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Key Points

• MSCs decrease the
incidence and severity
of experimental
cGVHD.

• MSCs can home to the
thymus via the CCL25-
CCR9 axis and repair
the damaged thymus
caused by aGVHD.
5359/2079881/blooda_adv-
Chronic graft-versus-host disease (cGVHD) is a major cause of morbidity and mortality after

allogeneic hematopoietic stem cell transplantation. Mature donor T cells within the graft

contribute to severe damage of thymic epithelial cells (TECs), which are known as key

mediators in the continuum of acute GVHD (aGVHD) and cGVHD pathology. Mesenchymal

stromal cells (MSCs) are reportedly effective in the prevention and treatment of cGVHD. In

our previous pilot clinical trial in patients with refractory aGVHD, the incidence and

severity of cGVHD were decreased, along with an increase in levels of blood signal joint

T-cell receptor excision DNA circles after MSCs treatment, which indicated an improvement

in thymus function of patients with GVHD, but the mechanisms leading to these effects

remain unknown. Here, we show in a murine GVHD model that MSCs promoted the

quantity and maturity of TECs as well as elevated the proportion of Aire-positive medullary

TECs, improving both CD4+CD8+ double-positive thymocytes and thymic regulatory T cells,

balancing the CD4:CD8 ratio in the blood. In addition, CCL25-CCR9 signaling axis was found

to play an important role in guiding MSC homing to the thymus. These studies reveal

mechanisms through which MSCs ameliorate cGVHD by boosting thymic regeneration and

offer innovative strategies for improving thymus function in patients with GVHD.
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Introduction

Chronic graft-versus-host disease (cGVHD) remains a major cause of morbidity and mortality following
allogeneic hematopoietic stem cell transplantation (allo-HSCT).1-3 cGVHD can occur without previous
acute GVHD (aGVHD); however, most cGVHDs occur after the evolvement from aGVHD.4 The
pathogenesis and high incidence of cGVHD in patients with aGVHD remains poorly understood.
Emerging evidence from murine studies suggests that the pathogenesis may be related to thymus
damage caused by aGVHD.5-11 The thymus is 1 of the important central immune organs and plays a
critical role in the development of T cells. T-cell reconstitution after allo-HSCT is mainly accomplished
by thymus-independent and thymus-dependent mechanisms. The thymus-independent pathway occurs
early after transplantation and depends on the peripheral expansion of mature donor T cells; although
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Figure 1. The degree of thymus damage was associated with severity of cGVHD. TCD-BM alone (~2.5 × 106 cells, non-GVHD) or TCD-BM (2.5 × 106 cells) plus 1 × 106

cells splenocytes (severe-GVHD) or 0.25 × 106 splenocytes (mild-GVHD) from C57BL/6 mice were transplanted into BALB/c mice. Mice were monitored for aGVHD clinical

symptoms, cutaneous cGVHD, and survival. Thymus structure were assessed 7, 20, and 40 days after HCT, with H&E staining. (A-C) aGVHD symptom scores, cutaneous cGVHD

score, and percentage of survival. Each group contained between 12 and 16 recipients combined from 3 replicate experiments. (D) Picture taken on day 40 after HCT (1, non-

GVHD; 2, Mild-GVHD; and 3, severe-GVHD). (E) The appearance of the thymus (n = 3) and thymus cellularity of each group results are shown as mean ± standard error (SE) (n =

6). (F) Representative photomicrographs of H&E-stained thymus tissue section and thymus pathology score, results are shown as mean ± SE (n = 6); scale bar, 50 μm. (G) Forty

days after transplantation, thymuses were harvested and identified via immunofluorescent staining of CK8 (purple, highly expressed in cortex and lowly expressed in medulla) and

CK5 (red, expressed in medulla), and medulla area was measured and shown as mean ± SE (n = 6); scale bar, 50 μm.
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Figure 2.
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such an allo-immune process can cure the underlying disease, it
may also cause GVHD. The thymus-dependent pathway rebuilds
naïve T cells with self-tolerance and perfect function from donor
lymphoid stem cells,7 which depends on thymus stromal cells that
provide an appropriate thymic microenvironment, particularly
thymic epithelial cells (TECs) that are responsible for positive and
negative selection.12,13 Mature donor T cells within the graft pref-
erentially damage recipient medullary TECs (mTECs) and impair
negative selection, resulting in production of autoreactive T cells
that perpetuate damage to the thymus and augment the develop-
ment of cGVHD.8

