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Key Points

• Identification of human
bone marrow
mesenchymal cells
with osteopontin
(SPP1)
overexpression in
patients with MDS.

• SPP1 expression in
comparable
mesenchymal stromal
cell populations plays
protective roles in
disease progression in
an MDS mouse model.
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Myelodysplastic syndromes (MDSs) are a heterogenous group of diseases affecting the

hematopoietic stem cell that are curable only by stem cell transplantation. Both

hematopoietic cell intrinsic changes and extrinsic signals from the bone marrow (BM) niche

seem to ultimately lead to MDS. Animal models of MDS indicate that alterations in specific

mesenchymal progenitor subsets in the BM microenvironment can induce or select for

abnormal hematopoietic cells. Here, we identify a subset of human BM mesenchymal cells

marked by the expression of CD271, CD146, and CD106. This subset of human mesenchymal

cells is comparable with mouse mesenchymal cells that, when perturbed, result in an MDS-

like syndrome. Its transcriptional analysis identified Osteopontin (SPP1) as the most

overexpressed gene. Selective depletion of Spp1 in the microenvironment of the mouse MDS

model, Vav-driven Nup98-HoxD13, resulted in an accelerated progression as demonstrated

by increased chimerism, higher mutant myeloid cell burden, and a more pronounced

anemia when compared with that in wild-type microenvironment controls. These data

indicate that molecular perturbations can occur in specific BM mesenchymal subsets of

patients with MDS. However, the niche adaptations to dysplastic clones include Spp1

overexpression that can constrain disease fitness and potentially progression. Therefore,

niche changes with malignant disease can also serve to protect the host.

Introduction

Myelodysplastic syndromes (MDSs) are age-associated clonal diseases of the hematopoietic stem cells
(HSCs) characterized by bone marrow (BM) failure, cytopenias, and leukemic transformation in one-
third of the affected individuals.1,2 MDS is a multistage process of hematopoietic transformation,
often, starting with clonal hematopoiesis and ending with overt leukemia.3-5 However, it remains unclear
what governs disease progression because many of the associated mutations do not confer a clonal
competitive advantage in animal models.6,7 Acquisition of secondary mutations8 can clearly drive
transition, but animal models also suggest that an altered hematopoietic microenvironment may
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contribute to or select for abnormal hematopoietic cells. This may
be particularly relevant in the context of aging and inflammation.9-11

For example, specific genetic alterations in stromal cells, including
Dicer1, Sbds, or Ptpn11, are sufficient to induce hematopoietic
dysplasia and leukemia. Remarkably, mutations specifically within
the immature mesenchymal stromal populations (but not within the
mature osteoblasts) resulted in the development of MDS that
transformed into acute myeloid leukemia (AML) in the case of
Dicer1, Sbds, and β-Catenin12,13 and juvenile myelomonocytic
leukemia in the case of Ptpn11.14 These data point to the important
interplay that exists between specific subsets of mesenchymal cells
in the niche and the hematopoietic cells that they support
throughout adult tissue maintenance.

Does this same interplay exist in human patients with MDS? The BM
mesenchymal abnormalities that occur outside the aforementioned
experimental settings of the niche-induced oncogenesis remain
undefined. It is known that the mesenchymal cells of the BM are
organized in a stem cell–based hierarchy without mature cell division
to replenish cells upon injury or under homeostatic conditions.15 The
turnover time of the mesenchymal bone cells is measured in weeks
or months.15 Therefore, somatic mutations occurring in a BM stem
or progenitor cell can be expected to propagate the defect to its
progeny, creating a field of mutant cells. These cells can abnormally
produce cytokines that can affect hematopoietic cells such as the
alarmins, S100A8/9, which Zambetti et al16 showed in a mouse
model of Schwachman-Diamond syndrome. They further showed
that the S1008/9 interaction with TLR4 can induce genotoxic stress
in hematopoietic stem and progenitor cells (HSPCs) and that
increased production of S100A8/9 by stromal cells associates with
worse clinical outcome in patients with MDS.16 These data suggest
the potential for cooperativity between alterations in the hemato-
poietic cells and stroma.

