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* Invasive pneumococcal
infection in children
with SCD has declined
significantly with
PCV7/PCV13 but
remains a life-

Children with sickle cell disease (SCD) are at increased risk of invasive pneumococcal
disease (IPD). Over 25 years, the Georgia Emerging Infections Program/Centers for Disease
Control and Prevention Active Bacterial Core Surveillance network identified 104 IPD
episodes among 3707 children with hemoglobin SS (HbSS) or HbSC aged <10 years,
representing 6% of IPD in Black or African American children residing in Metropolitan
Atlanta (reference population). Children with IPD and HbSS/SC were older than those with
IPD in the reference population (P < .001). From 1994-1999 to 2010-2018, IPD declined by

threatening risk.

PPSV23 and new
vaccines PCV15,
PCV20, and PCV21
include 62%, 16%,
51%, and 92% of IPD
serotypes not included
in PCV183, respectively.

87% in children with HbSS aged 0 to 4 years, and by 80% in those aged 5 to 9 years.
However, IPD incidence rate ratios when comparing children with SCD with the reference
population increased from 20.2 to 29.2 over these periods. Among children with HbSS and
IPD, death declined from 14% to 3% after 2002, and meningitis declined from 16% to 8%.
Penicillin resistance was more prevalent in children with SCD before 7-valent
pneumococcal conjugate vaccine (PCV7) licensure. After 2010, all IPD serotypes were not
included in the 13-valent PCV (PCV13). Within 3 years of vaccination, the effectiveness of the
23-valent pneumococcal polysaccharide vaccine (PPSV23) against non-PCV13 serotypes
included in PPSV23 plus 15A/15C was 92% (95% confidence interval, 40.8- 99.0, P = .014;
indirect-cohort effect adjusted for age and hydroxyurea). PPSV23 would cover 62% of
non-PCV13 serotype IPD in children with SCD, whereas PCV15, PCV20, and PCV21/V116

(in development) could cover 16%, 51%, and 92%, respectively. Although less frequent,
IPD remains a life-threatening risk in children with SCD. Effective vaccines with broader
coverage could benefit these children.

Introduction

Sickle cell disease (SCD) is an inherited p-hemoglobinopathy that causes hemoglobin to polymerize
and form rigid red blood cells and occlude the microvasculature.” Children with SCD develop splenic
dysfunction in infancy®® and, thus, are at risk of invasive bacterial infections including Streptococcus
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pneumoniae. Before the general adoption of empiric antibiotics for
fever” and penicillin prophylaxis,” ~1 in 10 children per year aged
<5 years with hemoglobin SS (HbSS) developed invasive pneu-
mococcal disease (IPD)." IDP case fatality ranged from 12.5%° to
25%” or 27%,* and in the Cooperative Study of Sickle Cell Dis-
ease, IPD accounted for 32% of all causes of death in individuals
with SCD aged <20 years.® Powars et al demonstrated that IPD-
related deaths and meningitis were preventable by the rapid insti-
tution of parenteral antibiotic therapy in children with HbSS and
fever.” Systematic collection of blood cultures before the admin-
istration of antibiotics also increased the detection of bacteremia.”
The Prophylactic Penicillin Study (PROPS) in children with HbSS®
showed 85% reduction in IPD with penicillin prophylaxis compared
with placebo,” leading to the 1987 National Institutes of Health
Consensus Conference statement recommending universal
newborn screening for SCD and routine oral penicillin prophylaxis.®
In a subsequent trial (PROPS Il), a 50% reduction in IPD incidence
rate was noted in children with HbSS aged >5 years on penicillin
prophylaxis. However, because the study was underpowered and
did not reach statistical significance,'® routine use of penicillin
prophylaxis in those aged >5 years was not recommended.'" After
institution of penicillin prophylaxis, both adherence'” and the
emergence of antibiotic resistance'® presented challenges to this
IPD preventive strategy.

Children with SCD reportedly mount an adequate functional immune
response after pneumococcal conjugated vaccination, as measured
by opsonophagocytic assay.'*'® Within a single center, 3 years
after the general licensure of the 7-valent pneumococcal conjugate
vaccine (PCV7) in 2000, IPD rates decreased by 77% in children
with SCD aged 0 to 10 years.'” However, by 2009, using US
national surveillance data, IPD reduction in children with SCD aged
<18 years was estimated at only 53%, compared with 74% in the
general population.'® After PCV13 licensure in 2010, IPD incidence
rates decreased further in the general population.'®?° Two addi-
tional PCVs were approved in 2021, PCV15°" and PCV20.%>

To better understand IPD incidence and serotype trends in children
with SCD, this study extends previously published IPD surveillance
data'®'” to include cases of IPD in relation to PCV7 and PCV13
licensure in children with SCD and a reference population over a
25-year period.