Mesenchymal stromal cells (MSCs) are multipotent progenitor cells
that reside in many adult tissues.14 Based on their multipotent and
immunomodulatory properties, MSCs have been successfully used
in tissue repair and treatment of autoimmune diseases, including
GVHD.15-17 Some studies have demonstrated that MSCs are
effective in the prevention and treatment of cGVHD.18-20 However,
the therapeutic mechanisms by which MSCs ameliorate cGVHD
remains poorly understood. In our pilot clinical trial of patients with
refractory aGVHD receiving MSCs treatment, we found that the
incidence and severity of cGVHD decreased, along with increased
signal joint T-cell receptor excision DNA circles in the blood,
compared with those in control patients.21 These results suggest
that MSCs might exert immunomodulatory effects through the
thymus. A few studies performed by our group and other groups
have implicated MSCs could home to the damaged thymus and
improve thymus function in murine models,22-24 but the specific
mechanism of homing and repairing the thymus awaits clarification.

For MSCs to home to the target organ, the right combination and
interaction of chemokine and the corresponding chemokine
receptor are required.25,26 Chemokine C-C motif ligand 25
(CCL25), also known as thymus-expressed chemokine, is first
found in the thymus. Thymic dendritic cells in the medullary region,
TECs, and intestinal epithelial cells constitute the predominant
source of CCL25.27 Chemokine receptor 9 (CCR9), expressed on
T-lineage precursors as well as on MSCs is the only specific
receptor for CCL25.28,29 By analyzing the migration properties of
MSCs, researchers discovered that CCL25 holds great promise in
specifically targeted MSCs attraction, being the only chemokine
showing highly specific MSCs migration toward CCL25 gradients
in various migration assays.30-32 This motivated researchers to
apply CCL25 in specific (ie, injured) tissues to recruit MSCs and,
thus, foster in situ regeneration.31,33 Theoretically, as an organ that
highly expresses CCL25, the thymus has the natural advantage of
attracting MSCs. Therefore, we proposed that MSCs home to the
damaged thymus of mice with GVHD via the CCL25-CCR9 axis
and that MSCs reduce the incidence and severity of cGVHD by
boosting thymic regeneration. To further verify this hypothesis, we
Figure 2. MSCs ameliorate cGVHD. Mice with severe GVHD were treated with MSCs (M

peak). Non-GVHD mice served as control. Mice were monitored for aGVHD clinical symptoms

and structure were assessed on day 20 and day 40 after HCT with H&E and immunofluores

survival curve. Each group contained between 12 and 16 recipients combined from 3 replicate

liver. Histopathology scores are shown as mean ± SE (n = 4-6); scale bar, 50 μm. Arrows

hyperplasia in the epidermis, expansion of the dermis, and loss of subcutaneous fat; perivas

necrosis. (E) Representative photographs of the thymus, and thymus cellularity in each group,

stained thymus tissue section (scale bar, 50 μm) and thymus pathology score, results are s

immunofluorescent staining for CK8 and CK5, results are shown as mean ± SE (n = 4-6);
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investigated the effects of MSCs in the thymus of patients with
GVHD using a murine GVHD model that undergoes both aGVHD
and cGVHD stages.

Methods

Mice

C57BL/6 (H-2b) and BALB/c (H-2d) mice were obtained from the
Animal Experiment Center of Southern Medical University, and the
enhanced green fluorescent protein (EGFP) transgenic C57BL/6J
mice were purchased from the Model Animal Research Center of
Nanjing University and The Jackson Laboratory. Male, 8 to 12-
week-old C57BL/6 and BALB/c mice were used for GVHD
modeling; 2 to 3-week-old EGFP-transgenic C57BL/6J mice were
used for the isolation of murine MSCs. Mice were maintained in a
pathogen-free room at the Animal Institute of Southern Medical
University. All animal protocols were approved by the Southern
Medical University institutional animal care and use committee.