The effects of abnormal HSPCs on neighboring stromal cells has
also been defined. This includes evidence for an altered differen-
tiation status of osteolineage cells17 and remodeling of the niche18

by AML cells and by conversion of mesenchymal cells to fibrogenic
myofibroblasts in myeloproliferative disease models.19

These murine model systems were engineered to have genetic
alterations in different and specific mesenchymal cells including those
identified by the expression of osterix (Osx),20 nestin (Nes),21

Prx1,22,23 leptin receptor (Lepr),24 Mx1,15 and collagen I (Col1).12

These data indicate that the type of mesenchymal cell that was
genetically altered differentially affects the hematopoietic
phenotype.12,13

To validate these murine models in humans, we sought to define
mesenchymal niche abnormalities in patients with MDS. Firstly, we
defined the human mesenchymal subsets that demonstrated
characteristics similar to that of the mouse mesenchymal cells
shown to drive a MDS phenotype, specifically, the Osx+ mesen-
chymal progenitor cells. Gene expression analysis was performed
on the Osx+ equivalent cells in 16 patients with MDS and 11 age-
matched control samples without MDS (patients undergoing hip
replacement surgery). This was paired with gene expression anal-
ysis of CD34+CD38− HSCs for a subset of the patients. To assess
the effects of those gene expression perturbations identified in the
mesenchymal stromal subsets of patients, we created a chimeric
animal model in which the Vav-driven NUP98-HOXD13 (NHD13)
fusion transgene competes with wild-type (WT) BM in the context
14 NOVEMBER 2023 • VOLUME 7, NUMBER 21
of a microenvironment in which a specific gene of interest has been
deleted. The NHD13 fusion gene, originally identified in a patient
with therapy-related AML,25 leads to a fatal progressive MDS in
transgenic animals.26 The predictable and progressive nature of
disease in this model provides an opportunity to test how stromal
perturbations affect MDS disease kinetics.
Methods

Collection of mesenchymal stromal cells from BM

filter bags and hip replacement BM samples

Filter bags. BM filter bags from healthy adult, eligible BM donors
were rinsed with phosphate buffered saline (PBS) to collect left-
over BM. The filters were cut and put in a 50 mL conical with 10 mL
of collagenase type 1 (0.25%) (Stem cell technologies, Ref#
07902) and incubated at 37◦C in a shaking water bath (120 rpm)
for 1 hour. Cells from the BM bags and the filters were then pooled,
washed with PBS, and counted using acridine orange.

Hip replacement BM. The BM was diluted in PBS, strained
using 100 μm cell strainer, and counted using acridine orange. For
both, BM filter bags and hip replacement samples, 5 μL/mL of the
RosetteSep pre-enrichment cocktail (Stem cell technologies,
Ref#15896C) was added to a cell suspension of 40 × 106 cells
per mL and incubated at room temperature (RT) for 10 minutes.
Cells were then layered on ficoll and centrifuged at 400g for
25 minutes with the breaks turned off. Mononuclear cells were then
washed, counted, and frozen in fetal bovine serum (FBS) supple-
mented with 10% dimethyl sulfoxide.

BM samples of patient with MDS. Frozen BM mononuclear
cells were received from multiple clinical centers. On the day of the
sorting, frozen cells were thawed in 37◦C water bath, added to a
tube containing 250 μL of 2000 U/mL DNAse (Sigma, Ref#
D4513), and diluted with PBS up to 10 mL. Cells were centrifuged
at 300g for 10 minutes at RT.

Staining for flow cytometry analysis and cell sorting

Cells were stained for 30 minutes at a concentration of 200 × 106

cells per mL in PBS supplemented with 2% FBS, 100 U/mL DNAse,
and the following antibodies: CD271 (ME20.4), CD146 (P1H12),
CD31 (WM-59), CD235ab (HIR2), CD45 (HI30), CD106 (STA),
CD34 (581), and 7-aminoactinomycin D (7AAD) for viability.

For gene expression analysis, between 100 and 1000 cells per
population were sorted using BD FACS ARIA II directly into RLT
plus lysis buffer for subsequent RNA extraction, and analysis was
performed using FlowJo software.