Methods
Study population

The Georgia Emerging Infections Program®® identifies all IPD
occurring in Metropolitan Atlanta since 1994 as part of a nation-
wide Centers for Disease Control and Prevention (CDC)-funded
Active Bacterial Core Surveillance network. Initially the catchment
area included 8 mostly urban counties (population of 3.1 million,
with 34.5% Black or African American residents, per the 2000
census; thereafter a population of 4.2 million, with 42.7% Black or
African American residents, per the 2020 census). Twelve addi-
tional counties were added after 1996 (population of 1 and then
1.7 million, with 10.9% and 19.4% Black or African Americans
residents, per the 2000 and 2020 censuses, respectively).>* The
reference population was defined as the total number of Black or
African American children residing in counties included in the study
by year and age, as provided by the Georgia Department of Public
Health Online Analytical Statistical Information System.?®

6752 ADAMKIEWICZ et al

Population of children with SCD

Targeted newborn screening for hemoglobinopathies was
mandated in Georgia in 1978°®?” and had expanded to universal
screening in 1998.%° This study used 2 databases of children with
SCD aged 0 to 9 years seen once or more at any of the only 3
pediatric hospitals providing specialized care for children with
hemoglobinopathies serving the region examined (Egleston, Scot-
tish Rite, and Grady/Hughes Spalding Hospitals, merged since
1998 under Children's Healthcare of Atlanta [CHOAI). The first
database was used to support IPD surveillance from 1994 to 2002
and included clinical information starting in 1984, as previously
described.”®"'” The second data set (2002-2018) was derived
from the SCD Clinical Database at CHOA, which, since 2004, has
contributed data to statewide CDC-sponsored surveillance pro-
grams.”® Both data sets were merged with the Georgia Emerging
Infections Program IPD surveillance database at the Atlanta Vet-
eran Administration Medical Center.>® To assess whether the study
cohort was representative of children with SCD in the region, data
were compared to a cohort of newborn infants screened for
SCD.?® Standard of care included penicillin prophylaxis®® and
23-valent pneumococcal polysaccharide vaccine (PPSV23)
vaccination®® for the entire period, with the addition of PCV7'73°
and PCV13°' after respective licensures (2000 and 2010,
respectively), and hydroxyurea use.®*%*

Vaccination data

The vaccination status of children with SCD and IPD was
obtained from the state mandatory vaccination registry (Georgia
Registry of Immunization Transactions and Services) and chart
review.'”** All serotypes not included in PCV13 were defined
as non-PCV13 serotypes. Serotype 15BC indicates typing that
could be either 15B or 15C. Vaccine-related serotype 6C was
considered covered in PCV21/V1163%°; 15A covered in
PPSV233°°; and 15C covered in PPSV23,°>°® PCV20,°” and
PCV21/V116.%°

Laboratory data

Hemoglobinopathy diagnosis was previously determined by com-
plete blood count, electrophoresis, or high-performance liquid
chromatography separation as part of the databases of children
with SCD,?® or established from laboratory records and chart
review, as previously described.'®'” Children with HbSS and Sp°
thalassemia were included in a single HbSS group and differenti-
ated from children with HbSC. Consistent with previous publica-
tions,"®'” children with HbSp* thalassemia and those with rare
SCD genotypes (eg, HbSD and Hb SO-Arab) were excluded.
Invasive pneumococcal disease (IPD) is defined as S pneumoniae
identified from a sterile, invasive body site. Antibiotic susceptibility
and serotype testing were performed at the CDC.*® Oral penicillin
minimal inhibitory concentration breakpoints were defined as fol-
lows: susceptible, <0.06 pg/mL; intermediate, 0.12 to 1 pg/mL;
and resistant, >2 pg/mL.°° Serotype was ascertained by latex
agglutination, Quellung reaction, polymerase chain reaction, or
whole-genome sequencing.®®

Pooled data

To compare serotype distribution and vaccination coverage of
PPSV23, PCV15, PCV20, and PCV21 to other data sources,
reports of IPD in children with SCD outside of Georgia were
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identified by PubMed, Google Scholar (terms sickl$ and pneu-
moc$ and/or bacter$ and/or infect$), crossreferences, or prior
surveillance data.'®*° IPD with an unknown or indeterminate
number of patients or serotypes were excluded. A study of naso-
pharyngeal carriage was examined separately.*'

Statistical analysis

Aims. The principal aim of the study was to assess IPD incidence
rate changes before and after the introduction of PCVs, by age
group in children with HbSS or HbSC, and the reference popu-
lation. Secondary aims included assessing changes in IPD peni-
cillin susceptibility and serotype distribution before and after PCV
licensure. The effectiveness of PPSV23 on non-PCV13 serotypes
and the potential coverage by PPSV23, PCV15, PCV20, and
PCV21 were evaluated.

Incidence rate, incidence rate ratios, and relative risk. The
first and last dates of service were identified for each patient.
Person-time for each patient was defined as the beginning of the
study period or the date of the first health care visit. The last
observation date was the last recorded visit date, or the end of the
study period, whichever came first.'” If a patient moved or died, the
last recorded visits counted as the date of censor. For the refer-
ence population, IPD incidence rates in Black or African American
children were calculated by dividing the total number of IPD by the
total number of children estimated living in the region examined for
the same year, group of counties, and age. Data were grouped into
3 study periods: 1994-1999 (pre-PCV7 era), 2000-2009 (PCV7
era), and 2010-2018 (PCV13 era).

