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Prognostic model using 18F-FDG PET radiomics predicts progression-
free survival in relapsed/refractory Hodgkin lymphoma
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Key Points

• Quantitative PET
radiomics and clinical
features can be used
to build a strong
prognostic model for 3-
year PFS in relapsed/
refractory cHL.

• We identified a
subgroup of high-risk
patients with R/R cHL
with inferior PFS and
overall survival for
whom novel therapies
should be considered.
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Investigating prognostic factors in patients with relapsed or primary refractory classical

Hodgkin lymphoma (R/R cHL) is essential to optimize risk-adapted treatment strategies. We

built a prognostic model using baseline quantitative 18F-fluorodeoxyglucose positron

emission tomography (PET) radiomics features and clinical characteristics to predict the

progression-free survival (PFS) among patients with R/R cHL treated with salvage

chemotherapy followed by autologous stem cell transplantation. Metabolic tumor volume

and several novel radiomics dissemination features, representing interlesional differences

in distance, volume, and standard uptake value, were extracted from the baseline PET.

Machine learning using backward selection and logistic regression were applied to develop

and train the model on a total of 113 patients from 2 clinical trials. The model was validated

on an independent external cohort of 69 patients. In addition, we validated 4 different PET

segmentation methods to calculate radiomics features. We identified a subset of patients at

high risk for progression with significant inferior 3-year PFS outcomes of 38.1% vs 88.4% for

patients in the low-risk group in the training cohort (P < .001) and 38.5% vs 75.0% in the

validation cohort (P = .015), respectively. The overall survival was also significantly better in

the low-risk group (P = .022 and P < .001). We provide a formula to calculate a risk score for

individual patients based on the model. In conclusion, we developed a prognostic model for

PFS combining radiomics and clinical features in a large cohort of patients with R/R cHL.

This model calculates a PET-based risk profile and can be applied to develop risk-stratified

treatment strategies for patients with R/R cHL. These trials were registered at www.

clinicaltrials.gov as #NCT02280993, #NCT00255723, and #NCT01508312.

Introduction

Classical Hodgkin lymphoma (cHL) mainly affects young adults.1 Treatment consists of chemotherapy
and radiotherapy and is successful in most cases.2 However, ~10% to 20% of patients still relapse or
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are primary refractory, of whom about ~50% to 60% can be cured
with salvage chemotherapy and autologous stem cell trans-
plantation (ASCT). The remaining 40% to 50% generally have a
very poor prognosis.3,4 Risk profiling at baseline before starting
second-line treatment could be used to identify patients with a high
risk of progression, for whom novel (immune) therapies can be
considered before the start of salvage chemotherapy, instead of
adapting treatment to response assessment after reinduction
therapy. 18F-Fluorodeoxyglucose (FDG) positron emission tomog-
raphy (PET) computed tomography (CT)–adapted treatment has
improved outcomes for patients with newly diagnosed cHL.5-7

Although the prognostic value of a complete metabolic response
(CMR) before ASCT in patients with relapsed/refractory (R/R) cHL
is well known, there is currently no PET-adapted treatment strategy
that is widely applied in the salvage treatment setting.8-10

Metabolic tumor volume (MTV) is increasingly studied in cHL and
has shown moderate prognostic value as a single biomarker.9,11-16

In most studies, a different cutoff for MTV is used without validation
of results, which impedes the use of MTV as a prognostic marker.
The Dmax, ie, the maximum distance between 2 lesions, provides
another quantitative PET feature, which has shown prognostic
value for newly diagnosed cHL.17,18 Radiomics is an emerging field
of research that uses high-throughput imaging-based data to
extract quantitative image features from a predefined volume of
interest (VOI), such as FDG-avid tumors on a PET. Differences in
FDG intensity of the VOI (tumor), shape, volume, localization,
texture, and intratumor and intertumor heterogeneity can be
investigated and reinforced with available genomic and clinical data
to develop prognostic models.19-22

