noncommercial, nonderivative use with attribution. All other rights
reserved.

ER 22 6923

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
https://doi.org/10.1182/bloodadvances.2023009711
mailto:lauren.klein@vumc.org
mailto:lauren.klein@vumc.org
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
https://crossmark.crossref.org/dialog/?doi=10.1182/bloodadvances.2023009711&domain=pdf&date_stamp=2023-11-16


D
ow

nloaded from
 http://ashpublications.net/bloodadvances/article-pdf/7/22/6923/2109598/blooda_adv-2023-009711-m

ain.pdf by guest on 07 M
ay 2024
especially chronic malnutrition.9 However, weight is a biomarker for
both acute and chronic malnutrition.10 In the general population, in
children aged <5 years, a weight-for-age z score < −2 identifies all
children with concurrent moderate wasting and stunting,11,12 a
group that is at a 12-times greater risk of mortality in the absence of
treatment than children with normal anthropometric measure-
ments.13 Weight as a screening measure alone also has the
advantage over BMI because it requires only 1 quick measure that
is reproducible without requiring specialized training or equipment
associated with additional anthropometric measurements.14

The nutritional status of children is a potentially modifiable risk
factor for reducing SCA mortality among children living in sub-
Saharan Arica, where most children with SCA are born.15 We
recently demonstrated that children aged 5 to 12 years with SCA
who are underweight (weight-for-age z score < −1) are at
increased risk of mortality in a low-income setting.16 Among 431
children aged 5 to 12 years with SCA who were followed up
prospectively, weight-for-age z score was the sole determinant of
death.16 This association between undernutrition and SCA mor-
tality further supports the observation that underweight children
with SCA are at increased risk of hospitalization.17 However, the
risk factors for being underweight, irrespective of living in a low-
income vs a high-income setting, remain unexplored.4,5 We
completed a pooled secondary analysis of 2 stroke prevention trials
conducted in the low-income setting of northern Nigeria and the
high-income countries of North America and Europe to test the
hypothesis that there are common biologically associated risks of
being underweight (weight-for-age z score < −1) in children aged
5 to 12 years old with SCA.

Methods

Study design and population

We conducted a cross-sectional study as a secondary data anal-
ysis of deidentified data sets from the baseline data of children with
SCA (homozygous hemoglobin S or hemoglobin Sβ0 thalassemia)
who were screened for 2 previous trials, the Primary Prevention of
Stroke in Children with Sickle Cell Disease in Nigeria (SPRING)
trial (#NCT02560935) and the Silent Cerebral Infarct (SIT) multi-
center clinical trial (#NCT00072761). The legal guardians of all
prospective trial participants provided signed informed consent for
SPRING or SIT trial screening procedures.

The SPRING trial was a National Institute of Health–funded multi-
center phase 3 randomized controlled trial conducted from July
2016 to April 2020 at a low-income region of northern Nigeria at
Aminu Kano Teaching Hospital and Murtala Mohammad Specialist
Hospital, with referrals from Hasiya Bayero Pediatric Hospital and
Muhammad Abdullahi Wase Teaching Hospital, all at Kano, Nigeria,
and Barau Dikko Teaching Hospital, Kaduna, Nigeria.18,19 The
institutional review board of Vanderbilt University Medical Center,
Nashville, TN, and the respective ethics committees of the local
Nigerian participating sites approved the SPRING trial.

The SIT trial was an National Institute of Health–funded multicenter
phase 3 randomized, 2-arm controlled clinical trial from December
2004 to November 2013 in 29 clinical centers in the United States,
Canada, France, and the United Kingdom.20 Institution-specific
institutional review board approval was obtained at each partici-
pating institution.
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Children aged 5 to 12 years with SCA (hemoglobin SS or hemo-
globin Sβ0 thalassemia) screened for the SPRING and SIT trials
were included in this secondary analysis. Participants aged ≥13
years in the SIT cohort were excluded for comparability between
cohorts. Given that the primary outcome was underweight status,
children with incomplete data on height, weight, or age were
excluded from the study.

We used the World Bank classifications of countries’ income levels
during the respective studies. Nigeria is a lower-middle–income
country.21 However, Kano, northern Nigeria, is considered a low-
income region. All study sites for SIT were located in high-
income countries.