Age distribution differences were estimated by Wilcoxon signed-
rank test; incidence rate and incidence rate ratios confidence
intervals (Cls) were estimated by Poisson regression.42 Frequency
distribution differences were estimated by relative risk, and the
strength of association by Fisher exact test.

Indirect-cohort PPSV23 vaccine effect. PPSV23 vaccine
effect for non-PCV13 serotypes was assessed by the indirect-
cohort method."®*® The indirect-cohort effect assumes that
among individuals vaccinated with PPSV23, “a” is the number of
IPD with serotypes included in PPSV23, and “b" is the number of
IPD with serotypes not included in the vaccine. Among unvacci-
nated individuals, “c” is the number of IPD with serotypes included
in PPSV23, and “d" is the number of IPD with serotypes not
included in the vaccine. The effect is calculated as E = 1 — (ad/
bc).*® This method allows estimation of PPSV23 effectiveness with
data limited to individuals with IPD, without needing vaccination
data from control individuals without infection.'®*3%* PPSV23
vaccine effect was assumed limited to 3 years after vaccina-
tion'®*° and estimated by logistic regression'® controlling for age
and hydroxyurea use.

Strength of association was defined as significant at an « level
<.001 and approaching significance at an a level <.050 to
.001 (statistical package, SAS 9.4, Cary, NC). The Emory
institutional review board reviewed and approved the study
under data use agreements in place between Morehouse
School of Medicine, the Atlanta Veteran Administration Medical
Center, and CHOA.
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Results

Population description

Between 1994 and 2018, 3707 children aged <10 years, 2628
with HbSS (71%) and 1079 with HbSC (29%), were seen at
least once in >1 of the 3 pediatric hospitals serving the region
examined, for a total of 16 144 person-years of observation,
whereas the reference population represented 5 923 730
person-years of observation. Children with SCD in this study
corresponded to 2.7 per 1000 person-years of observation
among Black or African American children in the region during the
period examined.

Approximately 2.9 of 1000 Black or African American infants born
in the study region were diagnosed with HbSS/SC (2009-2019:
948 children born with HbSS 485 with HbSC, per the Georgia
Sickle Cell Data Collection program of the CDC,?® unpublished, of
499 137 Black or African American newborn infants born in the
region®®). The calculated observation time represents 94.9% of the
expected time for the entire birth cohort of children with HbSS/SC
in the region. Among infants with SCD in GA, 97% were identified
as African American or Black,*® and 89% in the 20 surveillance
counties (2009-2019, the Georgia Sickle Cell Data Collection
program,”® unpublished).

There were 104 cases of IPD in SCD (84% HbSS, 16% HbSC),
representing 6% of the 1858 IPD cases in the reference popula-
tion. Case distribution over time was 67 (64%) in the pre-PCV
period (1994-1999), 20 (19%) in PCV7 period (2000-2009),
and 17 (16%) in PCV13 period (2010-2018). Infections occurred
in boys in 51%, 53%, and 56% of IPD in children with HbSS,
HbSC, or the reference population, respectively. Overall children
with SCD and IPD were older compared with the reference pop-
ulation (aged 5-9 years vs aged 0-4 years; relative risk, 2.9;
95% Cl, 2.0-4.1; P <.001). Median patient age at IPD onset was
as follows: HbSS, 3 years (interquartile range [IQR],1-5), HbSC, 2
years (IQR, 1-4), and reference population, 1 year (IQR, 0-2;
reference population vs HbSS, P<.0001; vs HbSC, P=.0249). In
the reference population, the number of children aged 5 to 9 years
with IPD increased from 6% (66/1030) in the period 1994-1999 to
12% (101/828, P < .0001) in the period 2000-2018; in SCD,
older age at IPD onset was 20% (10/50) between 1994 and 1999
and 31% (17/54, P = .2630) between 2000 and 2018.

Incidence rate and incidence rate ratios

Table 1 shows IPD incidence rates for each era for children with
HbSS or HbSC, and the reference population. Overall IPD
incidence rates, meningitis, and death declined significantly in
both age groups (aged 0-4 years and 5-9 years) of the SCD and
reference populations after PCV7 (2000-2009) and PCV13
(2010-2018) licensure (Figure 1). Table 2 shows IPD incidence
rate ratios for the PCV7 and the PCV13 eras, as compared with
the pre-PCV era, for those with HbSS or HbSS/SC, and for
reference populations, demonstrating substantial risk reductions
overall for each complication (meningitis and death) in all pop-
ulations, over time. However, when IPD incidence rates in chil-
dren with SCD were compared with those in the reference
population, IPD incidence rate ratios increased over time
(Table 3).
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Table 1. IPD incidence rates in children with HbSS or SCD (HbSS/SC), or a reference population from Metropolitan Atlanta, GA

IPD/person-years

IPD incidence rates (/1000 person-years) (95% CI)