Isolation, culture, and identification of murine MSCs

MSCs were isolated from the compact bone of wild-type or EGFP-
transgenic C57BL/6J mice based on their different purposes.34

Briefly, the femurs and tibias were dissected and the bone
marrow (BM) cells thoroughly depleted by flushing with α–minimum
essential medium (MEM; Gibco, Australia). Subsequently, the
bones were chopped into chips and digested with collagenase II
(1 mg/mL, Gibco) for 1 to 2 hours. After digestion, bone chips were
washed 3 times with 5 mL of α-MEM and seeded into a culture
flask in the presence of 6 mL α-MEM supplemented with 10% fetal
bovine serum (Gibco). On the third culture day, nonadherent cells
were removed and replaced with fresh medium. Adherent cells
were further cultured, with a change of medium every 3 days.
When the monolayers reached 80% to 90% confluence, the cells
were detached and passaged. Cells were harvested after 8 pas-
sages and identified based on antigen expression using flow
cytometry as well as based on adipogenic and osteogenic differ-
entiation capacity (supplemental Figure 5), before being adminis-
tered to GVHD mice.

Induction and assessment of murine GVHD

BALB/c mice were irradiated at a dose of 850 cGy, 8 hours before
hematopoietic cell transplantation (HCT). Recipients were injected
with 2.5 × 106 T-cell–depleted donor BM cells (TCD-BM) alone or
2.5 × 106 TCD-BM together with 0.25 × 106 or 1 × 106 splenocytes
from C57BL/6 donors. T-cell depletion was achieved using biotin-
conjugated anti-CD3, anti-CD4, and anti-CD8 and streptavidin–
conjugated magnetic beads, followed by passaging through an auto-
MACS cell sorter (Miltenyi Biotec). The purity of depletion was >99%.
SC-GVHD) or normal saline (non–MSC-GVHD) on day 7 after HCT (aGVHD symptoms

, cutaneous cGVHD, survival, and histopathology of cGVHD target tissues. Thymus size

cent staining. (A-C) aGVHD symptom scores, cutaneous cGVHD symptom score, and

experiments. (D) Representative photomicrographs of the salivary gland, skin, lung, and

indicate the following: infiltration and loss of ductal structure in the salivary gland;

cular and peribronchiolar infiltration; infiltration in the liver, involved tracts, and liver cell

results are shown as mean ± SE (n = 6). (F) Representative photomicrographs of H&E-

hown as mean ± SE (n = 6). (G) Medulla area in the thymus was measured by

scale bar, 50 μm. **P ＜ .01; ***P ＜ .001. ns, not significant.
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The assessment of GVHD included clinical symptoms and
pathology of target organs, which were performed per previous
publications, with some modifications.10,35,36 The aGVHD clinical
symptoms scoring system included weight loss, posture, activity,
and diarrhea. A scale from 0 to 2 was used for each category of the
symptom (supplemental Table 1), and composite symptom scores
were determined by taking the sum of the individual scores for each
mouse. Clinical cGVHD was evaluated and scored based on the
development of alopecia and ulcers on hair-bearing skin. Ulcers or
scaling in non–hair-bearing skin (ears, tails, and paws) were also
examined for scoring (supplemental Table 2).

The jejunum and colon were evaluated as aGVHD target organs,
whereas the salivary glands, skin, lung, and liver were assessed as
cGVHD target organs. Hematoxylin and eosin (H&E) staining on
formalin-fixed, paraffin-embedded tissue slides were used for
evaluation. Slides were examined at magnification ×200, and tissue
damage was assessed by an experienced pathologist blinded to
the identity of the groups. Jejunum GVHD was scored based on
intestinal damage, including villous blunting, crypt regeneration,
crypt epithelial cell apoptosis, crypt loss, luminal sloughing of cellular
debris, lamina propria inflammatory cell infiltrate, and mucosal ulcer-
ation, and the maximum score was 14. Colon GVHD histopathology
was evaluated for increased mononuclear cell infiltration and
morphological aberrations (eg, hyperplasia and crypt loss), with a
maximum score of 10. Salivary GVHD was evaluated based on
mononuclear cell infiltration and structural disruption, with a maximum
score of 8. Skin GVHD was scored based on the damage in the
epidermis and dermis, judged based on the hyperplasia of epidermis,
enlargement, fibrosis of dermis, and loss of subcutaneous fat, with a
maximum score of 9. Lung tissue was evaluated on a scoring system
based on perivascular and peribronchiolar infiltration and inflamma-
tion; the maximum score was 9. The liver was scored based on the
number of involved tracts and the severity of lymphocytic infiltration
and liver cell necrosis, with a maximum score of 9.

