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TO THE EDITOR:

Cigarette smoke exposure accelerates AML progression in FLT3-ITD
models
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Introduction

Past and current tobacco smoking is significantly associated with higher incidence and worse survival
among patients with acute myeloid leukemia (AML) than among nonsmokers; however, there are no
tailored treatment strategies available for these individuals.1-3 For patients with AML with the fms-like
tyrosine kinase 3-internal tandem duplication (FLT3-ITD) mutation, clinical outcomes are compromised
because of aggressive disease features, and the additional impact of smoking in this molecular subtype
of AML has not been well studied. DNA methylation signatures persist for decades in smokers but have
not been applied to patients with AML with exposure to cigarette smoke.4,5 Characterization of
molecular changes attributable to cigarette smoke has potential to uncover targets for therapy that
could be applied to improve treatment outcomes.

Methods

Review of patients with newly diagnosed, treatment-naive FLT3-ITD+ AML was conducted after
approval by the University of Texas MD Anderson Cancer Center Institutional Review Board (protocols
DR09-0223 and PA12-0395), and informed consent was obtained in compliance with the Declaration
of Helsinki. Raw bisulfite sequencing and patient survival data were evaluated based on those reported
by Ley et al.6

Mice were placed in whole-body smoke exposure chambers of a cigarette smoking robot SciReq
InExpose, 5 days per week, with an intake of 24 cigarettes per day. Nonsmoking (NS) mice were
removed from normal housing during the exposure of smoking mice. Calbiotech Mouse/Rat Cotinine
enzyme-linked immunosorbent assay kit was used in mouse urine. MOLM13-luc, MOLM14-luc, or
MV411-luc cells were introduced via tail-vein injection into mice and monitored by in vivo imaging
system. Daunorubicin was administered thrice weekly at 2 mg/kg via tail-vein. All mouse experiments
were approved by the University of Texas MD Anderson Cancer Center Institutional Animal Care and
Use Committee under protocol 638 (principal investigator, J.C.).

Reduced representation bisulfite sequencing7,8 was applied to AML-bearing mouse spleens to
compare global changes in DNA methylation. Genomic DNA was obtained with PureLink Genomic
DNA Mini Kit. Samples passing quality control were subsequently sequenced on an Illumina HiSeq
3000, with between 49 and 85 million reads generated per sample. Western blots, immunohisto-
chemistry, flow cytometry, and mass cytometry were used for protein analyses of spleen and liver tis-
sues from mice.
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Figure 1. Effects of cigarette smoke exposure in patients and mouse models with FLT3-mutant AML. (A) Table with response rates of patients shown in Figure 1B.

Values are n (%). χ2 test analysis was used for categorical variables. (B) Overall survival curve of patients (from panel A) (P = .0092). (C) Schematic representation of SE and AML

introduction timeline for mouse modeling of smoking. (D) Representative MOLM13-luc bearing mice 3 days after being NS or SE. (E) Bioluminescent flux shown of MOLM13

bearing mice (n = 15 for NS and n = 30 for SE mice). (F) Leukemic burden of MOLM14-bearing mice 3, 10, and 24 days after injection (n = 7 mice per group for days 3 and 10;

n = 5 for NS; and n = 4 for SE on day 24). (G) Representative mice exposed to NS or SE bearing the MV411-luc cells after days 5, 9, or 16 of engraftment. (n = 4 per group). (H)

Cotinine levels in urine from NS or SE mice in ng/mL (n = 4). (I) Table with the top hypermethylated and hypomethylated genes from SE in AML cells from mouse spleens as

compared with NS mice. (J) The Cancer Genome Atlas (TCGA) data from NEJM 2013 study.6 Patients with quartile of high or low Gata2 methylation survival depicted. *P < .05;

**P < .01; ***P < .001; ****P < .0001. CR, complete remission; CRi, complete remission with incomplete count recovery; FLT3i, FLT3 inhibitor; HI, hematologic improvement; N,

number; ORR, overall response rate; PR, partial response.
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Results and discussion