Pre-PCV period, PCV7 period, PCV13 period, Pre-PCV period, PCV7 period, PCV13 period,
Outcome/serotypes Population Age, y 1994-1999 2000-2009 2010-2018 1994-1999 2000-2009 2010-2018
All IPD HbSS 0-4 30/952 23/1 994 9/2 297 31.5 (22.0-45.1) 11.5 (7.7-17.4) 3.9 (2.0-7.5)
5-9 10/949 9/2 312 6/2 867 10.5 (5.7-19.6) 3.9 (2.0-7.5) 2.1 (0.9-4.7)
0-9 40/1 901 32/4 306 15/5 164 21.0 (16.4-28.7) 7.4 (5.3-10.5) 2.9 (1.8-4.8)
HbSC 0-4 10/390 1/841 4/1 041 25.6 (13.8-47.7) 1.2 (0.2-8.4) 3.8 (1.4-10.2)
5-9 0/372 2/973 0/1 158 2.1 (0.5-8.2)
0-9 10/761 3/1 814 4/2 198 13.1 (7.1-24.4) 1.7 (0.5-5.1) 1.8 (0.7-4.8)
HbSS/SC 0-4 40/1 342 24/2 835 13/3 338 29.8 (21.9-40.6) 8.5 (5.7-12.6) 3.9 (2.3-6.7)
5-9 10/1 320 11/3 286 6/4 024 7.6 (4.1-14.1) 3.3 (1.9-6.0) 1.5 (0.7-3.3)
0-9 50/2 662 35/6 120 19/7 362 18.8 (14.2-24.8) 5.7 (4.1-8.0) 2.6 (1.6-4.0)
Reference 0-4 964/550 030 545/1 138 977 182/1 183 798 1.8 (1.6-1.9) 0.5 (0.4-0.5) 0.2 (0.1-0.2)
5-9 66/559 250 66/1 220 492 35/1 271 183 0.1 (0.1-0.2) 0.1 (<.1-0.1) <1 (<1 to<1)
0-9 1030/1 109 280 611/2 359 469 217/2 454 981 0.9 (0.9-1.0) 0.3 (0.2-0.3) 0.1 (0.1-0.1)
Meningitis HbSS 0-9 5/1 901 6/4 306 1/5 164 2.6 (1.1-6.3) 1.4 (0.6-3.1) 0.2 (<.1-1.4)
Reference 0-9 32/1 109 280 34/2 359 469 17/2 454 981 <1 (K1to<1) <1 (K1to<1) <1 (K1to<1)
Death HbSS 0-9 6/1 901 1/4 306 1/5 164 3.2 (1.4-7.0) 0.2 (<.1-1.6) 0.2 (<.1-1.4)
Reference 0-9 14/1 109 280 11/2 359 469 5/2 454 981 <1 (K1to<1) <1 (K1to<1) <1 (K1to<1)
PCV13* HbSS/SC 0-9 11/1 901 8/6 120 0/7 362 1.5 (0.7-2.7) 1.1 (0.5-2.1)
Reference 0-9 112/1 109 280 194/2 359 469 53/2 454 981 <1 (<1-0.1) 0.1 (0.1-0.1) <1 (K1to<1)
6A HbSS/SC 0-9 11/1 901 1/6 120 0/7 362 1.5 (0.7-2.7) 0.1 (<.1-0.8)
Reference 0-9 71/1 109 280 36/2 359 469 9/2 454 981 <1 (<K1to<1) <1 (<1to<1) <1 (K1to<1)
19A HbSS/SC 0-9 0/1 901 7/6 120 0/7 362 1.0 (0.4-2.0)
Reference 0-9 29/1 109 280 141/2 359 469 34/2 454 981 <1 (<1-0.1) 0.1 (0.0-0.1) <1 (K1to<1)
Non-PCV13 HbSS/SC 0-9 3/1 901 17/6 120 17/7 362 0.4 (0.1-1.2) 2.3 (1.3-3.7) 2.3 (1.3-3.7)
Reference 0-9 39/1 109 280 136/2 359 469 121/2 454 981 <1 (<K1to<1) 0.1 (<.1-0.1) <1 (<1-0.1)
15B/15C HbSS/SC 0-9 2/1 901 3/6 120 4/7 362 0.3 (0.0-1.0) 0.4 (0.1-1.2) 0.5 (0.1-1.4)
Reference 0-9 4/1 109 280 23/2 359 469 19/2 454 981 <1 (<K1to<1) <1 (<K1to<1) <1 (K1to<1)

*Non-PCV?7 serotypes; data sources: Children’s Healthcare of Atlanta; Georgia Department of Public Health Online Analytical Statistical Information System®°; and the Georgia Emerging

Infections Program, CDC Active Bacterial Core Surveillance network.>*

Clinical findings

Among 8 deaths attributed to IPD in children with SCD, all
occurred in children with HbSS. Mortality of IPD in HbSS was 9%
(8/87): 8% (5/62) of children aged 0 to 4 years and 12% (3/25) of
those aged 5 to 9 years. Case fatality before 2002 was 14% (7/
50), and 3% (1/37) thereafter (P = .1306). Among children with
HbSS and IPD, meningitis occurred in 12 (14%) overall, 15% (9/
62) in those aged O to 4 years and 12% (3/25) in those aged 5 to 9
years, with 9 cases (18%) and 4 (11%) before and after 2002,
respectively (P =.5446). One child aged 0O to 4 years with HbSC
developed meningitis. In the reference population case fatality
before and after 2002 was 1.4% and 2.0% (P = .3312), respec-
tively, and morbidity from meningitis increased (3.6% vs 6.4%,
P =.0078, refer to supplemental Data).