Thymus structure assessment

Thymus structure was assessed using H&E and immunofluores-
cent staining. The pathology of the thymus was evaluated based on
a decrease in cortical cellularity, loss of cortex/medulla demarca-
tion, and the reduction of Hassall corpuscles by H&E staining, with
a maximum score of 9. For immunofluorescent staining, the thymus
was embedded in optimum cutting temperature compound and 6-
μm thick cryosections were used. The cryosections were stained
with rat anti-mouse cytokeratin 8 (CK8, Developmental Studies
Hybridoma Bank) for both cortical (CK8 high expressed) and
medullary (CK8 low expressed) thymus epithelial cells, and rabbit
anti-mouse cytokeratin 5 (CK5, Abcam) for medullary epithelial
cells, followed by Alexa Fluor 555–labeled donkey anti–rabbit
immunoglobulin G and Alexa Fluor 647–labeled donkey anti–rat
immunoglobulin G (Jackson Immuno Research). The medulla area
in the thymus was measured based on CK5 expression along with
lowly expressed CK8 using a Zeiss fluorescence microscope.
Figure 3. MSCs induce thymic regeneration by repairing TECs. The proportion, num

expression on mTECs were assessed in MSC-GVHD, non–MSC-GVHD, and non-GVHD recip

of gated TECs shown as UEA-I (mTEC marker) vs Ly-51 (cortical TEC [cTEC] marker). (B) Th

HCT, data shown as the mean ± SE (n = 4-6). (C) Gated mTECs and cTECs shown as MHC I

(n = 4-6). (D) Gated mTECs shown as Aire vs SSC-A. The percentage data of Aire-positive
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Flow cytometry analysis

The antibodies and reagents used for flow cytometry analysis are
listed: anti-mouse antibodies, CD11b (clone M1/70), CD29
(HMb1-1), CD31 (390), CD34 (RAM34), CD44 (IM7), CD45 (30-
F11), CD105 (MJ7/18), CD106 (429), CD140a (APA5), Sca-1
(Ly-6A/E, D7), CD3(17A2), CD4 (GK1.5), CD8a (53-6.7), CD25
(PC61.5), FoxP3 (FJK-16s), T-cell receptor Vβ 5.1/5.2 (MR9-4),
CD326 (EpCAM, G8.8), Ly51(BP-1, 6C3), Aire (5H12), CCR9
(CD199, CW-1.2), and allophycocyanin-labeled streptavidin (17-
4317-82), which were obtained from eBioscience. Biotinylated
Ulex europaeus agglutinin-1 (UEA-1, #B1065) was purchased
from Vector Laboratories. The Foxp3 permeabilization/fixation kit
(eBioscience) was used for cell fixation/permeabilization during
intracellular staining. Aqua fluorescent reactive dye for viability
analysis (L34957) was obtained from Invitrogen. All staining was
performed per the manufacturers’ instructions. Labeled cells were
analyzed on a BD FACS Canto II (BD Biosciences, Franklin Lakes,
NJ) and data analyzed using the FlowJo software. The gating
strategies are shown in the supplemental Figure 6.

Overexpression and knockdown of CCR9 in murine

MSCs

Lentivirus to overexpress CCR9 and lentivirus that encoded CCR9-
specific short hairpin RNA were designed and constructed by Gen-
eChem (Shanghai, China). For lentiviral transduction, CCR9 wild-type
MSCs (MSCsCCR9WT) isolated from EGFP-transgenic mice at pas-
sage 4 were dissociated into single-cell suspensions using 0.125%
TrypLE Select (Invitrogen) and then replated with the 2 lentiviral
particles. The cells were selected in 2 μg/mL puromycin (Invivogen,
Germany) starting at 24 hours after infection. Stably transfected
MSCs (referred to as MSCsCCR9+ and MSCsCCR9−) were cultured
continuously after selection. Overexpression and knockdown of
CCR9 was confirmed via quantitative reverse transcription polymer-
ase chain reaction and flow cytometry.