Only a few studies have assessed radiomics in cHL, but most
prognostic models lack validation in an independent cohort.18,23,24 A
prognostic radiomics model based on texture features in newly
diagnosed cHL showed high prognostic value for predicting
refractory disease, but results were not validated in an independent
cohort.23 In addition, texture features, which are calculations based
on individual voxels, are susceptible to technical variations, especially
in small lesions.25 Many patients present with small lesions in the R/
R setting because of early detection during follow-up after first-line
treatment.10 Therefore, radiomics dissemination and interlesion
heterogeneity parameters (eg, the spread or the difference in dis-
tance, volume, and FDG uptake between lesions), which are less
susceptible to technical variations, could be more suitable for use in
disseminated diseases with smaller lesions such as lymphoma.26

Most other prognostic models that have been developed to pre-
dict outcomes in the R/R setting, for example, gene expression–
based models,27 have not yet been implemented in a prospective
clinical trial or clinical practice, which can possibly be explained by
high costs and time-consuming analyses. Because PETs are already
used in clinical practice, information obtained through radiomics may
contribute to more accurately predict outcomes among patients with
cHL and can be implemented in clinical practice to guide treatment
decisions, which, in turn, may improve clinical outcome.20-22

Materials and methods

Study population

Patients treated within the following 3 clinical trials were included:
(1) Kersten et al,28 who investigated a combination of brentuximab
14 NOVEMBER 2023 • VOLUME 7, NUMBER 21
vedotin (BV) and dexamethasone, high-dose cytarabine and
cisplatin (DHAP) followed by ASCT; (2) Moskowitz et al,9,29 who
investigated sequential BV and ifosfamide, carboplatin, and eto-
poside (ICE), followed by ASCT; and (3) Moskowitz et al,30 who
investigated ICE and optional sequential gemcitabine, vinorelbine,
and doxorubicin (GVD) for patients with no CMR, followed by
ASCT. A complete overview of treatment regimens is provided in
supplemental Table 1. All patients were transplant-eligible and had
biopsy-proven cHL, and the PET-CT was performed at baseline,
that is, before the start of salvage therapy. Patients were excluded if
no PET was available or if the follow-up time was <2 years. An
overview of reasons for patient exclusion is provided in
supplemental Table 2.

All patients provided written informed consent for participation in
the clinical trials (NCT02280993, NCT00255723, and
NCT01508312), of which the study protocols were approved by
institutional review boards and ethics committees of the centers
that conducted the trials. For secondary use of data for this anal-
ysis, a waiver was obtained from the ethics committee of Amster-
dam University Medical Centers, The Netherlands and the
Memorial Sloan Kettering Cancer Center, NY.

18F-FDG PET-CTs and quality control

The PET-CT systems used to perform the scans were accredited
by the European Association of Nuclear Medicine Research
Ltd. (EARL, Europe) or the American College of Radiology (ACR,
United States).31 PET-CTs were deidentified at the participating
centers and centrally collected. Inclusion criteria were (1) plasma
glucose < 11 mmol/L; (2) reconstruction of attenuation-corrected
PET according to guidelines described by EARL or ACR; (3) total
image activity (in megabecquerel) between 50% and 80% of the
total injected FDG activity or a liver standard uptake value (SUV)
mean (SUVmean) between 1.3 and 3.0; and (4) availability of
essential PET acquisition data and clinical data.31,32

PET segmentation and radiomics feature extraction

Attenuation-corrected PETs were analyzed using the ACCURATE
tool, as described before.26,33 We published earlier that segmen-
tation using a fixed threshold of an SUV of 4.0 (SUV4.0 method) is
most suitable for application in the clinical practice for patients with
cHL.26 However, because this method frequently does not include
small lesions with low FDG uptake (SUV < 4.0), we also analyzed
scans with a threshold of an SUV of 2.5 (SUV2.5 method) and a
combination method (“combimethod”) in which segmentation with
an SUV of 4.0 is complemented with a threshold of an SUV of 2.5
for missing lesions with low uptake (ie, SUV < 4.0). Additionally, we
analyzed all scans with a relative threshold of 41% of the SUVmax