After 2002, when PCV7 was generally introduced, clinical infor-
mation was available in 93% (39/42) of IPD episodes. Antibiotic
prophylaxis was prescribed in 77% (20/26) of children aged O to 4
years, and in 38% (5/13) aged 5 to 9 years. Hydroxyurea admin-
istration was recorded in 6 (23%) children aged O to 4 years and in
5 (38%) aged 5 to 9 years. Four (10%) children had a history of

6754 ADAMKIEWICZ et al

surgical splenectomy before IPD, and 2 (5%) had received bone
marrow transplantation.

Penicillin susceptibility

Reference laboratory penicillin susceptibility measures were avail-
able in 94 (90%) IPls from children with SCD, and from 1530 (83%)
IPD in the reference population. Before PCV7 licensure, IPD in
patients with SCD were less likely to be penicillin susceptible
compared with the reference population. However, after PCV7
licensure there was no significant difference (supplemental Table 5).
In the PCV13 era, no isolate from children with HbSS was resistant
to penicillin at a minimal inhibitory concentration of >2 pg/mL.

IPD serotypes

Serotype data were available in 94% IPD in children with SCD, and
in 84% IPD in the reference population. Compared with the
reference population, children with HbSS were less likely to be
infected with serotype 9V (0% vs 5%, P=.0299) and serotype 14
(8% vs 24%; P =.001); and more likely to be infected with sero-
type 23F (16% vs 7%; P = .008) or serotype 15BC (8% vs 3%);
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Figure 1. IPD trends (A-D). IPD in children with SCD Hb type and reference population, by age group. Red dashed line: IPD incidence rate level in children aged >5 years with

HbSS before PCV licensure, an age group that was not recommended to take penicillin prophylaxis.

P=.011). After PCV13 licensure, no IPD with any PCV13 serotype
occurred in children with SCD.

Among non-PCV13 IPD serotypes in children with SCD, 156BC
was the most frequently identified in 9 cases (24%), followed by
15A, 22F, or 23B, in 4 (11%) cases each (Table 4). IPDs with non-
PCV13 serotypes were less frequent in children with SCD aged
0 to 4 years compared with those aged 5 to 9 years (17% vs 42%,
P = .011), similar to the reference population (18% vs 36%, P <
.001). IPD incidence rate ratio for non-PCV13 IPD increased after
PCV7 licensure in the reference population (1.5, 95% Cl, 1.1-2.1;
P = .015). A parallel trend was noted in children with SCD (2.2,
95% Cl, 0.7-7.3; P=.181; Tables 1 and 2).

Between 1994 and 2002, IPD serotypes associated with death
included 19F in 3; 6A, 18C, and 23F (all covered in PCV7); and
15C (non-PCV7/PCV13). Meningitis was associated with sero-
types 28F in 2 (17%), 6A, 14, 18C, and 19F (all covered in PCV7).
Between 2002 and 2018 meningitis was associated with sero-
types 6A, 12F, 15A, and 15B, and death with serotype 12F (4/5
non-PCV13 serotypes).

HbSS vs HbSC

Overall, IPD was less frequent in children with HbSC compared
with children with HbSS (1994-2018, incidence rate ratio HbSC

€ blood advances 14 NovEMBER 2023 - VOLUME 7, NUMBER 21
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vs HbSS: 0.5; 95% CI, 0.3-0.8; P =.004); this difference between
HbSS and HbSC was most pronounced during the period 2000-
2009 (incidence rate ratio, 0.2; 95 % CI, 0.1-0.7; P = .013;
Table 2). Although there were no significant differences in serotype
distribution between children with HbSS vs HbSC (P =.2207), no
children with HbSC were infected with serotypes 19A or 19F,
whereas 7 children with HbSS developed IPD with serotype 19A
(all during the PCV7 era) and 7 with serotype 19F. The frequency
of IPD occurring at an older age (5-9 years) was 25 (29%) in HbSS
and 2 (12%) in HbSC (P = .2265).

Pneumococcal vaccinations

Pneumococcal vaccination data were available in 93 (89%) IPD
episodes in SCD. Before 2002, for children aged >2 years, at
least 1 dose of PPSV23 had been received in 53% (16/30).
After 2002, at least 1 dose of PPSV23 had been received in 67%
(18 of 27), and 84% (31/37) had been received at least 1 dose of
either PCV7 or PCV13 before infection. Within 3 years of vacci-
nation, indirect-cohort effect estimates of PPSV23 vaccination on
non-PCV13 serotypes included in PPSV23, plus vaccine-related
serotypes 15A/15C*° were 85.3% (95% Cl, 30.0-96.9), P =
.025, and 92.4% (95% Cl, 40.8-99.0), P=.014, when adjusted for
age and hydroxyurea use (refer to supplemental Table 6 for
sensitivity analysis).
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Table 2. IPD incidence rates ratio as % change in children with HbSS, SCD (HbSS/SC), or reference population, comparing periods

