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Key Points

• MAP (CREBBP,
STAT6, TP53, IGLL5,
B2M, SOCS1, and
MYD88) confer
adverse risk when
found at FL diagnosis.

• Low-risk m7-FLIPI is
predictive of prolonged
remissions with
standard rituximab plus
chemotherapy in newly
diagnosed FL.
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Follicular lymphoma (FL) is clinically heterogeneous, with select patients tolerating

extended watch-and-wait, whereas others require prompt treatment, suffer progression of

disease within 24 months of treatment (POD24), and/or experience aggressive histologic

transformation (t-FL). Because our understanding of the relationship between genetic

alterations in FL and patient outcomes remains limited, we conducted a clinicogenomic

analysis of 370 patients with FL or t-FL (from Cancer and Leukemia Group B/Alliance trials

50402/50701/50803, or real-world cohorts from Washington University School of Medicine,

Cleveland Clinic, or University of Miami). FL subsets by grade, stage, watch-and-wait, or

POD24 status did not differ by mutation burden, whereas mutation burden was significantly

higher in relapsed/refractory (rel/ref) FL and t-FL than in newly diagnosed (dx) FL.

Nonetheless, mutation burden in dx FL was not associated with frontline progression-free

survival (PFS). CREBBP was the only gene more commonly mutated in FL than in t-FL yet

mutated CREBBP was associated with shorter frontline PFS in FL. Mutations in 20 genes

were more common in rel/ref FL or t-FL than in dx FL, including 6 significantly mutated

genes (SMGs): STAT6, TP53, IGLL5, B2M, SOCS1, and MYD88. We defined a mutations

associated with progression (MAP) signature as ≥2 mutations in these 7 genes (6 rel/ref FL

or t-FL SMGs plus CREBBP). Patients with dx FL possessing a MAP signature had shorter

frontline PFS, revealing a 7-gene set offering insight into FL progression risk potentially

more generalizable than the m7–Follicular Lymphoma International Prognostic Index (m7-

FLIPI), which had modest prognostic value in our cohort. Future studies are warranted to

validate the poor prognosis associated with a MAP signature in dx FL, potentially facilitating

novel trials specifically in this high-risk subset of patients.
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Data are available on request from the corresponding author, Todd A. Fehniger
(tfehnige@wustl.edu).

The full-text version of this article contains a data supplement.
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Introduction

Follicular lymphoma (FL) is a common low-grade B-cell lymphoma
of which >85% of cases possess t(14;18)(q32;q21), placing the
antiapoptotic oncogene BCL2 under control of IGH regulatory
elements.1,2 This event is sporadically found in rare cells from
healthy individuals, most of whom do not develop FL,3,4 suggesting
it is not sufficient for lymphomagenesis. Several studies suggest
that premalignant B cells with IGH::BCL2 cyclically reengage
germinal center (GC) reactions, permitting multihit lymphoma-
genesis through acquisition of cooperating mutations, promoting
developmental arrest and proliferation.5-8

Initial FL presentations are heterogeneous. Some patients have
symptomatic lymphadenopathy requiring timely intervention; others
may be diagnosed incidentally and/or tolerate extended watch-and-
wait.9-11 Most patients’ disease responds to frontline treatment12-
15; however, their subsequent courses are highly variable. The
majority of patients have prolonged remissions and low-grade
recurrences but others suffer progression of disease within
24 months of treatment (POD24) and have poor outcomes despite
receiving subsequent therapy.16,17 Furthermore, ~30% of patients
with FL experience aggressive histologic transformation (t-FL),
which is enriched in patients experiencing POD24 and contributes
to most FL-related deaths.18-21

Regarding pathobiology, the FL mutational landscape highlights
the mechanisms driving lymphomagenesis.22,23 More than three-
quarters of FL tumors possess mutations in genes encoding key
histone modifiers (KMT2D, EZH2, CREBBP, and EP300),24-27

which control GC B-cell transcriptional programs. H1 linker his-
tone mutations also cooperate with dysregulated BCL2 to promote
FL.28,29 Other affected pathways include B-cell receptor, NF-κB,
and JAK-STAT signaling.30-33 Several studies demonstrate that FL
and t-FL often arise from divergent evolution of a common mutated
precursor. Histone modifier alterations typically occur early in the
common precursor, whereas transformation involves diverse fac-
tors including TP53 loss, immune evasion, MYC activation, and
somatic hypermutation (SHM).34-37