Data collection and definitions

Demographic and baseline laboratory values were collected. Study
nurses or physicians performed anthropometric measurements,
including height (cm) and weight (kg) according to standard pro-
tocol22 as part of the initial research visit. BMI (kg/m2) was
calculated from height and weight measurements. We converted
anthropometric measurements to age- and sex-specific z scores
based on the World Health Organization growth reference.4,5 To
calculate weight-for-age z scores for children aged >10 years, we
used the Canadian Pediatric Endocrine Group growth charts. The
Canadian Pediatric Endocrine Group growth charts extend the
weight-for-age z scores using the same core data set as the World
Health Organization reference for school-aged children and
adolescents.23

Underweight, stunting, and wasting were classified based on
weight-for-age, height-for-age, and BMI z scores, respectively.4,5

Degrees of undernutrition were delineated into z scores between
≤ −2 and < −1, ≤ −3 and < −2, and < −3 as mild, moderate, and
severe, respectively. Our primary analysis focuses on underweight,
defined as weight-for-age z score < −1, given the association with
mortality in children aged <5 years24 and children aged 5 to 12
years with SCA.16

Statistical analysis

Summary statistics for continuous variables were summarized as
means and standard deviations or as medians and interquartile
ranges for variables not normally distributed. Categorical variables
and prevalence were reported as numbers and percentages. A χ2

test was used for percentages, a t test for means, and a Mann-
Whitney U test for medians. We used multivariable linear and
logistic regression to assess several biological factors (age, sex,
hemoglobin, and white blood cell count) likely associated with
weight-for-age z score and underweight status. Odds ratios (ORs)
with a 95% confidence interval (CI) were used to characterize risk
factors associated with being underweight. An interaction term was
added for hemoglobin level with cohort based on initial model
results. A 2-sided P value < .05 was considered significant. Data
analysis was performed using SPSS 28.0 (IBM, Armonk, NY) and
Stata 15 (StataCorp, College Station, TX).

Results

Characteristics of SPRING and SIT trial participants

Of the children with SCA screened for the SPRING and SIT trials,
97% (928 of 934 total participants) and 98% (1093 of 1119 total
28 NOVEMBER 2023 • VOLUME 7, NUMBER 22
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participants), respectively, had complete anthropometric values,
and age and sex data to calculate anthropometric z scores, and
were included in the analysis (Table 1). The median age of children
with SCA in the SIT trial (8.5 years) was higher than that of the
SPRING cohort (8.1 years; P < .001). In both cohorts, approxi-
mately half of the children were male (SPRING: 49.0%; SIT:
50.8%; P = .434). The mean hemoglobin level was lower
in the SPRING cohort (7.5 g/dL) than in the SIT cohort (8.1 g/dL;
P < .001), whereas the mean white blood cell count was higher in
the SPRING cohort (14.7 × 109/L vs 12.4 × 109/L, respectively;
P < .001).

The prevalence of undernutrition is higher in the

low-income cohort than in the high-income cohort

All measures of nutritional status were significantly lower in the
SPRING cohort than in the SIT cohort. (Tables 1 and 2). The mean
weight-for-age z scores were negative for both the SPRING
(−2.21) and SIT cohorts (−0.33; P < .001). In the SPRING cohort,
87.9% of participants were underweight, with 22.7% classified as
severely underweight (weight-for-age z score < −3). In comparison,
in the SIT cohort, 25.7% of participants were underweight, with
0.7% classified as severely underweight.

In the combined cohorts, 27.2% were underweight, with stunting
and wasting, representing 49.4% and 8.3% of the SPRING and
SIT cohorts, respectively. All participants with wasting and stunting
were also underweight. Conversely, except for 8 participants
(0.4%), all participants who were underweight were either stunted,
wasted, or both (Table 3).

Characteristics associated with being underweight

In both the SPRING and SIT cohorts, the median age of children
classified as underweight was older than those children who were
not underweight (SPRING: 8.3 vs 6.7 years, P < .001; SIT: 9.5 vs
8.1 years, P < .001). Compared with children who were not
underweight, children who were underweight had higher white
blood cell counts and lower hemoglobin levels in the combined
cohort (Table 4). The association between lower hemoglobin
and being underweight remained significant in the SIT cohort
Table 1. Characteristics of the children with SCA screened for the SPRI

Variable SPRING cohort (n = 9

Age (y), median (IQR) 8.1 (6.3-10.3)

Sex (male), n (%) 455 (49.0)

Hemoglobin (g/dL), mean (SD) 7.5 (1.1) (n = 913)

White blood cell count (×109/L), mean (SD) 14.7 (5.1) (n = 913)

Weight (kg), mean (SD) 19.5 (4.4)

Height (cm), mean (SD) 119.3 (11.6)

BMI (kg/m2), mean (SD) 13.6 (1.7)

Weight-for-age z score, mean (SD) −2.21 (1.1)

Height-for-age z score, mean (SD) −1.59 (1.3)

BMI z score, mean (SD) −1.93 (1.4)

IQR, interquartile range; SD, standard deviation.
*χ2 test for percentages, t test for means, and Mann-Whitney U test for medians.
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(P < .001). However, there was no significant difference in
hemoglobin levels or white blood cell count in the SPRING trial
between participants who were underweight and those who were
not underweight (P = .738 and P = .140, respectively; Table 4).