Poor prognosis after AML diagnosis for past and current smokers
has been documented,3 but it has not been examined in a uniform
cohort of patients with FLT3-ITD mutation. Overall response rates in
treatment-naive patients with AML, bearing the FLT3-ITD mutation,
who have never smoked (never smokers; n = 55) or have a smoking
history (ever smokers; n = 29) were 93% and 73% (P = .005),
respectively. Complete response rates were significantly different in
14 NOVEMBER 2023 • VOLUME 7, NUMBER 21
never smokers (75%; n = 75) compared with ever smokers (43%;
n = 17; P = .001; Figure 1A). Smokers also had worse survival rates
than nonsmokers (18 vs 58 months for never smokers; P = .0092;
Figure 1B). No significant differences in cytogenetics, ELN 2017 risk
classification, blast, blood or platelet counts, age, or sex were noted
in smokers (supplemental Table 1).

To characterize molecular mediators of this poor treatment
outcome, we used leukemia-bearing NS or smoke-exposed (SE)
RESEARCH LETTER 6625
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mice for 2 weeks before orthotopic implantation of luciferase-
tagged human FLT3-ITD+ AML lines (Figure 1C) and continued
exposing them to smoking throughout the experiment. This exper-
imental design was chosen to mimic leukemia occurring in non-
smokers vs smokers, without smoking cessation (SC) upon
diagnosis. Leukemic burden through noninvasive imaging was fol-
lowed, and a significantly higher leukemic burden 3 days after
engraftment was seen in SE mice (n = 30; Figure 1D-E) using the
MOLM13 line (P < .0001). The same experiment in MOLM14-luc
(n = 7 mice per group) or MV4-11-luc-bearing SE mice (n = 4
mice per group) (Figure 1F-G) showed enhanced leukemic burden
on days 3 and 24 (Figure 1F; P < .05). Because leukemic cells
were engrafted 2 weeks after smoke exposure, these results sug-
gest that the microenvironment contributes to the accelerated
leukemia growth in vivo. To ensure that the 2-week SE schedule
used in these experiments was relevant to human exposures, we
measured cotinine, the major metabolite of nicotine, in urine and
found a significant increase (Figure 2H; P < .0001) in SE mice. In
addition to cotinine levels, hypomethylation of the Ahrr promoter
is an established biomarker of cigarette smoking.9 We conducted
DNA methylation analyses in spleens from SE and NS mice.
Among the top genes with significantly altered methylation in
human cells were hypomethylated Ahrr and Gata2 (supplemental
Table 2; Figure 1I). In a cohort of patients with AML from The
Cancer Genome Atlas, low Gata2 methylation was also tracked
with significantly worse survival (P = .0 001 383; Figure 1J).
Median survival of patients with low Gata2 methylation was
significantly (P < .001) shorter (11.8 months) than that of patients
with high Gata2 methylation (49.8 months). Interestingly, the
methylation status of the other genes shown in Figure 1I did not
correlate with survival.

Because treatment outcomes are worse in patients with AML with
a smoking history,2 chemotherapy was tested in mouse models. In
NS mice, daunorubicin reduced leukemia burden over time
compared with that in untreated mice (P < .05; n = 8 mice per
group; Figure 2A,C), whereas in smoking mice, treatment did not
significantly reduce the leukemic burden (Figure 2B-C). To deter-
mine whether SC influenced AML progression, smoke exposure
was halted after engraftment and showed reduced tumor burden
compared with mice that continued to be SE in 2 mouse models
MV411 (n = 4 mice per group) and MOLM13 (n = 10 mice per
group; Figure 2D), suggesting that halting smoking upon AML
diagnosis in patients could offer clinical benefit. To gain insight into
Figure 2. Reduced treatment efficacy, SC effects, and molecular insights into smo
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the molecular signals emanating from smoking, immunoblotting
was carried out in spleen samples from NS, continued SE (CSE),
and SC mice. Heme-oxygenase-1 (HO-1) is an antioxidant elevated
in FLT3-ITD+ AML and associated with therapy resistance.10,11

HO-1 expression in spleens from NS vs CSE mice was elevated
(Figure 2E-F), and this increase was lessened in SC mice. A similar
pattern was seen for BCL-2 expression. AHRR protein expression
in CSE mice was decreased, consistent with gene hypomethylation
(Figure 2F). Additional proapoptotic and antiapoptotic proteins
were probed in lysates from NS, CSE, and SC spleens, and MCL-1
and phosphorylated extracellular signal-regulated kinase were
increased by CSE; however, this increase was blunted in cessation
models (supplemental Figure 2). HO-1 expression was further
examined via immunohistochemistry in spleen and liver sections
and via mass cytometry in splenocytes, and it was elevated in the
SE mice (Figure 2G-H).