Fibroblast colony-forming unit and in vitro

differentiation

For the single-cell colony-forming assay, single cells were sorted
into flat bottom 96-well plate prefilled with water in the peripheral
wells and with Mesencult-XF media (Stemcell Technologies) in the
middle wells. Plates were then incubated under 5% CO2 at 37◦C
from 12 to 15 days, after which the wells were scored for the
presence of colonies and confluency using a score from 1 to 3, in
which 1 is the least confluent and 3 is the most confluent.
MICROENVIRONMENTAL CUES CAN ALTER MDS PROGRESSION 6609
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For in vitro differentiation, colonies that scored 3 were detached
using MesenCult-ACF enzymatic dissociation and MesenCult-ACF
enzyme inhibition solution (Stemcell Technologies), expanded in
6-well plates and differentiated into the osteogenic, adipogenic, or
chondrogenic lineages using the MesenCult osteogenic or adipo-
genic differentiation kit (Stemcell Technologies) and human
mesenchymal stem cell (MSC) chondrogenic differentiation
medium BulletKit and transforming growth factor β 3 (Lonza)
according to the manufacturer’s instructions. Osteogenic and
adipogenic differentiation was assessed using alizarin red and oil
red O staining, respectively. Chondrogenic differentiation was
assessed using Sybrgreen quantitative polymerase chain reaction
for Col2A1 and ACAN with the following primers:

Col2A1-F, TGGACGCCATGAAGGTTTTCT

Col2A1-R, TGGGAGCCAGATTGTCATCTC

ACAN-F, GTGCCTATCAGGACAAGGTCT

ACAN-R, GATGCCTTTCACCACGACTTC

Animal models

All animal experiments were approved by the institutional animal
care and use committee at Massachusetts General Hospital. WT
CD45.2 (C57BL/6J), CD45.1 (B6.SJL-Ptprca Pepcb/ BoyJ),
NHD1326 (C57BL6-Tg (Vav1-NUP98/HOXD13)G2Apla/J), and
Spp1 knock-out (Spp1-KO)27 (B6.129S6(Cg)-SPP1tm1Blh/J) mice
were purchased from the The Jackson laboratory. The CD45-
STEM (C57BL/6-CD45.1(STEM)),28 Ocn-GFPTopaz,29 Osx-
GFP:Cre30 were previously described.

For the total BM transplant experiments, mice received 2× (6 Gy)
doses from a cesium-137 irradiator within a 4-hour period. On the
next day, 1 × 106 of the total BM mix of NHD13:CD45.2-STEM at a
ratio of 3:1 were injected retro-orbitally. Male donor mice were
aged from 14 to 16 weeks. Male recipient Spp1-KO or WT
CD45.2 mice were used at 8 weeks of age. Peripheral blood
analysis was performed at indicated time points via retro-orbital
bleeding. Transplants using the antibody drug conjugate (ADC)
conditioning strategy were performed as previously described.31

Briefly, biotinylated cKit Ab was purchased from BioLegend
(Clone 2B8). The ADC was prepared by combining the biotinylated
antibody with streptavidin-SAP (2.8 Saporin molecules per strep-
tavidin from Advanced targeting systems) in a 1:1 molar ratio. Mice
were dosed with the ckit-SAP antibody conjugate at 3 mg/kg and
transplanted with a 1:1 mix of NHD13:WT cells (10 × 106 cells).
Complete blood counts were obtained using the element-HT5
peripheral blood analyzer from Heska. For chimerism analysis,
100 μL peripheral blood was added to 1 mL Ack lysis buffer
(Quality Biological) and incubated at RT for 7 minutes. Blood was
then centrifuged at 2000g for 5 minutes and stained with the
following for flowcytometry analysis: CD45.2 (104), CD45.1 (A20),
CD11b-AF700 (M1/70), CD3e (145-2C11), CD45R (RA3-6B2),
GR1 (RB6-8C5), and 7AAD for viability. At least 20 × 103 events
were collected in the scatter gate per sample using the BD LSRII
analyzer. Analysis was performed using the FlowJo software.

Collection of Osx-GFP and Ocn-GFP labeled cells for

RNA sequencing

Tibias, femurs, hips, humeri, and spines were collected from Osx-
GFP:Cre and Ocn-GFPTopaz hemizygous mice. BM was flushed
6610 KFOURY et al
and discarded, and bones were cut into small pieces that were
digested using 0.25% collagenase type I (Stemcell Technologies)
for 45 minutes in a shaking water bath at 37◦C. Cells were then
pelleted and washed with PBS and 2% FBS, after which they were
stained with antibodies against CD-45 (30F-11), CD-31 (MEC13.3)
and Ter119 (Ter119). Cells (CD45–CD31–Ter119–GFP+) were
sorted using BD FACS ARIA II for subsequent RNA extraction and
sequencing.