Biological factors predict underweightness in both

the low- and high-income cohorts

Predetermined plausible biological factors postulated to be
associated with being underweight (weight-for-age z score < −1)
were analyzed in a multivariable logistic regression in the com-
bined cohorts. The model also included an interaction term
between hemoglobin level and cohort. Among all participants, for
every additional year of age, the odds increased of being under-
weight (OR, 1.24; 95% CI, 1.17-1.31; P < .001; Table 5;
Figure 1). Increasing hemoglobin level was associated with
decreased odds of being underweight in each cohort (combined
cohort: OR, 0.67; 95% CI, 0.6-0.75; P < .001; Table 5).
There was an interaction between hemoglobin level and cohort
(P = .007), in which the association between the hemoglobin level
and being underweight was dependent on the cohort, with an
increase in the hemoglobin level having a greater effect for lower
hemoglobin levels in the SIT cohort but at higher hemoglobin
levels for the SPRING cohort (Table 5; Figure 2). The participants
in the SPRING cohort were more likely to be underweight at all
hemoglobin levels (Figure 2).

We then constructed a multivariable logistic regression with the
same covariates except group, to assess the model in each cohort
separately (the interaction term was not required). Older age
(SPRING: OR, 1.38; 95% CI, 1.24-1.53; P < .001; SIT: OR, 1.19;
95% CI, 1.11-1.27; P < .001) and lower hemoglobin level
(SPRING: OR, 0.82; 95% CI, 0.68-0.99; P = .042; SIT: OR, 0.59;
95% CI, 0.51-0.68; P. <.001) remained associated with being
underweight (weight-for-age z score ≥ −1; supplemental Table 1).

Multivariable linear regression was used to assess the association
of age, sex, hemoglobin, and white blood cell count with weight-
for-age z score at baseline. Age (β = −0.14; P < .001), male sex
(β = 0.12; P = .008), and hemoglobin level (β = 0.22; P < .001)
were associated with weight-for-age z score for the combined
NG (low-income) and SIT (high-income) trials

28) SIT cohort (n = 1093) P value*

8.5 (6.8-10.6) <.001

555 (50.8) .434

8.1 (1.1) (n = 1092) <.001

12.4 (3.9) (n = 1088) <.001

27.3 (7.9) <.001

127.9 (12.7) <.001

16.3 (2.3) <.001

−0.33 (1.1) <.001

−0.53 (1.1) <.001

−0.06 (1.1) <.001
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Table 2. Nutritional status in children with SCA screened for the SPRING (low-income) and SIT (high-income) trials

Nutritional status, n (%) SPRING (n = 928) SIT (n = 1093) P value* Combined (N = 2021)

Underweight

No deficit, weight-for-age z score ≥ −1 (SD) 112 (12.1) 812 (74.3) <.001 924 (45.7)

Overall underweight, weight-for-age z score < −1 (SD) 816 (87.9) 281 (25.7) 1097 (54.3)

Mild underweight, weight-for-age z score < −1 and ≥ −2 (SD) 279 (30.1) 227 (20.8) 506 (25.0)

Moderate, weight-for-age z score < −2 and ≥ −3 (SD) 326 (35.1) 46 (4.2) 372 (18.4)

Severe underweight, weight-for-age z score < −3 (SD) 211 (22.7) 8 (0.7) 219 (10.8)

Stunted <.001

No deficit, height-for-age z score ≥ −1 (SD) 281 (30.3) 731 (66.9) 1012 (50.1)

Overall stunted, height-for-age z score < −1 (SD) 647 (69.7) 362 (33.1) 1009 (49.9)

Mild, height-for-age z score < −1 and ≥ −2 (SD) 301 (32.4) 265 (24.2) 566 (28.0)

Moderate, height-for-age z score < −2 and ≥ −3 (SD) 222 (24.2) 82 (7.5) 304 (15.0)