Despite a growing understanding of FL pathogenesis, the trans-
lation of these insights into biology-informed clinical care has been
slow. No predictive model exists to guide FL treatment, although
the Groupe d’Etude des Lymphomes Folliculaires criteria differ-
entiate patients with low vs high disease burden.38,39 The Follicular
Lymphoma International Prognostic Index (FLIPI) includes 5
adverse clinical risk factors (age >60 years, advanced stage dis-
ease, hemoglobin level <12 g/dL, >4 involved nodal areas, and
elevated lactate dehydrogenase).40 Although commonly applied in
practice, the FLIPI rarely influences decisions of initial watch-and-
wait vs treatment, or treatment selection.

Two strategies applying FL pathobiology to prognostication include
DNA sequencing for mutational assessment and RNA sequencing
for gene expression profiling. The m7-FLIPI is a clinicogenomic risk
model incorporating the traditional FLIPI, patient performance
status, and mutation statuses of 7 genes.41 Moreover, gene
expression studies highlight associations between features of
nonmalignant cells in FL and patient outcomes.42,43 However,
these approaches are not integrated into patient care because of
limitations regarding actionability and generalizability.7,44-46 To help
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overcome these dilemmas and expand our understanding of the
relationships between patient outcomes and FL genetic alterations,
we performed a large clinicogenomic study of FL, taking advantage
of diverse presentations, ranging from initial diagnoses to relapsed/
refractory (rel/ref) or transformed disease.

Methods

Study design

We assembled a cohort of patients with FL or t-FL and obtained
tumor biopsies from Washington University School of Medicine
(WUSM; St. Louis, MO), Cleveland Clinic (Cleveland, OH), and
University of Miami (Miami, FL), or through the Alliance for Clinical
Trials in Oncology (Cancer and Leukemia Group B [CALGB], now
part of the Alliance, studies 50402/50701/50803; clinicaltrials.gov
identifiers: NCT00117975 [CALGB 50402], NCT00553501
[CALGB 50701], and NCT01145495 [CALGB 50803]). All
samples were collected within protocols and consenting pro-
cesses approved by local regulatory offices; all patients from Alli-
ance studies provided written informed consent for sample
collection. Deidentified patient characteristics, treatment histories,
and outcomes were compiled. Pathology review of tumor biopsies
confirmed the diagnosis and estimated tumor cell distribution.
Sections from frozen specimens or punches in tumor-containing
areas from formalin-fixed, paraffin-embedded specimens were
used for genomic DNA isolation. Data from 113 samples analyzed
herein were generated previously.23

DNA sequencing and analysis

In addition to the WUSM-LPv1 reagent,23 a new custom capture
reagent was designed: the 12-megabase WUSM-LPv2 reagent
targets 2613 genes, including all genes from WUSM-LPv1 (N =
1716) plus 897 additional genes recurrently mutated in 14 previ-
ous lymphoma studies (supplemental Table 1). Genomic DNA was
isolated using the QIAamp DNA Mini kit after paraffin removal using
xylene or CitroSolv. Library preparation was performed using the
KAPA HTP library prep kit for whole-exome sequencing (WES) on
a SciClone next-generation sequencing instrument. Capture
hybridization was performed using NimbleGen Custom Liquid
Capture Reagent WUSM-LPv1, NimbleGen Custom Liquid Cap-
ture Reagent WUSM-LPv2, or NimbleGen SeqCap EZ Exome
version 2.0 or IDT Exome kits. Sequencing was performed using a
HiSeq4000 (WUSM-LPv2 or WES) or HiSeq2500 (WUSM-LPv1).
Sequencing reads were processed using the Genome Modeling
System.47 Data from 113 previously described samples were
reprocessed in parallel with new samples. Paired-end reads were
aligned to human reference GRCh37 using BWA-MEM and
deduplicated using Picard. Pipeline details, variant calling, and
manual review, plus significantly mutated gene (SMG) identification
using MutSigCV,48 are described in the supplemental Materials.
Selected data are accessible via dbGaP #phs001229 based on
patients’ specific consent.