IPD incidence rate ratio as % change* (95% Cl), P value

PCV7 vs pre-PCV period

PCV13 vs PCV7 period

PCV13 vs pre-PCV period

2010-2018 vs 2000-2009

2010-2018 vs 1994-1999

Outcome/serotypes Population Age, y 2000-2009 vs 1994-1999
All IPD HbSS 0-4 63.4 (37.0-78.7), <.001
5-9 63.1 (9.1-85.0), .030
0-9 64.7 (43.8-77.8), <.001
HbSC 0-4 95.4 (63.8-99.4), .003
0-9 87.4 (54.3-96.5), .002
HbSS/SC 0-4 71.6 (52.9-82.9), <.001
5-9 55.8 (—3.9 to 81.2), .062
0-9 69.6 (53.1-80.2), <.001
Reference 0-4 72.7 (69.7-75.4), <.001
5-9 54.2 (35.5-67.4), <.001
0-9 72.1 (69.2-74.8), <.001
Meningitis HbSS 0-9 47.0 (—42.4 to 83.8), .294
Reference 0-9 50.0 (19.1-69.2), .005
Death HbSS 0-9 92.6 (38.9-99.1), .016
Reference 0-9 63.1 (18.6-83.2), .013
PCV13* HbSS/SC 0-9 68.4 (21.4-87.3), .013
Reference 0-9 18.6 (—2.7 to 35.5), .084
Non-PCV13 HbSS/SC 0-9 —59.4 (—88.1 to 27.8), .150
Reference 0-9 —39.0 (-57.8 to 12.9), .006
15B/15C HbSS/SC 0-9 34.8 (—74.4 to 89.1), .640
Reference 0-9 —63.0 (—87.2 to 6.5), .066

66.0 (26.6-84.3), .006
46.2 (—33.8 to 80.9), .239
60.9 (27.8-78.8), .003
—69.1 (—96.5 to 63.9), .294
—9.1 (=79.7 to 75.4), .900
54.0 (9.7-76.6), .024
55.5 (—17.0 to 83.5), .111
54.9 (21.1-74.2), .005
67.9 (62.0-72.8), <.001
49.1 (23.3-66.2), .001
65.9 (60.1-70.8), <.001
86.1 (—13.4 to 98.3), .068
51.9 (14.0-73.2), .014
16.6 (—92.5 to 94.8), .898

56.3 (—20.5 to 84.8),.125

100.0 (62.2 to 100.0), **0.004

73.7 (64.4-80.6), <.001
16.9 (—38.6 to 57.6), .590
14.5 (—8.5 to 33.1),.210
—9.8 (—79.8 to 75.2), .893
20.6 (—31.4 to 56.8), .457

87.6 (73.8-94.1), <001
80.1 (45.4-92.8), .002
86.2 (75.0-92.4), <.001
85.0 (52.2-95.3), .001
86.2 (55.8-95.7), <.001
86.9 (75.6-93.0), <.001
80.3 (45.8-92.8), .002
86.3 (76.7-91.9), <.001
91.2 (89.7-92.5), <.001
76.7 (64.9-84.5), <.001
90.5 (89.0-91.8), <.001
92.6 (37.0-99.1), .017
76.0 (56.8-86.7), <.001
93.9 (49.0-99.3), .010
83.9 (55.2-94.2), <.001

100.0 (91.9 to 100.0), **<.001

78.6 (70.4-84.6), <.001

—51.2 (—85.7 to 40.0), .252

—28.7 (—50.3 to 2.3), .067

27.7 (—=74.7 to 86.8), .708

—53.4 (—84.1 to 27.0), .165

For incidence rate ratio (IRR) of <1: % change = (1 — IRR) x 100; for IRR of >1: % change = (1 — 1/IRR) x 100.

*Non-PCV7 serotypes.

**Conditional maximum likelihood estimate of Rate Ratio; https://www.openepi.com

PPSV23, PCV15, PCV20, and PCV21 coverage

Potential coverage of non-PCV13 isolates by PPSV23, PCV15,
PCV20, and PCV21 vaccines for this study and pooled data, are
presented in Table 4 and supplemental Table 8.

Discussion

The present study assessed the IPD incidence rate over a quarter
century in children with HbSS or HbSC aged <10 years, who were
followed-up at the only pediatric hospital-based health care system
providing specialized care for SCD, a cohort that accounted to
~95% of the expected person-time of observation estimated from

newborn screening results from the region examined. Compared
with the period before the introduction of PCV7 in 2000, the overall
IPD incidence rate in children aged 0 to 9 years with HbSS or
HbSC during the PCV13 era decreased by 86%, pneumococcal
meningitis by 91%, and death by 94%, in parallel to the general
population. Nevertheless, after 2009, children with HbSS were 33
times more likely to develop IPD, 28 times more likely to have
meningitis, and 95 times more likely to die from IPD compared with
the reference population of Black or African American children.
Indeed, overall incidence rates in children with HbSS/SC aged 0 to
9 years from 2010 to 2018 were ~2.7 times higher than that of the
general population before PCV7 licensure (Figure 1). Children with