Severe, height-for-age z score < −3 (SD) 124 (13.8) 15 (1.4) 139 (6.9)

Wasted <.001

No deficit, BMI z score ≥ −1 (SD) 232 (25.0) 895 (81.9) 1127 (55.8)

Overall wasted, BMI z score < −1 (SD) 696 (75.0) 198 (18.1) 894 (44.2)

Mild, BMI z score < −1 and ≥ −2 (SD) 274 (29.5) 162 (14.8) 436 (21.6)

Moderate, BMI z score < −2 and ≥ −3 (SD) 228 (24.6) 32 (2.9) 260 (12.9)

Severe, BMI z score < −3 (SD) 194 (20.9) 4 (0.4) 198 (9.8)

SD, standard deviation.
*χ2 test, comparison of no deficit with the overall category for each condition.
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cohort (supplemental Table 2). Age remained significant in both the
SPRING and SIT cohorts (SPRING: β = −0.17, P < .001; SIT:
β = −0.11, P < .001; supplemental Table 2). Hemoglobin level also
remained significant in both cohorts (SPRING: β = 0.12, P < .001;
SIT: β = 0.23, P < .001; supplemental Table 2). However, male
sex was associated with weight-for-age z score in the SIT cohort
(β = 0.24, P < .001; supplemental Table 2).

Discussion

Despite the association of being underweight with increased
mortality16 and hospitalizations,17 no current studies, to our
knowledge, discuss the risk factors for being underweight in
Table 3. Nutritional status classification of participants in the SPRING (

Nutritional status, % (n) SPRING (n = 928)

None 4.3 (40)

Underweight only 0.3 (3)

Stunted only 3.0 (28)

Wasted only 4.7 (44)

Underweight and stunted 17.3 (161)

Underweight and wasted 20.9 (194)

Wasted and stunted 0.0 (0)

Underweight, stunted, and wasted 49.4 (458)

Stunted (height-for-age z score < −1.0), underweight (weight-for-age z score < −1.0), and wa
Organization growth reference and Canadian Pediatric Endocrine Group growth charts.
The 0.0 values indicate that all children who were stunted and wasted were also underweight.

6926 KLEIN et al
children aged >5 years with SCA in both low- and high-income
settings. We demonstrate that older age and lower hemoglobin
level in children aged 5 to 12 years with SCA in both low- and
high-income countries are risk factors for being underweight
(weight-for-age z score < −1). As anticipated, the z scores of all
anthropometric indices were notably lower among children in the
low-income cohort. The presence of common risk factors for
undernutrition in both settings underscores the potential for a
common biological association for undernutrition in SCA.

Anthropometrical indices to classify children as underweight are
proxies for the physiological and functional consequences of the
underlying processes of undernutrition and weight loss or the slow
low-income), SIT (high-income), and combined cohorts

SIT (n = 1093) Combined (N = 2021)

56.6 (619) 32.6 (659)

0.5 (5) 0.4 (8)

12.8 (140) 8.3 (168)

4.8 (53) 4.8 (97)

12.0 (131) 14.4 (292)

4.9 (54) 12.3 (248)

0.0 (0) 0.0 (0)

8.3 (91) 27.2 (549)

sted (BMI z score < −1.0) were defined using z scores calculated using the World Health
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Table 5. Multivariable logistic regression to assess biological risk

factors for underweight (weight-for-age z score less than −1)

status in the combined cohort of children with SCA screened for

the SPRING (low-income) and SIT (high-income) trials

Variable

Combined cohorts (n = 2000)

OR 95% CI P value

Age, y 1.236 1.170-1.3056 <.001

Sex (male) 0.816 0.646-1.031 .089

Hemoglobin (g/dL) 0.588 0.506-0.684 <.001

White blood cell count (× 109/L) 0.979 0.953-1.007 .134

Group (SPRING)* 1.947 0.314-12.067 .474

Interaction of hemoglobin by group* 1.379 1.03-1.740 .007

Abbreviations are explained in Table 1.
*Reference category is SIT.
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rate of weight gain, reflecting a range of possible causative factors,
both biological (at child level) and socioeconomic (household and
society levels).10 Children with SCA have higher resting energy
expenditure than children without SCA, suggesting that the need
for dietary intake of energy and protein for children with SCA is
somewhat increased compared with that for children without
SCA.25-27 Children in the low-income cohort were more likely to be
underweight, with the dietary and feeding practices remaining
suboptimal for these children.6 There are socioenvironmental fac-
tors contributing to the increased malnutrition in the low-income
setting, in addition to the biological factors we have investigated.
In our low-income cohort, a high percentage of participants were
underweight, stunted, and wasted (49.4%). Similar to children
aged <5 years without hemoglobinopathies,28 this group may be at
higher risk of death.