Clinical and statistical analyses

Data lock date was 10 November 2020. Median follow-up was
74.9 months. FLIPI and m7-FLIPI stratifications were performed as
previously described.40,41 Watch-and-wait was defined as time
from diagnosis to frontline treatment initiation of ≥12 months.
Progression-free survival (PFS) was defined as time from treatment
HIGH-RISK MUTATIONS IN FOLLICULAR LYMPHOMA 5525
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initiation (or watch-and-wait initiation if ≥12 months) to time of
progressive lymphoma or death from any cause; patients were
censored at last follow-up if alive without progression. Overall
survival (OS) was defined as time from diagnosis to death from any
cause; patients were censored at last follow-up if alive. POD24
was defined as progressive lymphoma or death within 24 months
of frontline treatment initiation, irrespective of therapy.16,17,49,50 OS
stratified by POD24 status was landmark-adjusted for this risk-
defining event, measuring survival from time of progressive lym-
phoma for early progressors or from 24 months post-treatment
initiation for the reference group, as previously described.16 The
Kaplan-Meier method was applied to estimate survival probabilities
and generate survival curves; comparisons were made using log-
rank tests. Cox proportional hazard penalized splines were used
to model PFS/OS vs mutation burden. Statistical testing included t
tests to compare numerical data between 2 groups, one-way
analysis of variance to compare numerical data between ≥3
groups, or Fisher exact tests to compare categorical data between
2 groups, with significance being defined as P < .05 without
adjustment for multiplicity, unless stated. Benjamini-Hochberg (BH)
correction for multiple comparisons was applied, as indicated, for
assessments across multiple genes. Analyses used R, including
packages survival and survminer.

Results

Clinical characteristics and outcomes

We performed genomic profiling on FL or t-FL samples from 370
patients (Table 1; supplemental Table 2; genomic sample set)
using custom capture sequencing or WES (supplemental
Figure 1). A unified 2595-gene set (supplemental Table 3) was
applied to all samples for subsequent analyses. Baseline charac-
teristics plus partial treatment histories and outcomes were
available for all 370 patients. Complete treatment histories and
long-term follow-up data were available for 343 patients (clinical
sample set). No baseline characteristics, including age, sex, or
stage, differed significantly between sample sets.

PFS and OS of patients in our cohort aligned with expectations
from real-world and trial populations, supporting the suitability of
our cohort for the study of prognostic genomic biomarkers broadly
generalizable in FL/t-FL. Specifically, OS was markedly different
between patients with FL and t-FL: OS at 60 months was 94.8% vs
69.1%, respectively (median not reached [NR] for either cohort;
hazard ratio [HR], 2.65; 95% confidence interval [CI], 1.53-4.60;
P < .01; Figure 1A). In contrast, OS was similar between patients
with FL undergoing initial watch-and-wait vs treatment (median NR
for either cohort; HR, 0.88; 95% CI, 0.37-2.09; P = .78;
Figure 1B), as expected.10,51 POD24 also conferred similar
adverse risk to that observed in other series.17 Landmark-adjusted
OS at 60 months was 96.0% vs 80.0% for patients without and
with POD24, respectively (median NR for either cohort; HR, 4.27;
95% CI, 1.70-10.71; P < .01; Figure 1C). Also, PFS after frontline
treatment was significantly longer than PFS after treatment in the
relapsed setting (median 61.7 vs 19.7 months, respectively; HR,
1.23; 95% CI, 1.16-1.30; P < .01; Figure 1D),11 an important
validity check, given the treatment diversity across our cohort.
However, the traditional FLIPI demonstrated modest trends toward
shorter frontline PFS and OS across strata (intermediate vs low
PFS: HR, 1.42; 95% CI, 0.88-2.28; P = .15; high vs low PFS: HR,
5526 RUSSLER-GERMAIN et al
1.67; 95% CI, 1.02-2.74; P = .04; Figure 1E-F), suggesting
prognostication may be improved by incorporating biological
insights from genomic profiling.