Bleeding and peripheral blood analysis

Mice were serially subjected to retro-orbital bleeding under iso-
flurane anesthesia. White blood cell, hemoglobin, red blood cell
(RBC), mean corpuscular volume, platelet, and hematocrit levels
were quantified using the blood analyzer (Heska, Element HT5).
For flow cytometry for chimerism, analysis was performed on
RBC–lysed blood, stained with antibodies against CD45.1 (A20),
CD45.2 (104), CD11b (M1/70), GR1 (RB6-8C5), CD45R
(RA3-6B2), and CD3 (145-2C11). Samples were then analyzed
using BD LSRII, and data were analyzed using FLowJo.

RNA extraction

RNA extraction was performed using the AllPrep DNA/RNA Micro
Kit (Qiagen, Ref# 80284) according to the manufacturer’s
instructions.

RNA-seq

RNA sequencing (RNA-seq) libraries were constructed using the
Clontech SMARTER kit (Takara) and sequenced on the Illumina
HiSeq2500 instrument, resulting in ~30 million reads per sample
on average.

RNA-seq analysis

Transcriptome mapping was performed using the STAR aligner32

and the hg19 assembly of human reference genome. Read
counts for individual transcripts from ENSEMBL annotation were
obtained using HTSeq.33 Differential expression analysis was per-
formed using the EdgeR package34 after normalizing read counts
and including only genes with counts per million >1 for at least 1
sample. Differentially expressed genes (DEGs) were defined based
on the criteria of more than a twofold change in normalized
expression value and false discovery rate (FDR) < 0.05.

Results

The identification of a human mesenchymal

progenitor subset that overlaps with murine

mesenchymal progenitors whose alteration can

promote MDS

Discarded BM collection bags and filters were used as a source of
human MSCs. Cells from the BM and digested bone spicules
removed from the filter were stained for fluorescence-activated cell
sorting (FACS). Cell surface receptors were used to mark func-
tionally distinct BM mesenchymal subsets that have been shown to
support BM hematopoiesis, namely nerve growth factor receptor
(CD271), vascular cell adhesion molecule (CD106),35,36 and
melanoma cell adhesion molecule (CD146).37,38 Hematopoietic,
endothelial, and dead cells were removed from analysis (staining
for 7AAD, CD45, CD235ab, CD31, and CD34). Within the
14 NOVEMBER 2023 • VOLUME 7, NUMBER 21
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remaining cells, the combination of CD271, CD146, and CD106
resolved 4 distinct populations: CD271+CD146−CD106− (SN),
CD271+CD146−CD106+ (SP), CD271+CD146+CD106− (DN),
and CD271+CD146+CD106+ (DP) (Figure 1A; supplemental
Figure 1A) which were all comparably abundant within the live,
nonhematopoietic nonendothelial compartment (Figure 1B).

In a single-cell colony-forming assay, colonies were scored for
confluency ranging from 1, which is the least confluent, to 3, which
is the most confluent. CD106+ populations (SP and DP) produced
significantly more colonies than CD106− counterparts and were
the only populations with confluent colonies (scoring 3), indicating
a faster rate of proliferation (Figure 1C). Similarly, CD106+ single-
cell–derived colonies were the only colonies that efficiently differ-
entiated toward osteogenic, adipogenic, and chondrogenic line-
ages in vitro (Figure 1D-E). Chondrogenic lineage differentiation
was only assessed in CD106+ populations because of the limited
cell numbers in the other populations. Altogether, this is indicative
of higher progenitor activity in CD106+ labeled populations.