Table 3. IPD incidence rates ratio in children aged 0 to 9 years with HbSS or HbSC compared with the reference population

IPD incidence rate ratio, SCD vs reference population, (95% CI), P value

Pre-PCV period, PCV7 period, PCV13 period, Overall period,
Outcome Population 1994-1999 2000-2009 2010-2018 1994-2018
All IPD HbSS 22.7 (16.3-30.8), <.001 28.7 (19.8-40.4), <.001 32.9 (18.8-54.1), <.001 24.4 (19.6-30.1), <.001
HbSC 14.2 (7.6-26.4), <.001 6.4 (2.1-19.9), .001 20.6 (7.7-55.4), <.001 11.4 (7.0-18.3), <001
HbSS/SC 20.2 (15.1-26.6), <.001 22.1 (15.5-30.7), <.001 29.2 (17.8-45.7), <.001 20.5 (16.9-25.0), <.001
Meningitis HbSS 73.0 (22.0-191.0), <.001 96.7 (36.9-219.6), <.001 28.0 (1.3-154.1), .038 69.0 (35.1-125.6), <.001
Death HbSS 250.1 (88.4-639.4), <.001 49.8 (2.3-291.8), .022 95.1 (4.0-686.7), .013 138.9 (59.7-294.2), <.001
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Table 4. Non-PCV13 IPD in children with SCD and IPD, serotype coverage by PPSV23, PCV15, PCV20, and PCV21/V116

Total non-
PPSV23 PPSV23* PCV15 PCvV20 PCV21 PCV13
serotype serotype serotype serotype serotype serotypes
Data IPD n % n % n % n % n % n %
Presentt All 11 30 23 62 6 16 19 51 34 92 37 100
Meningitis 2 50 4 100 0 0 3 75 4 100 4 100
Death 1 50 2 100 0 0 2 100 2 100 2 100
Meningitis/death 3 50 6 100 0 0 5 83 6 100 6 100
Pooled# All 7 14 23 50 2 4 18 39 37 80 46 100
Meningitis 0 0 1 50 0 0 1 50 1 50 2 100
Death 0 0 4 67 0 0 3 50 5 83 6 100
Meningitis/death 0 0 5 71 0 0 4 57 6 86 7 100
Presentt+ pooled+ All 18 22 46 55 8 10 37 45 71 86 83 100
Meningitis 2 33 5 83 0 0 4 67 5 83 6 100
Death 1 13 6 75 0 0 5 63 7 88 8 100
Meningitis/death 3 23 11 85 0 0 9 69 12 92 13 100

Serotype 15C assumed covered in PCV20°7; and serotype 6C and 15C covered in PCV21.%°

Each column is a different subgroup of the total. All non-PCV13 IPD, irrespective of period when these occurred.

*Vaccine-related serotype 15A%° and 15C***® assumed to be covered in PPSV23.

115BC in 9 cases (24%); 15A, 22F, or 23B in 4 (11%) cases each; 06C or 12F in 3 (8%) each; 33F or 35B in 2 (5%) each; 7C, 10A, 16F, 23A, or 38 in 1 (3%) case each.

13,40,49,50,71,72,73,74,75,76,77,78

#IPD serotype data in children with SCD, from previously published data,' ™™= 1= E5 20000

SCD and IPD were significantly older than those in the reference
population, suggesting that risk does not diminish after the fifth
birthday as significantly in children with SCD as it does in the
general population.

The incidence rate ratios of IPD increased in children with HbSS
over time, as previously observed.'”® A possible explanation
includes the continuing practice of obtaining blood cultures in all
febrile children with SCD®3**7 whereas blood culture use
decreased in children in the general population after PCV licen-
sure.*® Inadequate use of antibiotic prophylaxis'> may also explain
increased incidence rate ratios over time. Before PCV7,'® children
with SCD whose guardians reported taking penicillin prophylaxis
before IPD were significantly more likely to be infected with
penicillin-nonsusceptible isolates,'® and in general, IPD resistance
to penicillin was significantly higher in patients with SCD compared
with in the general population.'® In this study, after PCV7 intro-
duction, no significant differences were noted in penicillin sus-
ceptibility. Another possible explanation may be differences in the
relative invasive potential of non-PCV13 serotypes in children with
SCD compared with in the reference population. Serotypes 15B
and 15C were responsible for IPD in children who were older and
were more frequent in children with HbSS after PCV7 licensure
compared with in the reference population.

Among children with HbSS, IPD case fatality decreased from 149%
before 2002 to 3% after 2002, when pneumococcal conjugate
vaccines became widely available; the frequency of meningitis
decreased from 16% to 8%. Notably, after 2002, 1 death and 2 of
3 cases of meningitis were due to non-PCV13 serotypes. Cases
that occurred in children after bone marrow transplantation sug-
gest the need for ongoing vigilance, even after curative therapy. In
addition to prompt antibiotic administration, improved IPD case
fatality and morbidity can be attributed to targeted vaccination after
PCV7 licensure'”; the disappearance of serotypes previously
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associated with lethal IPD in children with HbSS, in particular 19F;
and ascertainment of additional cases of meningitis and death
before 2002."®"” Case fatality and morbidity from meningitis in the
reference population did not follow these trends.