Mutational landscape of FL and t-FL

We identified the most frequently mutated genes in our FL
(Figure 2) and t-FL (Figure 3) samples. The 2 most commonly
mutated genes in FL were CREBBP (58.8%) and KMT2D
(57.0%), with mutations in EZH2 (18.3%) and EP300 (13.3%)
occurring less frequently. Overall, 40.2%, 8.7%, and 1.2% of
samples possessed 2, 3, or 4 comutations, respectively, among
these key histone modifiers. Notably, 19 FL cases possessed
mutations in CREBBP and EP300 despite prior suggestion of
mutual exclusivity of mutations in these histone acetyl-
transferases.52 Next, we identified SMGs, assessing observed
enrichment of mutations above expected frequencies based on
gene-specific properties (supplemental Table 3). Very large genes
(eg, MUC16, OBSCN, and PCLO) with frequent nonsilent muta-
tions failed to meet SMG criteria, suggesting that these may be
irrelevant passenger alterations acquired over the long process of
lymphomagenesis. In contrast, well-known FL drivers were identi-
fied as SMGs, as were several genes with less clear links to FL
despite known roles in hematopoiesis, including EBF1. Several
genes implicated in diffuse large B-cell lymphoma (DLBCL) were
identified as SMGs despite being infrequently mutated in FL,
including GNAI2. Although 25 genes were mutated in ≥10% of FL
cases, we also identified a long tail of 526 genes mutated in 2% to
10% of FL cases; among these were several SMGs, such as B2M,
with established roles in lymphoma pathogenesis.53 The diversity of
these infrequently mutated yet pathogenically important genes
suggests that FL clinical heterogeneity may not be driven only by
common mutations but could also be influenced by combinations
of infrequent events.

Treatment influences the m7-FLIPI

A prominent prior study integrating FL genomics into prognosti-
cation assessed 74 genes in a 151-patient training cohort.41 The
resulting m7-FLIPI incorporates traditional FLIPI stratification,
patient performance status, and mutation statuses of EZH2,
ARID1A, MEF2B, EP300, FOXO1, CREBBP, and CARD11. We
determined the m7-FLIPI risk group for the 231 patients in our
cohort with newly diagnosed FL, applying a 10% variant allele
fraction cutoff per the original publication. By this method, 15.2%
(35/231) of patients were categorized as high-risk; this was
unchanged using an alternative variant allele fraction cutoff of 1%,
excluding methodological differences meaningfully influencing
these findings. We compared how the m7-FLIPI and traditional
FLIPI identify patients with favorable disease, using initial watch-
and-wait as a proxy for indolent presentations. Of our 38 patients
with newly diagnosed FL undergoing initial watch-and-wait with
sequencing of their diagnostic sample, 33 (86.8%) were stratified
as being at low-/intermediate-risk by the traditional FLIPI, whereas
94.7% (36 of 38) were stratified as low-risk by the m7-FLIPI. This
supports the potential of the m7-FLIPI to identify patients with
adverse clinical features (ie, high-risk FLIPI and frailty) who perform
similarly to patients at low-risk in the context of favorable genomic
alterations, such as mutated EZH2.54

Next, we assessed the m7-FLIPI among 171 patients in our cohort
with newly diagnosed FL receiving frontline therapy within
26 SEPTEMBER 2023 • VOLUME 7, NUMBER 18



Table 1. Patient information

Characteristic Variable

Genomic sample set (N = 370) Clinical sample set (N = 343)

n % of evaluable patients n % of evaluable patients

Sex

Male 202 56.1 192 56

Female 158 43.9 151 44

Age, y

Median 60 60

<40 25 7.2 25 7.6

40–60 154 44.4 147 44.5

60–80 154 44.4 144 43.6

≥80 14 4 14 4.2

Lymphoma subtype

FL 323 87.3 296 86.3

t-FL 47 12.7 47 13.7

FL grade

Grade 1-2 247 82.6 235 83

Grade 3A 52 17.4 48 17

Sequenced sample

Diagnostic 253 76.7 253 76.7

Relapse #1 36 10.9 36 10.9

Relapse #2+ 41 12.4 41 12.4

FLIPI: nodal involvement

0-4 regions 172 71.7 156 69.6

≥5 regions 68 28.3 68 30.4

FLIPI: LDH

Normal 231 83.1 218 82.9

Elevated 47 16.9 45 17.1

FLIPI: age (y)