To identify the human mesenchymal subsets that demonstrated
progenitor characteristics similar to those previously defined as the
population that induced myelodysplasia in mice, we compared
gene expression among mouse osteoprogenitor cells and mature
osteoblasts sorted from genetic reporter models expressing green
fluorescent protein (GFP) under the transcriptional control of
osterix (Osx-GFP:Cre)30 and osteocalcin (Ocn-GFPTopaz),29 pro-
moters specific to osteoprogenitor cells and mature osteoblasts,
respectively (supplemental Figure 1B). In total, 1145 genes were
differentially expressed more than twofold) at an FDR < 0.05
(Figure 1F; supplemental Table 1). In parallel, 4 human mesen-
chymal subsets were analyzed similarly (DP, DN, SP, and SN).
Gene expression confirmed the mesenchymal identity of the human
subsets in comparison with the human CD45+ cells, as demon-
strated by the expression of mesenchymal specific genes
(supplemental Figure 1C), as part of a total of 2223 DEGs among
the 4 populations (Figure 1G; supplemental Table 2). Differential
gene expression analysis was performed, comparing the mouse
subsets (Ocn-GFP vs Osx-GFP) and the human populations (SN
vs DP, SN vs SP, SN vs DN, SP vs DN, SP vs DP, and DN vs DP)
to investigate the overlap in DEGs (Figure 1H). Comparing SN vs
DP yielded the highest level of differentially expressed orthologous
gene overlap (235 genes), followed by SN vs SP (129 genes) and
SN vs DN (93 genes; Figure 1H), indicating that mouse Ocn-Osx
cell transcriptional difference is most reminiscent of human SN-DP
difference and suggesting a higher similarity of the SN and DP/SP
human populations to murine Ocn– and Osx–labeled cells,
respectively. As a control for the used methodology, we ran the
same analysis on the mCD51 vs mCD45 and hCD51 vs hCD45,
given that CD45 labels hematopoietic cells and that CD51 labels a
wide range of mesenchymal cells in mouse and human BM. This
comparison yielded a highly significant overlap (P < 1e−100) in
2419 of 3802 DEGs, validating our adopted strategy
(supplemental Figure 1D).

Distinct gene expression alterations characterize

specific BM mesenchymal subsets in patients with

MDS

We proceeded to analyze the mesenchymal compartment of 16
BM samples of patient with MDS and 11 age- and gender-matched
hip replacement samples (supplemental Table 3). The patient
14 NOVEMBER 2023 • VOLUME 7, NUMBER 21
samples were cryopreserved aspirate samples without BM spicules
and, therefore, contained fewer stromal cells. Preliminary analysis
demonstrated a lower frequency of the DN population and a
nonexistent SN population as compared with the BM filter bags
analyzed in Figure 1, indicating that these populations are enriched
in cells obtained from digested bone spicules (data not shown).
Based on this, we sorted 4 populations for bulk RNA-seq: S, which
combines SP and SN (because of the low frequency of the SN in
the BM samples with no spicules), DN, and DP, in addition to
CD146−CD271− cells (N) (Figure 2A). No significant differences in
the frequency of S, DN, and DP populations within the non-
hematopoietic nonendothelial compartment were detected
(Figure 2B). Transcriptome-wide principal component analysis
demonstrated a high degree of overlap between MDS and hip
replacement samples within the N population. In the DP, DN, and S
populations, hip replacement samples had a tight distribution,
whereas MDS samples were separate and more scattered, indi-
cating a distinct transcriptional profile with high degree of inter-
patient variability, which was most pronounced in DP and S
populations (Figure 2C). Differential gene expression analysis
revealed minimal overlap between the N and DP, S, and DN pop-
ulations (Figure 2D), with 256 genes for S, 100 for DP, 166 for DN,
and 11 for N with more than twofold change and FDR < 0.05
(Figure 2E; supplemental Table 4). Gene set enrichment analysis
(GSEA)39,40 using hallmark and gene ontology gene sets demon-
strated the enrichment of an inflammatory and epithelial-to-
mesenchymal transition signature in the DP and DN populations
of patients with MDS, whereas the S population demonstrated an
enrichment in Myc targets, MTORC signaling, reactive oxygen
species pathway, and ribosome and protein translation pathways
(Figure 2F). Interestingly, the S population demonstrated a down-
regulation of functions related to stem cell and osteoblastic dif-
ferentiation (Figure 2G).

