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Nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL) accounts for 10% of all Hodgkin lym-
phoma cases.1,2 Most patients are diagnosed in the early stages and have excellent survival rates after
radio- or chemotherapy, or a combination of the two.3,4 However, radiotherapy is not recommended for
pediatric patients because of the late toxicity in aging survivors.5 Instead, low-intensity therapy with
cyclophosphamide in combination with vinblastine and prednisone (CVP) is preferred. Only patients
with poor treatment response receive more intensive chemotherapy.6 To introduce new treatment
concepts based on the biology of the disease, attempts have been made to develop a histological
response marker based on the morphometry and distribution of disease-defining LP cells. The classi-
fication proposed by Fan et al7 recognizes 6 different histological patterns of NLPHL, with variant
patterns C-F being considered high-risk for clinical outcomes.8 However, the prognostic value of this
classification is less clear in early-stage patients when compared with those with advanced-stage
disease.9,10 Recent research by Hartmann et al11 has shown differences in LP cell nuclear size
between early-, intermediate-, and advanced-stage NLPHL, as well as between typical and variant Fan
patterns. This analysis was limited to a small number of cells per case.

We used deep-learning–based cell detection on digitized biopsy slides from early-stage pediatric
patients treated within the EuroNet-PHL-LP1 trial to quantitatively assess LP-cell histology. Through
whole-slide spatial analysis, we identified 6 key characteristics of LP cell spatial patterns and correlated
them with treatment response to low-intensity CVP chemotherapy. In addition, we explored the rela-
tionship between treatment response and various characteristics of B-cell spatial patterns, as well as
Fan classification.

The formalin-fixed and paraffin-embedded diagnostic lymph node samples of 53 children and adoles-
cents with stage IA or IIA NLPHL who had been enrolled in the EuroNet-PHL-LP1 trial were analyzed.
All patients were treated with 3 cycles of CVP chemotherapy (cyclophosphamide 500 mg/m2 intra-
venously on day 1, vinblastine 6 mg/m2 intravenously on days 1 and 8, and prednisolone 40 mg/m2

orally on days 1-8). The interval between chemotherapy cycles was scheduled for 1 or a maximum of
2 weeks. At the end of chemotherapy, response assessment was performed using positron emission
tomography combined with contrast-enhanced computed tomography (PET-CT). The response was
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Table 1. LP and B-cell spatial variables and Fan pattern according to treatment response

good poor P/alpha’/r

Patients (total) 33 20 NA

Females (typical pattern) 4 5 NA

Females (variant pattern) 4 2 NA

Males (typical pattern) 19 5 NA

Males (variant pattern) 6 8 NA

Fan classes (variant / typical) 10 / 23 10 / 10 0.24

Age, y 11.4 (3.6-17.9) 13.45 (4.9-17.6) 0.61

menclus, cells/cluster 161.5 (64.5) 87.5 (56) 0.0012/0.008*/0.45

tumorD, cells/mm
2 61.3 (32.4) 40.6 (23.2) 0.0049/0.01*/0.39

madclus, cells/cluster 60.8 (19.8) 46.7 (16.5) 0.017/0.0125

LPm3, μm 74.4 (22.8) 85 (17.6) 0.071/0.017

LPmad3, μm 38.5 (14.6) 45 (15.2) 0.14/0.025

Nuclear area, μm2 117.4 (14.1) 124.2 (21.5) 0.27/0.05

bcellD, cells/mm2 3756.2 (2157.8) 2803 (1594.3) 0.14

MdistB, μm 6.4 (0.5) 6.5 (0.4) 0.23

McrossLPb, μm 12.5 (2.7) 13.1 (3.3) 0.4

otherD, cells/mm2 10 973.6 (2 192.2) 11 151 (2989.8) 0.79

Results are presented as the median (MAD), except for age, which is presented as the median (min-max). P is Fisher exact test P value (Fan) or Mann-Whitney U test P value (other variables),
alpha’ is the local significance level, adjusted using the Bonferroni-Holm method to attain a target level of 0.05, for 6 focal variables (indicated in bold). The Wilcoxon effect size r was calculated
for significance tests.
*Indicate significant differences between the groups.

D
ow

nloaded from
 http://ashpublications.net/bloodadvances/article-pdf/7/20/6285/2085193/blooda_adv-2023-010652-m

ain.pdf 
categorized as “good” if the PET was negative and at least a 75%
reduction of the initial tumor mass across all initially affected lymph
nodes was achieved. “Poor” response was characterized by PET
positivity and/or a volume reduction of less than 75% compared
with the initial tumor mass in at least 1 initially involved lymph node
region (Table 1). The pathological features were categorized
according to the Fan classification into typical NLPHL (patterns A
and B) and variant patterns (patterns C-F) (Table 2).

OCT2 immunostained slides of the samples (ZS02 antibody;
Zytomed Systems, Berlin, Germany) were digitized using Pan-
noramic SCAN II (3DHISTECH, Budapest, Hungary) and the
resulting digital slides were divided into 256 × 256 pixel tiles using
Table 2. Stratification of the study cohort based on Fan et al, 2003

Fan patterns Frequency Response Proportion of poor

Primary Secondary poor/good responders

Typicalb 33 10/23 0.3

A No 30 9/21

A B 3 1/2

Variant
b 20 10/10 0.5

A C 5 4/1

C No 9 3/6

C E 1 1/0

E C 3 1/2

E No 2 1/1

b Rows with the bold text/numbers indicate summarized rows below
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QuPath.12 To capture variability, 14579 LP cells, 157236 B cells,
and 379114 other cells were semimanually annotated using
LabelImg13 in a subset of 9153 tiles from 35 study cases and 70
NLPHL cases outside the study. Using transfer learning, a pre-
trained YOLOv4-tiny convolutional neural network14 was retrained
on these tiles. The retrained network was then used to detect cells
across all tiles. The centers of the frames or bounding boxes
around the detected cells (“cell centroids”) were then converted
into marked planar point patterns representing the tissue using the
R package spatstat version 2.115 and a custom R script.