<60 144 48 139 49.1

≥60 156 52 144 50.9

FLIPI: stage

Early (I-II) 63 21.3 59 21.1

Advanced (III-IV) 233 78.7 221 78.9

FLIPI: hemoglobin

<12 g/dL 32 13.5 29 13.2

≥12 g/dL 205 86.5 191 86.8

FLIPI: risk strata

Low (0-1) 101 33.9 97 34.4

Intermediate (2) 106 35.6 100 35.5

High (3-5) 91 30.5 85 30.1

Treatment history

(any line of treatment) Initial W&W – – 48 14.5

Anti-CD20 mAb – – 282 85.2

CHOP/CVP – – 168 50.8

Bendamustine – – 56 16.9

Lenalidomide – – 31 9.4

Autologous SCT – – 25 7.6

CHOP, cyclophosphamide, hydroxydaunorubicin (doxorubicin), Oncovin (vincristine), and prednisone; CVP, cyclophosphamide, vincristine, and prednisone; LDH, lactate dehydrogenase;
mAb, monoclonal antibody; SCT, stem cell transplantation; W&W, watch-and-wait.
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12 months of diagnosis and frontline PFS data. PFS was not
significantly different between patients at low-risk vs high-risk by
m7-FLIPI stratification (Figure 4A). PFS at 24 months was 77.7%
vs 64.8%, and at 60 months was 61.2% vs 52.2% for patients at
low-risk vs high-risk, respectively (median, 89.1 vs 74.9 months;
HR, 1.41; 95% CI, 0.80-2.48; P = .24). Although the m7-FLIPI was
developed to predict failure-free survival, it was also prognostic for
OS in the initial study. In our cohort, OS was not significantly
different between patients at low-risk vs high-risk by m7-FLIPI
stratification (Figure 4B): OS at 60 months was 95.0% vs 89.1%
for patients at low-risk vs high-risk, respectively (median, NR for
either cohort; HR, 2.21; 95% CI, 0.69-7.10; P = .17).

Patients in our cohort received heterogeneous treatments
compared with relatively homogeneous treatment received by
patients in the original m7-FLIPI study. We hypothesized that the
prognostic value of the m7-FLIPI may specifically apply to unique
patient and treatment combinations. We assessed for an interac-
tion between the m7-FLIPI prognostic value and patients’ frontline
Figure 1. Patient outcomes. Kaplan-Meier curves displaying (A) OS in patients with FL v

(C) landmark-adjusted OS in patients with FL experiencing POD24 or not experiencing PO

than once), (E) PFS in patients with FL by traditional FLIPI stratification, and (F) OS in pa
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treatment, observing a strong relationship between receipt of
cytotoxic chemotherapy (supplemental Table 5) and m7-FLIPI
stratification for PFS (P < .01; Figure 4C), although not OS
(Figure 4D). PFS at 48 months was 79.9% for patients with low-
risk m7-FLIPI status receiving chemotherapy-based frontline treat-
ment, vs 50% to 55% for all 3 other subsets (patients with low-risk
m7-FLIPI status receiving chemotherapy-free treatment and
patients with high-risk m7-FLIPI status irrespective of chemo-
therapy status). This provides further evidence that the prognostic
value of the m7-FLIPI mutational pattern is influenced by patient
treatment.55

Comparing the mutational landscapes of lymphoma

subsets

Our cohort diversity permitted assessment of associations
between the lymphoma genomic landscape and patient charac-
teristics/outcomes. Conceptually integrating the model of multihit
lymphomagenesis and the broad range of FL presentations, we
s t-FL, (B) OS in patients with FL undergoing initial watch-and-wait vs initial treatment,

D24, (D) PFS in patients with FL by line of therapy (patients may be represented more

tients with FL by traditional FLIPI stratification.
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hypothesized that adverse pretreatment features or clinical courses
may reflect FL tumors further along a timeline of mutation acqui-
sition. Thus, the abundance of genomic alterations at diagnosis
could drive FL clinical heterogeneity. Comparing the number of
genes with nonsilent mutations across multiple newly diagnosed FL
subsets, we observed no significant differences between sample
subsets by grade 1-2 vs 3A, early vs advanced stage, traditional
FLIPI stratification, or initial treatment vs watch-and-wait
(supplemental Figure 2). Given the increased frequency of focal
SHM and phased variants in lymphoma,56,57 we also assessed the
total nonsilent variant burden, a feature masked by condensing all
mutations per gene (as used in the previous analysis) into a binary
mutated/nonmutated status. FL subsets by grade, stage, FLIPI
status, or initial treatment vs watch-and-wait did not significantly
differ by total nonsilent variant burden (supplemental Figure 2),
indicating that it is unlikely that features of FL at diagnosis are
meaningfully driven by the extent of mutation accumulation from
disease origination to presentation.