Identification of potential molecular interactions

between mesenchymal subsets and MDS-

propagating cells

To dissect the effect of mesenchymal stromal transcriptional per-
turbations on MDS-propagating hematopoietic cells,2 we profiled
the transcriptomes of 12 BM CD34+CD38− cells of patients with
MDS and 6 of those of patients with hip replacement (Figure 3A)
using the same platform and the same patient samples as those in
the prior mesenchymal stromal populations analysis, when possible
(9 of 12 patients with MDS and 6 of 6 patients with hip replace-
ment; supplemental Table 3). Transcriptome-wide principal
component analysis demonstrated a separation of MDS from the
hip replacement samples, except for 2 samples of patients with
MDS that clustered with the controls (Figure 3B). Differential gene
expression analysis demonstrated 42 genes with more than
twofold change and FDR < 0.05 (Figure 3C; supplemental
Table 4). GSEA using hallmark gene sets demonstrated the
upregulation of apoptosis, tumor necrosis factor α signaling via NF-
κB, interleukin-6 JAK-STAT signaling, and inflammatory response
gene sets in patients with MDS and the downregulation of
MTORC1 signaling, E2F targets, DNA repair, and G2M checkpoint
gene sets (Figure 3D). To identify potential mechanisms of
molecular interactions between the analyzed MSC populations and
the CD34+CD38− cells, we used a published database of anno-
tated ligands and their cognate receptors.41 As potential mediators
MICROENVIRONMENTAL CUES CAN ALTER MDS PROGRESSION 6611
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of these cell-cell interactions, we focused on the ligand-receptor
pairs in which the ligand was differentially expressed in mesen-
chymal cells of patients with MDS compared with that in controls
(more than twofold expression change, with FDR < 0.05), and the
receptor was expressed in CD34+CD38− hematopoietic cells
(reads per kilobase of transcript per million reads mapped [RPKM]
> 1). COL1A genes in addition to SPP1 showed the highest
number of interactions (Figure 3E) with SPP1 appearing in all 3
populations (Figure 3F-H; supplemental Table 5).

Loss of Spp1 in the nonhematopoietic

microenvironment enhances the fitness of MDS cells

Secreted phosphoprotein 1 (SPP1), also known as Osteopontin, is
a phosphorylated glycoprotein initially identified in the bone42 and
later found to be produced by a plethora of cell types, including
osteoclasts, epithelial cells, endothelial cells, nerve cells, vascular
smooth muscle cells, and lymphoid and myeloid immune cells.43 In
the hematopoietic microenvironment, we and others have shown
that Spp1 acts as a negative regulator of the HSC pool size.44,45

Although it may constrain HSC numbers, it appears to preserve
their function.46 Spp1 expression in the BM decreases with age,
leading to a decline in HSC engraftment potential. Aging mouse
osteoblasts downregulate Spp1, contributing to the increased
frequency of myeloid-biased HSCs, with compromised engraft-
ment potential and loss of polarity.46 Therefore, we investigated the
role of Spp1 in MDS progression by generating a chimeric model
of an Spp1-KO mesenchymal environment, with hematopoietic
cells of the MDS model, Vav-driven NHD13 fusion transgene. BM
from NHD13 mice was competitively transplanted with WT BM.
The NHD13 model recapitulates MDS through multilineage cyto-
penias and dysplasia, with evidence of a progressive and quanti-
tative defect in HSPCs and high penetrance to transform to acute
leukemias.26,47,48 Although the NHD13 genotype is uncommon in
human MDS, the model was chosen because both the MDS and
acute leukemia phases are well defined and stereotypic, providing
effects of the ability to detect extrinsic cue on MDS progression.

Because of the age-dependent loss of the HSPC pool in NHD13
mice that is evidenced by a lower ability to engraft,47 we trans-
planted NHD13 (CD45-STEM) in competition with the WT
CD45.2.STEM total BM at a ratio of 3:1 in lethally irradiated WT
C57Bl6/J or Spp1-KO (CD45.2) mice and monitored the chimerism,
MDS progression, and transformation through monthly peripheral
blood analyses (Figure 4A). NHD13 donor cells demonstrated lower
fitness than WT CD45.2.STEM cells in both WT and Spp1-KO
recipients (Figure 4B-C). However, upon evaluating NHD13 donor
cells in different recipient backgrounds, we found that chimerism
was higher in Spp1-KO than in WT recipients (Figure 4D). This
indicates an enhanced fitness of the NHD13 cells in the Spp1-KO
microenvironment. The opposite was observed for WT hematopoi-
etic cells. In that case, higher chimerism was noted when the donor
Figure 1 (continued) subsets within the live nonhematopoietic, nonendothelial cells. (C)

scored on a scale from 1 (least confluent) to 3 (most confluent). Data represent 6 indepe

significance was calculated using 2-way analysis of variance; *P < .05; **P < .01; ***P < .00

the chondrogenic lineage. (E) Oil and alizarin red staining for adipogenic and osteogenic d

between Ocn-labeled osteoblasts and Osx-labeled osteoprogenitors; more than twofold ch

independent samples for each); more than twofold change; FDR < 0.05. (H) Overlap of DEG

labeled mouse mesenchymal cells. x-axis shows the statistical significance of the overlap sh
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cells were engrafted into WT recipients compared with Spp1-KO
recipients (Figure 4E). The latter is in keeping with prior studies,46

in the effect of an Spp1-depleted microenvironment.