(41max method) for comparison with those of other studies,
because this method has also been used frequently in literature.9,11

Only focal extranodal and splenic lesions were included in the VOI.
A global increase in the FDG uptake of the spleen or bone marrow
was not included in the VOI. Delineations were performed by J.D.
under supervision of a nuclear medicine physician (G.J.C.Z. or
H.S.). RaCat software was used to extract 18 patient-level
dissemination, standard intensity–based, and volume-based fea-
tures such as MTV, SUV parameters, and total lesion glycolysis (ie,
SUVmean multiplied by MTV) from the complete VOI at patient
level.34 An overview of all features and their definitions are provided
PET RADIOMICS MODEL IN R/R HODGKIN LYMPHOMA 6733



Dmax Spread Dvol

500mL

20mL

SUVpeak 18

SUVpeak 4

DSUVpeak

Figure 1. Examples of radiomics features. All definitions of radiomics features are listed in supplemental Table 3. Dmax, maximum distance between 2 lesions; DSUVpeak,

maximum difference in SUVpeak between 2 lesions; Dvol, maximum difference in volume between 2 lesions; spread, sum of the distances between all lesions.
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in supplemental Table 3, and examples are given in Figure 1.
Dissemination features included several novel features addressing
interlesional heterogeneity based on distance, volume, and inten-
sity. Because of the multicenter aspect of this study and the use of
different PET systems, we only used robust radiomics features that
were not susceptible to technical variations in PET acquisition,
such as dissemination features and SUVpeak (ie, the average SUV
of 1 mL with the highest FDG uptake) instead of SUVmax (which
represents only the SUV of the highest single voxel, therefore being
susceptible to image noise). Additionally, because the SUVmean of
the liver was used as a standard quality parameter to compare
PETs and was also the reference for a Deauville score of 3, we
normalized the SUVmean and SUVpeak (ie, the 1 mL with the highest
SUV within the VOI) for the liver SUVmean and used the tumor-to-
liver ratio (TLR).32,35-37 The liver SUVmean was estimated on a 3-
mL sphere in the right upper lobe of the liver.

End point

The primary end point was to develop a prognostic model for 3-
year progression-free survival (PFS) using clinical and radiomics
features measured at baseline. PFS was defined as the time from
enrollment until progression or death from any cause (binary out-
comes: 1 = progression or death and 0 = no event at 3 years). The
secondary end point was the 3-year overall survival (OS), defined
as the time from enrollment until death from any cause.

Statistical analysis

We analyzed the 18 radiomics dissemination features as listed in
supplemental Table 3, and MTV, total lesion glycolysis, TLRSUVmean

and TLRSUVpeak, and 5 clinical features, that is, age, Ann Arbor
6734 DRIESSEN et al
stage, extranodal disease, primary refractory disease vs relapsed
disease (R/R status), and B symptoms. Radiomics features were
log transformed to obtain a linear relationship with the outcome
variable. A clinical model was built using only clinical features, a
radiomics model was built for each segmentation method, and the
final model was built using both clinical and radiomics features
using the segmentation method that showed the best performance.
We applied a backward feature selection using the stepAIC
function of the R package “MASS” version 7.3-53 to select fea-
tures for each training model and removed features with high
multicollinearity. Backward selection was performed separately for
each model and could, therefore, result in the selection of different
features per model. Cook distance was calculated but identified no
extreme outliers. The models were trained using logistic regression
on the BV-DHAP and BV-ICE studies (n = 113, training cohort)
and validated on the ICE study (n = 69, validation cohort), using the
“glm” function of R package “stats” version 4.0.3. Model perfor-
mance was assessed by calculating the area under the curve
(AUC) of the receiver operating characteristics curve on the
training and validation cohort, which was also cross-validated on
the training cohort using fivefold with 2000 repeats. The signifi-
cance of the addition of radiomics features to clinical features was
calculated using the deltaAUC test of R package “clinfun” version
1.0.15 for comparing the AUC from receiver operating character-
istics curves from nested binary regression models.38 The size of
the high-risk group was predefined based on the prevalence of
PFS events in the training cohort, which was 26 of 113 (23%). The
high-risk group was identified by selecting the top 23% of patients
with the highest prediction scores. Another cutoff based on the
Youden Index of the cross-validation on the training cohort was
14 NOVEMBER 2023 • VOLUME 7, NUMBER 21