Having observed that higher mutation burden is not a feature of FL
subsets by baseline characteristics, we asked whether compari-
sons along the natural history of FL would reveal key differences.
5530 RUSSLER-GERMAIN et al
Neither the number of nonsilent mutated genes nor total nonsilent
variant burden significantly differed between newly diagnosed FL
samples based on POD24 status (supplemental Figure 2). How-
ever, both the number of nonsilent mutated genes and total non-
silent variant burden were significantly higher (P < .01) in t-FL than
rel/ref FL, and in rel/ref FL than in newly diagnosed FL (Figure 5A-
B). The frequency of genes possessing ≥2 nonsilent mutations
was not significantly different between newly diagnosed FL, rel/ref
FL, and t-FL (Figure 5C), and largely similar trends were observed
when focusing only on well-established SHM targets
(supplemental Figure 2), despite SHM being described as a
mechanism contributing to FL progression and transformation.58

Given the increasing mutation burden from FL diagnosis to rel/ref
disease to transformed disease, we asked whether mutation
burden at FL diagnosis conferred adverse clinical risk. Cox pro-
portional hazard penalized splines modeling revealed no significant
relationship between either frontline PFS or OS with either the
number of nonsilent mutated genes or total nonsilent variant
burden at diagnosis as continuous variables (Figure 5D-E;
supplemental Figure 2). These findings indicate that adverse risk in
FL is not simply the manifestation of FL presenting later along a
26 SEPTEMBER 2023 • VOLUME 7, NUMBER 18
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timeline of mutation acquisition. Instead, specific mutated genes at
diagnosis or acquired later may be drivers of unfavorable biology.

MAP predict poor outcomes in newly diagnosed FL

Exploring this, we evaluated for skewed frequencies of individual
mutated genes in subsets of FL samples. We identified genes
mutated in ≥10% of samples in either subset per comparison, then
tested for statistical over-/underrepresentation plus SMG status,
accounting for expected mutation frequency per gene. Surprisingly
26 SEPTEMBER 2023 • VOLUME 7, NUMBER 18
few mutated genes were over- or underrepresented in key FL
subsets. GNAI2 was the only SMG in which mutations were
significantly more common in patients undergoing initial watch-and-
wait (BH false discovery rate [FDR] q < 0.1; Figure 6A). No SMG
was more or less frequently mutated in patients with or without
POD24 (BH FDR q < 0.1; Figure 6B). In contrast, comparisons
between newly diagnosed FL, rel/ref FL, and t-FL were more
striking. CREBBP was the only gene in which mutations were
significantly more common in FL than in t-FL (BH FDR q < 0.1).
Conversely, mutations in 20 genes were more common in rel/ref FL
HIGH-RISK MUTATIONS IN FOLLICULAR LYMPHOMA 5531
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Figure 5. Mutation burden increases across FL timeline but is not prognostic in newly diagnosed FL. (A) Box-and-whisker and violin plots of number of mutated genes

per sample by newly diagnosed (Dx) FL, rel/ref FL, or t-FL; (B) box-and-whisker and violin plots of number of total nonsilent variants per sample by Dx FL, rel/ref FL, or t-FL; (C) box-
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than in newly diagnosed FL, or t-FL than FL, including 6 SMGs:
STAT6, TP53, IGLL5, B2M, SOCS1, and MYD88 (BH FDR
q < 0.1; Figure 6C-D; supplemental Figure 3).

We examined the prognostic implications of these SMGs individ-
ually and in combination. Despite enrichment in FL over t-FL,
CREBBP mutations were associated with shorter frontline PFS in
patients with newly diagnosed FL (P < .05; Figure 7A), aligning
with prior observations.41 We hypothesized that patients with
newly diagnosed FL may suffer poor outcomes if their pretreatment
tumors harbored mutations in genes more commonly mutated in
rel/ref or transformed disease. Univariate analyses of the 6 SMGs
enriched in rel/ref or transformed disease revealed TP53 and
SOCS1 mutations to be associated with shorter frontline PFS in
newly diagnosed FL (Figure 7B-C; supplemental Figure 4).

Taking an integrated approach, we defined a mutations associated
with progression (MAP) signature as ≥2 mutations in these 7
genes (6 rel/ref/t-FL–enriched SMGs plus CREBBP). This was
present in 16.7% (36/216) of newly diagnosed FL samples with
frontline PFS data. By univariate analysis, patients with newly
diagnosed FL possessing a MAP signature had significantly shorter
frontline PFS; median PFS was 38.8 vs 88.9 months for patients
5532 RUSSLER-GERMAIN et al
with and without a MAP signature, respectively (HR, 1.68; 95% CI,
1.05-2.70; P = .03; Figure 7D). No difference in OS was observed
by MAP signature status, but, similar to the m7-FLIPI, we observed
a significant interaction between MAP signature status and receipt
of cytotoxic chemotherapy (supplemental Figure 4). However, in
contrast to the m7-FLIPI, patients at high-risk by the presence of a
MAP signature had inferior 48-month PFS irrespective of frontline
chemotherapy status.