Donor-derived myeloid cells were mostly derived from NHD13 cells
with higher contribution in Spp1-KO recipients (Figure 4F-G). In
contrast, donor-derived lymphoid cells were mostly derived from
WT donor cells (Figure 4H-K), indicating a myeloid skewing of the
NHD13 cell that is more pronounced in the Spp1-KO recipients
than in WT recipients. Furthermore, Spp1-KO recipient mice
demonstrated evidence of anemia (Figure 4L-M) and a trend
toward higher mean corpuscular volume (Figure 4N), which we
interpret as incipient dysplasia. This was supported by a shorter
latency of the disease in those animals, although only a modest
trend was noted in survival (Figure 4O).

To rule out an immune-mediated effect for residual Spp1-KO
hematopoietic cells in recipient mice, we transplanted NHD13
CD45-STEM cells in competition with WT or Spp1-KO CD45.2
total BM at a ratio of 3:1 in lethally irradiated WT heterozygous
CD45.2.STEM mice (supplemental Figure 2A) and monitored the
chimerism via monthly peripheral blood analysis. In this setting, the
immune cells lacked the expression of Spp1 in 1 cohort, whereas
the MSCs were WT in both. We hypothesized that if the MDS
acceleration observed initially was due to the loss of expression of
Spp1 in the nonhematopoietic stromal compartment only and not
in the immune cells, then it should not be observed in this setting.
Indeed, this was confirmed through the lack of significant differ-
ence in the contribution of NHD13 donor cells to the myeloid
compartment, in which the competitor immune cells were devoid of
Spp1 expression (supplemental Figure 2B-C), and no difference in
the RBC parameters (supplemental Figure 2D-F).

To further confirm that the enhanced fitness of NHD13 cells in the
Spp1-KO microenvironment is not due to an irradiation-induced
engraftment defect that favors NHD13 cells over WT, we
repeated the experiment using the ADC as a conditioning strategy
that spares the nonhematopoietic microenvironment in the BM
from genotoxic injury.31 We chose to use the CD117-Saporin (ckit-
SAP) conjugate that we generated using a biotinylated antibody
and streptavidin-SAP conjugate as described previously.31,49 This
approach has been shown to effectively deplete host HSCs with
minimal toxicity.49 WT or Spp1-KO mice (CD45.1) were dosed
with 3 mg/Kg ckit-SAP, and after 8 days, they were received
transplants with 10 × 106 mix of NHD13(CD45.2.1):WT (CD45.2)
total BM cells at a 1:1 ratio (Figure 5A). We deliberately chose to
reduce the ratio of NHD13:WT cells in this experiment to rule out
any advantage due to more NHD13 cells transplanted. Mice were
monitored for engraftment and disease progression via monthly
peripheral blood analysis up to 32 weeks. Unlike conditioning via
irradiation, the NHD13 cells did not demonstrate lower fitness in
the early weeks after transplantation (Figure 5B-C), with a trend
toward higher chimerism than WT donor cells in Spp1-KO
Frequency of wells testing positive for cell growth of sorted single cells. Wells are

ndent samples and are presented as mean ± standard deviation (SD). Indicated

1. (D) Relative expression of Col2A1 and ACAN in SP and DP cells differentiated into

ifferentiation of human BM or spicules mesenchymal subsets. (F) Heatmap of DEGs

ange; FDR < 0.05. (G) Heatmap of DEGs between human mesenchymal subsets (3

s between different human mesenchymal subsets with DEGs between Ocn- and Osx-

own as P value on a log scale. Dot size represents the number of overlapping genes.
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(Figure 5D-E). This confirms the enhanced fitness of NHD13 cells
in the Spp1-KO microenvironment. By 32 weeks after transplant,
the Spp1-KO recipients demonstrated evidence of anemia,
reflected by reduced RBC counts and hemoglobin level and
6616 KFOURY et al
increased mean corpuscular volume (Figure 5F-H), with acceler-
ated disease progression that resulted in a significant difference in
survival (Figure 5I). Both Spp1-KO and WT recipients demon-
strated enlarged spleens and elevated white blood cell counts at
14 NOVEMBER 2023 • VOLUME 7, NUMBER 21
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term (supplemental Figure 3A-D), indicating leukemic
transformation.