Table 1. Patient characteristics of the training and validation cohorts

Training Validation Total

P value

(n = 113) (n = 69) (n = 182)

No. % No. % No. %

Study <.001

BV-DHAP 58 51 0 0 58 32

BV-ICE 55 49 0 0 55 30

ICE-GVD 0 0 69 100 69 38

Female sex 61 54 32 46 93 51 .319

Median age, (range) 30 (13-65) 34 (18-66) 31 (13-66) .175

Primary refractory 55 50 25 37 80 45 .062

Ann Arbor stage .002

I 10 9 1 1 11 6 .042

II 46 41 43 62 89 49 .004

III 19 17 2 3 21 12 .004

IV 38 34 23 33 61 34 .970

Extranodal disease 44 39 25 36 69 38 .715

B symptoms 28 25 7 10 35 20 .011

D
ow

nloaded from
 http://ashpublications.net/bloodadvances/article-pdf/7/21/6732/2089291/blooda_adv-2023-010404-m

ain.pdf 
also explored. The Kaplan-Meier method and log-rank test were
used to analyze differences in PFS and OS for the high- and low-
risk groups. Positive predictive value (PPV), negative predictive
value (NPV), sensitivity, and specificity were calculated, and a Cox
proportional hazards regression was performed for the high-risk vs
low-risk groups. Statistical analysis was performed using R soft-
ware version 4.0.3. A P value < .05 was considered statistically
significant.

Results

Patient characteristics

In total, 231 patients were treated in the 3 studies, of whom n = 49
were excluded from the analysis. A total of 37 (16%) cases were
excluded because the PET was of insufficient quality or not
compatible with the analysis software (supplemental Table 2). We
included 182 patients in the analysis, of whom n = 113 were
Table 2. Model performance

Model Features* AUC training cohort (95% CI)

Clinical Ann Arbor stage
B symptoms
R/R status

0.787 (0.692-0.883)

Radiomics SUV 4.0 No. of lesions
VolSpread
TLRSUVmean

0.719 (0.605-0.833)

Final model R/R status
B symptoms
MTV
Spread
TLRSUVmean

0.837 (0.744-0.930)

P value of clinical vs final model† .00094

Spread, the sum of the distances between all lesions; TLRSUVmean, tumor-to-liver ratio of the les
lesions.
*All radiomics variables are log transformed.
†P values represent the added value of the radiomics features to the clinical model. P value of t

cross-validation.
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included in the training cohort (n = 58 treated with BV-DHAP and
n = 55 treated with BV-ICE) and n = 69 in the validation cohort
(treated with ICE). Patient characteristics are summarized in
Table 1. Most clinical characteristics were well distributed across
the training and validation cohorts. However, the training cohort
consisted of a higher percentage of patients with B symptoms (P =
.011) and patients with stage II disease (P = .004), whereas the
validation set had more patients with stage III disease (P = .004).

The median follow-up time was 42.4 months (range, 25.5-
82.6 months) for the training cohort and 72.3 months (range, 25.5-
146.5 months) for the validation cohort. In the training and validation
cohort, 26 (23%) and 22 (32%) patients had a 3-year PFS event,
and 9 (8%) and 15 patients (22%) died, of whom only 2 (2%) and 1
(1%) died without progressive disease, respectively.