To assess the generalizability of our MAP signature, we per-
formed multivariate modeling including traditional FLIPI stratifi-
cation and patient performance status, the 2 nongenomic
components of the m7-FLIPI. Adjusting for these features, the
adverse risk associated with our MAP signature remained signif-
icant (HR, 1.90; 95% CI, 1.12-3.20; P = .018; Figure 7E),
revealing the potential for this approach to identify patients at
high-risk irrespective of major baseline clinical variables. None-
theless, high-risk traditional FLIPI stratification was also an inde-
pendent adverse risk factor in the multivariate model, and there
was not a statistically significant interaction between MAP
signature status and low-/intermediate-risk vs high-risk FLIPI
(supplemental Figure 4), highlighting the complementary roles of
clinical and genomic prognostication.
26 SEPTEMBER 2023 • VOLUME 7, NUMBER 18
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We interrogated the robustness of our findings by performing
internal crossvalidation with repeated trials of randomly sampling
50% of our cohort, followed by assessment of the impact of our
MAP signature on 48-month PFS within each random cohort
subset. Across 100 random subsets, the mean 48-month PFS
difference by MAP signature status was −21.9% (95% CI, −23.9
to −19.8; supplemental Figure 4). Given the disproportionately
high frequency of CREBBP mutations in newly diagnosed FL
compared with the frequencies of mutations in the other 6 MAP
26 SEPTEMBER 2023 • VOLUME 7, NUMBER 18
genes, we also assessed the prognostic value of our MAP
approach if CREBBP status was assessed independently.
Although few newly diagnosed FL samples possessed ≥2 muta-
tions in the 6 SMGs enriched in rel/ref FL or t-FL, these patients
had notably poor outcomes independent of CREBBP status, with
and without adjusting for traditional FLIPI and performance status
(supplemental Figure 4). These observations highlight the adverse
risk linked with mutations associated with progression when
identified at FL diagnosis.
HIGH-RISK MUTATIONS IN FOLLICULAR LYMPHOMA 5533
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Discussion

We report a clinicogenomic analysis of FL/t-FL, revealing unique
insights into pathogenesis and prognostication. Comparing newly
diagnosed, rel/ref, and transformed FL, we disentangle the con-
sequences of mutation burden from those of specific mutated
genes. We found no strong links between mutational landscape
and several important baseline characteristics including tumor
grade and disease stage. Similarly, few alterations were associated
with initial watch-and-wait or POD24, demonstrating that these
trajectories are likely common consequences of varied mutational
patterns. In contrast, we identified key pathways as implicated in
rel/ref or transformed FL, and we assessed the impact of newly
diagnosed FL possessing a mutational landscape similar to rel/ref
or transformed disease. Although absolute mutational burden was
not prognostic for FL frontline treatment, the specific mutated
genes at diagnosis proved highly consequential. Based on our
observations, a MAP signature was defined as ≥2 mutations in the
7-gene set of CREBBP, STAT6, TP53, IGLL5, B2M, SOCS1, and
MYD88. Other than CREBBP, these mutations are less common
at diagnosis individually, and demonstrate variable univariate
prognostic impact. However, the presence of a MAP signature at
FL diagnosis was a significant adverse risk factor independent of
traditional FLIPI stratification and patient performance status.

Pathobiologically connecting MAP alterations with FL outcomes
will be an important area of study, because it remains largely
unknown whether cooccurring mutations are redundant, additive,
or synergistic. Specifically, CREBBP and B2M mutations both
promote immune evasion,53,59 whereas STAT6 is regulated by
CREBBP60,61 and SOCS1.62 CREBBP and STAT6 mutations
frequently cooccur in t(14;18)− FL,63,64 and recent data suggest
that specific CREBBP mutations create an evolutionary constraint
on transformation.65 Considering our observed enrichment of
STAT6 mutations exclusively in rel/ref FL but not transformed FL,
this constraint may be reinforced by CREBBP and STAT6 comu-
tation. Furthermore, TP53 mutations nearly universally confer
adverse risk across oncology, including FL.66 We also observed
hot spot and non–hot spot MYD88 mutations; interestingly, murine
models of Bcl2 and Myd88 codysregulation develop DLBCL with
plasmablast differentiation,67 similar to the unique activated B-cell
cell-of-origin bias seen in MYD88-mutated t-FL.68 The role of
IGLL5 in FL is the least well defined of our MAP genes. IGLL5
mutations were reported in chronic lymphocytic leukemia69 and
DLBCL70-72 but were not assessed in other prominent FL
cohorts,41,73 and there are limited prior studies of the surrogate
light chain encoded by IGLL5.