To characterize each LP point pattern, we selected 6 spatial vari-
ables based on published literature (Figure 1).11,16,17 These vari-
ables included the nuclear area approximated from the median area
of the detected LP cell bounding boxes, LP cell density (tumorD)
calculated by dividing the number of LP cell centroids by the tissue
area, the median Euclidean distance between LP points and their
third nearest neighbors of the same type (LPm3), as well as
LPmad3, its median absolute deviation (MAD), and the median
(menclus) and MAD (madclus) of the number of cells in putative
clusters of LP cells detected by affinity-propagation clustering
(apcluster version 1.4.918), a data-driven approach to group data
points without the need to predefine the number of clusters.19 As a
confirmatory analysis, Mann-Whitney U tests were used to analyze
the potential association between these spatial variables and
treatment response, with local significance levels adjusted using
the Bonferroni-Holm step-down procedure to maintain an overall
significance level of 0.05. To gain further insight, we measured the
density of B cells (bcellD) and other cells (otherD) and the median
nearest-neighbor distances between B cells (MdistB) and between
LP and B cells (McrossLPb). We then performed exploratory
24 OCTOBER 2023 • VOLUME 7, NUMBER 20
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Figure 1. Spatial variable extraction from digital slides using deep-learning, affinity-propagation clustering, and spatial statistics. (A) Left to right: Whole-slide

image scan of an OCT2-stained tissue section of NLPHL with Fan pattern “C.” A highlighted 256 × 256-pixel tile is magnified in panel C. The planar point pattern after cell

detection, showing LP cell and B-cell centroids. LP cell clusters are identified using affinity-propagation clustering. (B) Planar point pattern and result of affinity-propagation

clustering of LP cell centroids in an NLPHL case with Fan pattern “A.” A specific cluster is highlighted in both the point pattern and cluster plot. (C) Individual tiles with detected

cells enclosed within bounding boxes. The deep-learning detection precision was 95.43%. (D) Point patterns of the tiles with symbols indicating different cell types and spatial

variables, including the area of bounding boxes as an approximation of the nuclear area, nearest neighbor distances between cell centroids, and point counts for cell density

calculation.
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Figure 2. Comparison of LP cell-derived spatial variables grouped by treatment response in patients with NLPHL. The Mann-Whitney U test was used to compare

treatment response groups, with the P value and Holm-Bonferroni adjusted local significance level (alpha’) for a target alpha of 0.05, as shown above the plot. The results indicate

that the density and number of LP cells per cluster were significantly different between the treatment response groups. The plot shows individual data points as empty circles, with

the median depicted as a black bar, the upper and lower quartiles shown in a red box, and whiskers representing 1.5 times the interquartile range. A small value of n refers to the

number of cases per group.
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Mann-Whitney U tests for B-cell spatial variables against response.
Similarly, we used Fisher exact test to examine the proportion of
bad responders with typical and variant Fan patterns. Notably,
multiple testing correction was not applied in any of the analyses.
All analyses were conducted using R version 4.1.0.20

Deep learning achieved a high mean average precision in cell
detection, comparable with that reported in the literature21

(mean ± SD: 95.24 ± 0.17%). In patients with poor response,
the number of LP cells per cluster was nearly half that of those with
good response (median ± MAD: 87.5 ± 56 vs 161.5 ± 64.5; P =
.0012; Table 1, Figure 2). Correspondingly, the density of LP cells
was 1.5 times lower in poorly responding patients compared with
those with good response (median ± MAD: 40.6 ± 23.2 cells/mm2

vs 61.3 ± 32.4 cells/mm2; P = .0049; Table 1, Figure 2). These
findings were statistically significant after adjustment for multiple
tests. It is counterintuitive that a poor chemotherapy response was
associated with a lower LP cell density. However, LP cell density
was measured before treatment; thus, differences in LP cell pro-
liferation or apoptosis rates may explain the relationship between
poor chemotherapy responses and lower LP cell density.22,23 For
example, slow-cycling drug-tolerant cancer cells are known to
6288 RESEARCH LETTER
contribute to therapy failure in lymphoma and other cancer
types.24,25 However, preliminary analysis could not confirm the
hypothesis (refer to supplemental Information for details). Although
LP cell size was previously hypothesized to hinder tumor spread,11

we found no difference in LP cell nuclei size between Fan patterns
or good and poor responders. Additional studies are required to
investigate LP cell density differences, their association with
chemotherapy failure in pediatric NLPHL, and their potential as a
prognostic marker in this context.

Our exploratory analysis found no correlation between Fan classi-
fication or B-cell pattern variables and treatment response
(Tables 1 and 2). In 10 out of 33 good responders, variant Fan
patterns were found, compared with 10 variant patterns out of 20
poor responders (P = .24, Fisher exact test). This indicates that
Fan classification is not useful for risk stratification in pediatric
patients with early-stage NLPHL.

The limitations of this investigation are the small cohort size and the
exclusive use of CVP therapy. Our findings may not apply to
advanced-stage pediatric patients or adults.
24 OCTOBER 2023 • VOLUME 7, NUMBER 20
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In summary, LP cell distribution was significantly correlated with
early chemotherapy response. To our knowledge, our report is the
first to show a significant correlation between early chemotherapy
response and cancer cell spatial pattern characteristics in pediatric
NLPHL and might be useful for future risk-adapted trials.
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