Clinical model

The following clinical patient characteristics were used at time of
relapse: age, Ann Arbor stage, presence of extranodal disease, B
symptoms, and R/R status. Backward feature selection resulted in
selection of 3 variables: stage, B symptoms, and R/R status. The
clinical model yielded a cross-validated AUC of 0.729 in the
training cohort and an AUC of 0.677 in the validation cohort
(Table 2; supplemental Table 4).

Radiomics model with different segmentation

methods

For each tumor segmentation method, that is, SUV4.0, SUV2.5,
41max, and combimethod, the backward feature selection was
performed on all features as listed in supplemental Table 3. This
resulted in 4 prognostic models with different features for each
method, of which the SUV4.0 method yielded a cross-validated
AUC of 0.691 and highest validated AUC of 0.721 (Table 2;
supplemental Figure 1B-E). The AUC values of the SUV2.5 method
were comparable with those of the SUV4.0 method, whereas the
41max method yielded lower AUC values (supplemental Table 4).
The model of the combimethod, in which segmentation using a
threshold of SUV4.0 was combined with a threshold of SUV2.5 for
missing lesions with low uptake, did not result in higher AUC values
compared with the separate SUV4.0 or SUV2.5 models (validated
AUC of 0.712 vs 0.721 and 0.714, respectively). To rule out dif-
ferences in model performance because of backward feature
CV-AUC training cohort (95% CI) AUC validation cohort (95% CI)

0.729 (0.724 - 0.734) 0.677 (0.535-0.819)

0.691 (0.685-0.696) 0.721 (0.580-0.863)

0.810 (0.805-0.814) 0.750 (0.627-0.872)

.0049 <.0001

ion SUVmean and liver SUVmean; VolSpread, the sum of differences in volume between all

he cross-validated (CV)-AUC represents the median P value of 2000 repeats of fivefold of
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selection, the features of the SUV4.0 model selection were also
tested on the other methods, but this did not increase the AUCs of
these models (supplemental Table 4). Because of high AUC values
and a technical validation in an earlier publication, the SUV4.0
method was chosen as the tumor segmentation method for the
final model.26

Combined prognostic model

For the final prognostic model, backward feature selection was
performed using all radiomics features from segmentations with the
A

P < .0001
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SUV4.0 method in combination with clinical features. Backward
selection resulted in selection of the following features: R/R status,
B symptoms, MTV, sum of all distances between all lesions
(Spread), and TLRSUVmean, and yielded a high cross-validated AUC
of 0.810 in the training cohort and an AUC of 0.750 in the vali-
dation cohort (Tables 2 and 3). The addition of radiomics features
(MTV, Spread, and TLRSUVmean) to clinical features showed sig-
nificant improvement of the AUC in the cross-validated training
(P = .0049) and validation (P < .0001) cohorts (Table 2). Ann
Arbor stage was not part of the final prognostic model because it
P = .015
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Table 3. Logistic regression results of the model

Features Estimate SE Z value P value

Intercept -2.5 2.0 -1.2 0.219

R/R (relapsed) -2.5 0.7 -3.8 0.000

B symptoms 1.0 0.7 1.5 0.136

MTV -0.4 0.2 -1.6 0.118

Spread 0.4 0.2 2.7 0.007

TLRSUVmean 2.4 1.0 2.4 0.018

Logistic regression results of features in the baseline model. Formula of the model:
-2.472 – [2.478 * (Relapsed=1, refractory=0)] + [1.010 * (B symptoms = 1, no B symptoms
=0)] – [0.384 * log(MTV in uL)] + [0.413 * log(Spread)] + [2.409 * log(SUVmean /
liverSUVmean)].
MTV, metabolic tumor volume; R/R, relapsed/refractory; SE, standard error; spread, sum of

all distances between all lesions; TLRSUVmean, tumor-to-liver ratio of lesion standard uptake
value (SUV) mean and the liver.
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was being outperformed by the radiomics feature Spread.
Replacing Spread for stage resulted in a lower prognostic value for
the model (data not shown). Logistic regression results of the
model are shown in Table 3.