Our study has limitations. Because of technical and practical
considerations, we used multiple sequencing assays including
custom panels with inherent biases due to target curation.
Although mutations not covered by our assays may influence FL
outcomes, our approach, to our knowledge, is among the broadest
reported.22,35,41,73-75 We did not focus on copy number, structural,
or noncoding alterations,65,76 which future work will explore.
Furthermore, our patient cohort received nonrandomized
Figure 7. Mutations associated with progression confer adverse risk in newly dia
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treatments. Our observations may be influenced by complex
interactions between FL genotype, patient characteristics, and
therapy choice. However, our cohort diversity is also a strength,
given the need for FL risk assessment to be broadly generalizable
and not narrowly applicable to specific therapies. Future validation
cohorts should account for evolution in FL treatments, including
T-cell engagers and cellular immunotherapy.

Relatedly, we highlight nuances of the m7-FLIPI. Patients in the
training cohort received rituximab (R) plus cyclophosphamide,
doxorubicin, vincristine, and prednisone with interferon-α mainte-
nance (GLSG2000 trial);77 and patients in the validation cohort
received R with cyclophosphamide, vincristine, and prednisolone
with R maintenance. Not only is R plus bendamustine increasingly
favored today but because GLSG2000 included randomization to
interferon-α maintenance vs high-dose chemotherapy/autologous
stem cell transplantation, this biases the m7-FLIPI toward signals
most applicable to young patients with high disease burden as
enrolled to the trial. One previous study assessed the m7-FLIPI in
patients receiving frontline R without chemotherapy,45 and the m7-
FLIPI was not prognostic for time to treatment failure. Interestingly,
the accuracies of our MAP signature and the m7-FLIPI to predict
POD24 in our cohort were 50% and 51%, respectively, which
contrasts with the 76% accuracy reported in the original m7-FLIPI
study. Although the POD24-PI was later developed using the same
data set for optimized POD24 sensitivity,78 a recent independent
analysis of 252 patients with FL found that no established
approach (eg, FLIPI, PRIMA-PI, m7-FLIPI, or POD24-PI) signifi-
cantly predicted POD24.79 Notably, although, to our knowledge,
we report one of the largest tests of the interaction between m7-
FLIPI and treatment. Patients with low-risk m7-FLIPI status
receiving chemotherapy experienced prolonged PFS. In contrast,
patients with high-risk m7-FLIPI status receiving chemotherapy had
suboptimal outcomes remarkably similar to patients receiving
chemotherapy-free approaches irrespective of m7-FLIPI stratifica-
tion. Whether patients with high-risk m7-FLIPI status receiving
chemotherapy would have achieved similar outcomes with
chemotherapy-free treatment is unknown. Nonetheless, low-risk
m7-FLIPI (and/or the absence of a MAP signature) predicting
long first remissions with standard R chemotherapy are important
findings that may influence clinical trial design.

Overall, this study advances our understanding of FL/t-FL geno-
mics, and it investigates the prognostic value of individual and
combinations of mutations independent of clinical variables. The
strongest adverse risk factor in the m7-FLIPI is a high traditional
FLIPI score, which outweighs the model’s highest risk mutation
combination. To evaluate FL risk without model tuning, we
assessed the impact of mutations enriched in progressive or
transformed FL when present at FL diagnosis. This MAP signature
is an adverse risk factor independent of traditional FLIPI and per-
formance status. Future studies are warranted to validate the poor
prognosis associated with a MAP signature in newly diagnosed FL,
and trials of novel agents may ideally be targeted to this high-risk
subset of patients.
gnosed FL. Kaplan-Meier curves displaying univariate frontline PFS in patients with FL

ultivariate model for frontline PFS incorporating MAP signature status, traditional FLIPI

values are marked with asterisks.
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