Consistent with prior studies, children with lower hemoglobin
levels were more likely to be underweight in both cohorts.6,29

However, these previous studies were in younger children aged
<5 years 6 or with small sample sizes (n = 100),29 and not in both
low- and high-income settings.6,29 In a secondary analysis of the
Dissemination and Implementation of Stroke Prevention Looking
at the Care Environment cohort (3305 children with SCA and at
least 2 anthropometric assessments during study follow-up), low
hemoglobin level was associated with low BMI z scores.30

However, the association with weight-for-age z scores was not
addressed, and all study centers were located in the United
States, a high-income setting.30 Chronic anemia is associated
with SCA and decreased growth; long-term red blood cell
transfusion therapy designed to increase the baseline hemoglobin
levels have been noted to increase weight, height, and BMI z
scores for children with SCA.30,31 Some studies suggest that
hydroxyurea has no detrimental effects on growth and that it can
potentially improve growth in children with SCA.30,32-35 However,
to our knowledge, no trial has tested whether hydroxyurea
improves growth, potentially through increasing hemoglobin
levels,36 as a primary hypothesis.

Older age was associated with an increased risk of being under-
weight in both cohorts. The majority of undernutrition literature
focuses on children aged <5 years.37,38 In a longitudinal study by
Zemel et al, in children from birth to aged 18 years, age at enrollment
was negatively associated with weight-for-age z scores, and from
RISK FACTORS IN UNDERWEIGHT CHILDREN WITH SCA 6927
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Figure 1. The relationship between age and the predicted

probability of being underweight (weight-for-age z score

[WAZ] < −1) with 95% CIs from a logistic regression model of the

combined cohort (n = 2000) of children with SCA screened for the

SPRING and SIT trials. Underweight (WAZ < −1.0) was defined using z

scores calculated from the World Health Organization growth reference

and Canadian Pediatric Endocrine Group growth charts.
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study entry to the last visit, 59% of children with SCA declined in
weight-for-age z score.39 Another study in children aged 6 months to
15 years demonstrated weight-for-age z score reduction across all
age groups.40 Similarly, in Tanzania, in a cohort of patients with SCA
with ages ranging from 0.5 to 48 years, the most significant growth
deficits were observed during adolescence.17 Our findings and
those of others suggest that growth faltering is associated with
increasing age in children with SCA. Growth faltering with age may
represent a continued insult from SCA or reflect the effects of
increased resting energy expenditure and suboptimal food intake
perpetuated by or superimposed on SCA.

As expected, our study has limitations as a secondary analysis of
participants screened for 2 large randomized clinical trials in chil-
dren with SCA. Because of the cross-sectional design, we cannot
infer that the relationship between the biological factors is causal.
Weight-for-age z score as a continuous variable was also signifi-
cantly related to lower hemoglobin levels and older age among
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both individual and combined cohorts, consistent with a dose
response. Lower hemoglobin levels may result from the same
pathophysiology that causes poor nutritional status, and longitudi-
nal studies should evaluate the change in hemoglobin and weight
status over time. Dietary intake, maternal characteristics, access to
health care, and household food security should be explored in
future work on nutritional status in children with SCA. However, the
strength of our study was the ability to combine research-quality
anthropometric measures in 2 large populations of children with
SCA that differed in location, low-income vs high-income settings.

The consistency of risk factors in low- and high-income settings
provides substantial evidence for disease-specific risk factors
associated with being underweight. Our findings from this study
contribute to our understanding of the factors associated with
underweight status in children aged 5 to 12 years with SCA in
both low- and high-income settings. A low hemoglobin level is a
potentially modifiable risk factor for preventing underweight
12

Figure 2. The relationship between hemoglobin and the predicted

probability of being underweight (WAZ < −1) with 95% CIs from a

logistic regression model of the combined cohort (n = 2000) of

children with SCA screened for the SPRING and SIT trials. This is a

graphical representation of the interaction term between the hemoglobin

level and cohort in the model. Underweight (WAZ < −1.0) was defined

using z scores calculated from the World Health Organization growth

reference and Canadian Pediatric Endocrine Group growth charts.
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status in older children with SCA in both low- and high-income
settings.
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