Based on the predefined cutoff (23% of PFS events), the high-risk
group in the training cohort showed a significant inferior PFS
compared with patients in the low-risk group, with a 3-year PFS of
38.1% (95% confidence interval [CI], 23-62) vs 88.4% (95% CI;
82-95; P < .0001), respectively (Figure 2A; supplemental Table 5).
Three-year PFS in the independent validation cohort was 38.5%
(95% CI, 19-77) vs 75.0% (95% CI, 65-87; P = .0153) for the
high- and low-risk groups, respectively (Figure 2B). The 3-year OS
was also significantly different between the high- and low-risk
groups in the training and validation cohorts (Figure 2C-D). The
PPV and NPV for the prediction of 3-year PFS were 61.5% and
88.5%, respectively, in the training cohort, and 61.5% and 75.0%,
respectively, in the validation cohort. The PPV and NPV were
similar between the 2 studies in the training cohort, that is, the BV-
DHAP and BV-ICE studies (Table 4). Results using another
exploratory cutoff based on the Youden Index on the cross-
validation of the training cohort did not improve the PPV and NPV
(supplemental Table 5).

In the training cohort, the CMR rate before ASCT was significantly
higher in the low-risk group compared with that of the high-risk
group (86% vs 69%; P = .049), but this was not the case in the
Table 4. Performance of the model

High- vs low-risk Training Validation BV-DHAP BV-ICE

Sensitivity 61.5 36.4 61.5 61.5

Specificity 88.5 89.4 93.3 83.3

PPV 61.5 61.5 72.7 53.3

NPV 88.5 75.0 89.4 87.5

Performance of the model shown for the training and validation cohorts. The training cohort
consists of the BV-DHAP and BV-ICE studies of which the model performance is also shown
separately. The optimal cutoff for high- vs low-risk groups is based on the percentage of PFS
events in the training cohort which was 23%.
BV, brentuximab vedotin; DHAP, dexamethasone, high-dose cytarabine and cisplatin; ICE,

ifosfamide, carboplatin, etoposide; NPV, negative predictive value; PPV, positive predictive
value.
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validation cohort. Before ASCT, negative PET result rates seemed
higher in the validation cohort because more patients with a pos-
itive PET results were excluded during the quality check of PETs.
Furthermore, significantly more patients had progressive disease
after ASCT in the high-risk groups of both training and validation
cohorts (supplemental Table 6).

Correlations of clinical and radiomics features

In Figure 3, several radiomics features that were used in the models
are stratified for patients with or without a PFS event. MTV was not
significantly higher in patients with an event (P = .12) (Figure 3A).
However, MTV still contributed to the prognostic value of the model
because of a complex interaction term with Spread and TLRSUVmean,
in which Spread showed a higher prognostic value when MTV was
high, and in contrast, TLRSUVmean showed a higher prognostic
value when MTV was low (Table 3; supplemental Figure 2). A
possible explanation for this interaction between Spread, MTV, and
TLRSUVmean is that when MTV and Spread are low, a high
TLRSUVmean indicates a more aggressive disease and has a worse
prognosis, whereas when MTV and Spread are high, the TLRSUVmean

is less relevant and the spread of the disease becomes more
important to indicate a worse prognosis.

Most radiomics features show moderate to high correlations with
other radiomics features. TLRSUVmean, which is included in the
model, shows the lowest correlations with other radiomics features
(Figure 3I). Ann Arbor stage was significantly correlated with MTV,
Spread, Dmax, and the number of lesions but not with TLRSUVmean

(Figure 3J-N). Patients with B symptoms had significantly higher
values of several radiomics features (Figure 3O-S). R/R status did
not correlate with any of the radiomics features (data not shown).