Altogether, these findings confirm the enhanced fitness of NHD13
MDS in the context of a Spp1-devoid microenvironment, which is
mediated by the nonhematopoietic stromal compartment.

Discussion

Transcriptomic and mutational analyses in combination with animal
modeling have dramatically enhanced our understanding of MDS
by identifying and functionally validating the role of point mutations
in its pathophysiology.6,7,50,51 However, the therapeutics remain
limited for MDS, in which the only curative therapy is HSC trans-
plantation, a poor option for many of the older adult patients
affected by the disease.52
14 NOVEMBER 2023 • VOLUME 7, NUMBER 21
The hypothesis that there may be marrow microenvironment
abnormalities that contribute to MDS pathophysiology has gained
experimental support, with stromal changes noted in the contexts
of aging,46,53 inflammation,9 or genetic mutations in specific
mesenchymal subsets in the BM.12-14,16

Here, we evaluated mesenchymal cell molecular features,
seeking modifications that might affect MDS and offer thera-
peutic opportunities. We used comparative gene expression
profiling to identify the human mesenchymal population most
closely resembling the Osx-expressing cells defined to induce
hematopoietic dysplasia in mice.13,14 Transcriptional differences
of human mesenchymal cells expressing CD106 from other cell
types were most similar to the differences between murine Osx-
Cre– and Ocn-Cre–labeled cells. Gene expression profiling of 4
distinct mesenchymal subsets from patients with MDS and
MICROENVIRONMENTAL CUES CAN ALTER MDS PROGRESSION 6617
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matched controls with benign disease demonstrated that,
indeed, subsets labeled with CD106 in patients with MDS were
the most distinct from the control subsets. It is worth noting that
we could not detect significant differences in the frequency of
these mesenchymal subsets.

GSEA demonstrated distinct signatures, with decreased osteo-
genic differentiation in the S subset and enrichment of inflamma-
tory signatures in the DP and DN subsets, confirming prior
findings,54,55 as well as an epithelial-to-mesenchymal transition
signature. Within this signature, SPP1 was among the most highly
upregulated genes and showed the highest number of interaction
channels with MDS-propagating CD34+CD38− cells. Notably,
mesenchyma-derived Spp1 was identified by us and others to be
upregulated in the context of a murine model of AML,17,56 sug-
gesting that this gene may be more broadly responsive to aberrant
myelopoiesis. Spp1 is a negative regulator of the normal HSC
number44,45 but protects their function,46 perhaps by preserving
self-renewal. Through the competitive chimeric model of the
NHD13 and WT BM, we demonstrated that an environment lacking
Spp1 unexpectedly accelerates the progression of NHD13
dysplasia. This was evident in the increased chimerism of NHD13
donor cells, their increased myeloid contribution, and evidence of
anemia in the Spp1-KO recipients. We confirmed that the residual
recipient immune cells seen in the peripheral blood via flow
cytometry did not contribute to the phenotype in the Spp1-KO
mice.

Because increased SPP1 messenger RNA has been noted in
cultured BM mesenchymal cells in patients with MDS and in
animal models of AML,17,57 it may be that SPP1 reflects a
generalized stromal response to aberrant myeloid stem or
14 NOVEMBER 2023 • VOLUME 7, NUMBER 21
progenitors, perhaps in concert with the cytokine responses
often observed. Here we show that it may be protective,
reducing the fitness of NHD13-driven MDS. Rather than being
an adverse signal to normal HSCs, it may serve to preserve WT
HSC function while limiting the fitness of NHD13 mutant cells.
The basis for this response is unclear, but Spp1 is known to be
induced by inflammatory stimuli in some cell types.58

Altogether, our data identify molecular perturbations in human BM
mesenchymal subsets that are specifically associated with MDS
and that negatively affect pathogenesis in a mouse model of the
disease. These results also suggest that niche changes are not
restricted to those that lead to disease progression, as has been
suggested by prior reports. Rather, we demonstrate that changes
in SPP1 production may be protective and may serve to delay
disease progression, ultimately protecting the host. MDS BM niche
biology may, therefore, play a dual role, with certain modifications
inducing or advancing disease and others providing protective
adaptations.
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*P < .05; **P < .01. Statistical analysis was calculated using multiple Student t test.
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