Potential explanations for enhanced leukemia growth in vivo
include methylation events in leukemic cells or DNA damage
associated mutations acting as drivers of proliferation and will be
explored in future studies. However, because mice were exposed
to cigarette smoke for 2 weeks before the engraftment of AML
cells, we hypothesized that the microenvironment could also
contribute to the enhanced leukemia growth (Figure 1E-F). In
order to address microenvironmental vs direct leukemia cell
effects of smoking, hematopoietic stem cell populations from the
bone marrow of SE MOLM14-bearing mice were characterized
via flow cytometry, as described in the supplemental Methods;
however, no significant changes in progenitor populations were
seen in SE mice compared with that in NS mice (n = 6;
Figure 2I). These data indicate that immune cells retained in
NOD-SCID mice or other differentiated cells in the microenvi-
ronment rather than progenitors may contribute to the prolifer-
ative effect seen with SE mice. Additional explanations for the
enhanced proliferation include a direct stimulatory effect on
human leukemia cells. To further address this question, using
mass cytometry analyses of SE or NS mice, we separated human
CD45+ AML cells from CD45− cells in spleen samples
(Figure 2J). NS and SE mice had differences in the percent of
cells found within clusters based on the following expression of
proteins: CD34, p-ERK1/2, RUNX1, MCL-1, DNMT3B, HIF-1α,
p21, and p-FLT3 (Figure 2J-K); however, differences in cluster
populations were distinct in human CD45+ AML cells vs CD45−

mouse cells. This indicates that there are selective protein
king induced proliferative signaling in vivo. (A) Leukemic burden as measured via

d with vehicle (dimethyl sulfoxide [DMSO]) or daunorubicin, 2 mg/kg delivered 3 times

ia burden in daunorubicin-treated mice compared with that in diluent-treated mice
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difference (n.s.) was seen in daunorubicin-treated mice at any of the time points. (C)

aftment significantly slows leukemia progression in MV411-luc bearing mouse models

ed with mice that continue smoking. P < .01 or .05, respectively. (E) HO-1 protein

lin is shown between westerns. (F) Densitometry of western blots from spleens of
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changes seen in leukemia cells relative to the microenvironment
upon in vivo smoke exposure. In CD45+ human AML cells from
the spleens of NS and SE mice, SE samples expressed higher
levels of p21, p-FLT3, MCL-1, and RUNX1 (Figure 2L). The
overall expressions of LSD1, interleukin-10, p-ERK1/2, RUNX1,
MCL-1, DNMT3B, p21, and p-FLT3 were elevated in AML cells
from spleens of SE mice (Figure 2M).

Past work reports smokers with AML have worse survival
outcomes than nonsmokers2; however, to the best of our
knowledge, this is the first study to model cigarette smoke
exposure in FLT3-mutant AML–bearing mice to examine poten-
tial molecular mediators of leukemia progression and chemo-
therapy resistance. SE accelerated disease progression in 3
FLT3-ITD AML mouse models. SC upon leukemia engraftment
slowed acceleration, providing the first evidence that smoking
and cessation deliver “go” and “no-go” signals to FLT3-ITD AML
cells. Because many patients with cancer continue smoking after
their diagnosis,12,13 these data from xenograft models provide
evidence for cessation recommendations, but it will require
further validation in primary AML samples. Additionally, mass
cytometry revealed that SE increased protein expression of
MCL-1, DNMT3B, and RUNX1. MCL-1 inhibitors are currently
being investigated for AML treatment, especially in association
with resistance to venetoclax,14 and RUNX1 mutations occur in
10% of patients with AML and are associated with inferior
prognosis.15 Cumulatively, our data provide novel insights into
previously undescribed molecular regulators of aggressive dis-
ease seen in patients with AML with histories of smoking.
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