Patients with low and high prediction scores

Examples of patients with low and high prediction scores are
provided in Figure 4. The formula for the prognostic model can be
found in the description of Table 3. Additionally, we created a
calculator in Excel format that can be used to calculate the pre-
dicted probability for individual patients (supplemental Appendix).
For example, patient B from Figure 4 had relapsed disease with no
B symptoms, an MTV of 11 mL, Spread of 411 cm, and TLRSUVmean

of 2.43, and the model calculated a risk score of 0.05, which is
placed in the low-risk group. Correspondingly, this patient had a
CMR before ASCT and is still in remission after 41 months of
follow-up. In contrast, patient C had primary refractory disease with
B symptoms, an MTV of 24 mL, Spread of 677 cm, and TLRSUVmean

of 4.59, corresponding to a risk score of 0.88, and relapsed
3 months after ASCT despite an initial CMR on the pre-ASCT PET.

Discussion

There is an unmet need for better risk stratification in the R/R
setting for patients with cHL receiving salvage therapy followed by
ASCT.4 Therefore, we have developed a novel prognostic model in
R/R cHL for 3-year PFS based on quantitative features from
baseline PET scans and clinical characteristics that was validated
on an independent data set. The features that were included in our
model are robust and not sensitive to technical variations, which
makes it more feasible to implement in clinical practice because of
the use of different quality of PET scanners across different
countries or hospitals.
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Figure 3. Correlations of radiomics features with PFS outcomes and clinical characteristics and intercorrelations of radiomics features. (A-H) Boxplots of log-

transformed radiomics features stratified for patients with or without an event (progression and/or death) on the 3-years PFS. (I) Spearman rank correlation coefficient plot of all
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Several studies have developed prognostic models based on
clinical characteristics and pre-ASCT response assessment to
predict post-ASCT outcomes, but models for risk profiling at
baseline, before starting second-line treatment, are scarce.8,39 A
baseline model has the advantage of being able to preselect
patients with high-risk disease and change therapy upfront, pre-
venting these patients from not responding to salvage chemo-
therapy while being at risk of toxicity. The PPV was 61.5% in both
the training and validation cohorts, which is similar or slightly higher
than the PPV of pre-ASCT response assessment by PET, as
described in literature (PPV ranges between 40% and 60% for
individual studies), but with our model, this prediction can already
be done at baseline.9,10,30,40 Therefore, it is worthwhile to explore
the model’s applicability for changing the salvage therapy in
patients with R/R cHL with high-risk disease, such as treating these
patients, who are most likely to be chemotherapy resistant, with
checkpoint inhibitors.41 In addition, our model showed a high NPV
in both the training and validation cohorts, which means that the
14 NOVEMBER 2023 • VOLUME 7, NUMBER 21
model is also suitable for selecting patients with a low risk of
progression. This could be used to guide the selection of patients
who can potentially be cured by replacing the ASCT for a less toxic
consolidation with checkpoint inhibitors, as is currently being
evaluated in several studies.42

A limitation of our analysis is that 32 PETs (16% of total cohort) had
to be excluded from the analysis because of inefficient quality of the
PETs or because the PET format was not compatible with our
analysis software. These scans mainly originated from the ICE
study,30 which enrolled patients between 2007 and 2010, when the
use of PETs was just emerging in clinical practice. Because the
quality of PETs has much improved over the years, it is expected that
the percentage of excluded PETs will be much lower in future trials.

Not all patient characteristics were balanced between the cohorts,
which could have influenced the performance of the model on the
validation cohort. Because the model was trained using the training
cohort, the validation cohort showed lower AUC values. However,
PET RADIOMICS MODEL IN R/R HODGKIN LYMPHOMA 6739



R/R status Relapse Relapse Refractory Relapse
B symptoms No No Yes No
Stage IV III IV IV
TLRSUVmean 3.06 2.43 4.59 4.48
MTV (mL) 81.6 11.0 23.9 47.3
Spread (cm) 194 411 677 39576
Model score 0.03 0.05 0.88 0.46
Outcome No PD No PD PD 3m after ASCT PD 12m after ASCT