IPD frequency was lower in children with HbSC compared with
those with HbSS,"”*° consistent with the delayed development of
functional asplenia in children with HoSC.*®

Previous PPSV23 effectiveness estimation in children with SCD
ranged from 63%"* to 80%."® The latter estimation was based on
the assumption that the vaccine protective effect was limited to the
first 3 years after vaccination, because the immune response 3 to 7
years after vaccination is poor.”> Within the same assumption,
PPSV23 appeared effective against non-PCV13 serotypes
included in PPSV23, plus vaccine-related serotypes 15A%° and
15C.°%° Yet, approximately a third of children aged >2 years with
IPD had not received a first dose of PPSV23, and over 80% of
children aged >5 years had not received a second dose, repre-
senting an opportunity to improve coverage.

In children with SCD from the same region, an analysis of IPD that
occurred during targeted vaccination, within the first 3 years after
PCV?7 licensure,'” showed that children with SCD were, overall,
more likely to be vaccinated than children in the general popula-
tion."” Sixty-two percent of children with SCD in the first decade of
life received >1 doses of PCV7, with a direct protective effect
estimated between 81% and 84.5% in adjusted models."” Two
years after licensure, when herd immunity was not widespread, the
crude direct protective effect was 88.5%."” In this analysis, IPD
rates in children with SCD aged >5 years were higher than those
reported in PROPS 1I,'° and decreased significantly after PCV7
licensure. In contrast, prior studies have reported little change
in IPD rates in children aged >5 years with SCD after PCV7
licensure.'®°° Reasons may include low IPD rate estimates before
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PCV?7 licensure,”® or that initially after PCV7 licensure children with
SCD who were older were not vaccinated, in contrast to data from
this study. In this study, between 2010 and 2018, IPD incidence
rates in both age groups, (eg, aged 0-4 years and 5-9 years),
declined by 87% and 80%, respectively. Moreover, in both age
groups, no IPD with PCV13 serotypes occurred after licensure of
PCV13 although immunization with PCV13 was absent or incom-
plete among some children with SCD and IPD. These findings
suggest that herd immunity in the general population contributed to
the reduction of IPD incidence rate in SCD."”

Although this study is limited to 1 region in the United States,
results may have implications for regions of Africa with high SCD
prevalence.”’ In a meta-analysis of children with pneumococcal
meningitis or septicemia hospitalized in Africa, the odds ratio for
HbSS in the population with pneumococcal sepsis or meningitis
was 26 times higher compared with respective cohorts of chil-
dren without infection.®>°° Although two-thirds of African chil-
dren are reported to have received PCV13 vaccination,”* herd
immunity appears diminished,”®> and mortality in children with
SCD remains high.°®®® Children with SCD identified by
screening,”®®" including unvaccinated children who are older,
should be offered pneumococcal vaccination. Hydroxyurea may
also provide protection against IPD.?°° In a recent study of the
incidence of all bloodstream infections in children with SCD
between 2010 and 2019 at our institution, we comparably found
significantly lower odds of infection in those who were prescribed
hydroxyurea.*”

Expanded-coverage vaccines PCV15 and PCV20 were approved
for children in 2022'°% and 2023,°7:°® respectively. Assuming
vaccine serotype crossprotection,®**” based on pooled data and
the 25-year review presented here, PCV15, PCV20, and PCV21/
V116 (in development) could offer protection against IPD with
non-PCV13 serotypes, in 4% to 16%, 39% to 51%, and 80% to
92%, respectively, in children with SCD and IPD. In addition,
PCV20 and PCV21/V116 could provide protection against 57%
to 83% or 86% to 100% of pneumococcal isolates with sero-
types causing meningitis or death, respectively. Administration of
PPV23 (after PCV vaccination, not to blunt the immune
response)®® may offer some additional crossprotection against
vaccine-related serotypes not provided by PCV15 or PCV20.°°27
Other pneumococcal vaccines are in development.”® Vaccine
schedules could be amended or changed as more data become
available.

A limitation of this study is that some children with SCD may not
have been included if they received care in other, nonspecialized
clinics or hospitals. Such children were previously found to be at
a significantly increased risk of death from IPD.'” Other limita-
tions include that administration of penicillin prophylaxis imme-
diately before IPD,'® vaccination coverage of all children,'”
protective effect of hydroxyurea on IPD, and acute chest syn-
drome/pneumonia as an outcome, were not examined. Because
of the limited geographical area of IPD surveillance, as well as
small numbers in some IPD outcomes, data may not be entirely
generalizable. Lastly, this study did not include analysis of IPD in

patients with SCD after the first decade of life, who remain at
rigk,13:18:49
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In conclusion, IPD remains a persistent, life-threatening risk in chil-
dren with SCD, thus underscoring the need for vaccines with
broader serotype coverage and continued IPD surveillance to identify
emerging targets for vaccines and other prophylactic strategies.
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