A B C D

Figure 4. Examples of maximum intensity projections of baseline PETs in 4 different patients with R/R cHL. The model score was calculated based on the prognostic

model using clinical and radiomics features. The outcome represents the clinical outcome of the patient. (A-B) Patients with a low prediction score with low risk of progressive

disease. (C-D) Patients with a high prediction score with a high risk of progressive disease. m, months; PD, progressive disease.
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the cross-validated AUC of the training cohort closely resembled the
AUC of the validation cohort, and the PPV was similar between the
cohorts. This indicates that in both the training and validation
cohorts, patients with high-risk disease were well identified. In
addition, the ICE study had a higher number of events, possibly
because this study did not treat patients with BV and the study was
conducted ~10 years before the BV-ICE and BV-DHAP studies, so
advances in supportive care could have improved over time. In the 3
patient cohorts that we used in this analysis, all patients were
intended to receive salvage chemotherapy followed by ASCT, but
the salvage chemotherapy schedules were different. Many different
salvage regimens are used in R/R cHL across different countries but
are generally comparable in terms of efficacy. Therefore, it is also
useful to validate the model with different treatment regimens so that
it can be extrapolated to other salvage regimens.

We used 3 different semiautomatic segmentation methods, which
we have investigated earlier.26 In our previous study, results with
the SUV4.0 and SUV2.5 methods highly correlated and with these
methods, there was the lowest need for manual adaptation during
segmentation.26 In the current analysis, the SUV4.0 method yielded
the highest validated AUC score for the prognostic model and was
again also the least time-consuming method. The combimethod
(SUV4.0 + SUV2.5) that we tested did not improve the prognostic
value of radiomics features. A possible explanation for this may be
that low FDG-avid lesions (SUV < 4.0) are reactive to the lym-
phoma and do not substantially contribute to the disease charac-
teristics and, therefore, have no influence on the prognostic
capabilities of the radiomics features. In this study, we have
confirmed the findings of our previous analysis in a larger cohort of
6740 DRIESSEN et al
patients and propose to use SUV4.0 as a standard segmentation
method for cHL at baseline assessment.26

Other studies investigating quantitative PET features in cHL mainly
focused on only MTV and were performed in single cohorts without
validation in external cohorts.9,11-16 Besides, most studies used a
cutoff for MTV instead of the continuous variable in a logistic
regression. In our model, MTV was not the highest contributing
factor; therefore, we think that combining MTV with other quanti-
tative PET features, for example, intensity and dissemination fea-
tures, is important because this enables capturing differences
between patients with localized bulky disease and those with
disseminated disease.

Other biomarkers, such as circulating tumor DNA and thymus and
activation regulated chemokine (TARC) have been shown to
correlate with MTV.43 Circulating tumor DNA seems a promising
biomarker for detecting minimal residual disease, but its prognostic
value at baseline is modest and comparable with that in studies that
investigated MTV as a single biomarker.44 We previously published
an analysis of TARC levels in 65 patients with R/R cHL (who are
also included in this analysis), in which we demonstrated that
TARC has a high prognostic value after 1 cycle of chemotherapy,
but it provides no prognostic value at baseline.10 Combination of
TARC and pre-ASCT SUVpeak increased the accuracy of predict-
ing progression; therefore, combining biomarkers could possibly
enhance the prognostic capacities of biomarker models.

PET-CT is already being performed as part of standard clinical
practice in most countries.37 We showed earlier that semi-
automatic segmentation using the SUV4.0 method requires the
14 NOVEMBER 2023 • VOLUME 7, NUMBER 21
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least manual adaptation by a nuclear medicine physician and is,
thus, less observer dependent. Therefore, quantitative analysis of
PETs can be used in clinical practice at low extra costs and will
probably not be very time consuming. With upcoming technolog-
ical advances, such as automated segmentation, it is expected that
PET radiomics analysis can be performed much easier in the
future.45 Our model consists of robust quantitative PET features,
which prevents a high variability of features between different PET
scanners, hospitals, and observers. Therefore, quantitative PET
analysis provides a promising method for prognostication, which is
feasible to be implemented in prospective baseline risk-adapted
clinical trials.
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