MSCs home to the thymus

To explore the role of CCR9 in MSC homing to the thymus, EGFP-
expressing MSCsCCR9WT, MSCsCCR9+, and MSCsCCR9−, respec-
tively, were administrated toGVHDmice IV onday 7 afterHCT. Thymus
glandswerecollected fromMSCsCCR9WTGVHD,MSCsCCR9+GVHD,
andMSCsCCR9−GVHDmiceondays1, 7, and14afterMSCs infusion.
Cryosections were prepared and counterstained with 1.0 mg/mL
4′,6-diamidino-2-phenylindole in phosphate-buffered saline for
20 minutes at room temperature in the dark. The distribution of EGFP+

cells was analyzed with Zeiss fluorescence microscope.

Statistical analysis

Data analysis was performed and displayed using GraphPad Prism,
version 6.0. Data are displayed as mean ± standard error. Clinical
GVHD scoring, tissue damage scoring, and survival in different
groups were compared using the multiple t test or log-rank test.
Comparison of 2 means was with an unpaired 2-tailed Student t
ber, and major histocompatibility complex class II (MHC II) levels of TECs, and Aire

ients on day 20 and day 40 after HCT via flow cytometry. (A) Representative flow patterns

e proportion and number of mTECs and number of cTECs on day 20 and days 40 after

I vs side scatter area (SSC-A). The percentage data of MHC II+ are shown as mean ± SE

mTECs are shown as mean ± SE (n = 4-6). **P ＜ .01; ***P ＜ .001; ****P ＜ .0001.
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test; comparison of multiple means was with one-way analysis of
variance.

Results

Thymus damage induced by aGVHD positively

correlates with cGVHD

To confirm the role of the thymus in cGVHD pathogenesis, BALB/c
mice were injected with TCD-BM alone or TCD-BM plus 2 different
dosages (1 × 106 or 0.25 × 106) of splenocytes from C57BL/6
donors. The results showed that the mice that received 1 × 106

splenocytes developed moderate aGVHD ~5 to 9 days after HCT,
followed by severe cGVHD ~35 to 45 days after HCT (severe-
GVHD). Moreover, ~40% of the mice survived >60 days. Recipi-
ents who received 0.25 × 106 splenocytes developed mild aGVHD
and mild cGVHD (mild-GVHD), and ~80% of them survived
>60 days. Recipients with TCD-BM alone showed no manifesta-
tions of GVHD (non-GVHD) (Figure 1A-D; supplemental Figure 1).

Thymus structure and cellularity in severe-GVHD, mild-GVHD, and
non-GVHD mice were assessed 7, 20, and 40 days after HCT. It
was observed that the thymus of severe-GVHD, mild-GVHD, and
non-GVHD mice all displayed shrinking on day 7 after HCT, and the
thymus cellularity among the 3 groups showed no significant dif-
ference. Compared with the non-HCT group, thymus cellularity
gradually recovered in the non-GVHDmice and partially recovered in
the mild-GVHD mice by day 20 and 40 after HCT; however, no
recovery was observed in severe-GVHD mice (Figure 1E). H&E
staining of the tissue revealed distinct corticomedullary demarcation
in non-GVHD mice on day 7 after HCT, whereas the cortico-
medullary demarcation was unclear or lost in the thymus of both the
mild-GVHD and severe-GVHD mice. The thymus structure was
substantially or partially recovered in both the non-GVHD and mild-
GVHD mice 20 and 40 days after HCT but got worse in severe-
GVHD mice (Figure 1F). Immunofluorescent staining showed well-
formed CK8+ cortex and CK5+ medulla in the non-GVHD mice 7,
20, and 40 days after HCT. Furthermore, the CK5+ medulla area
was slightly reduced in mild-GVHD mice at similar time points
compared with that in non-GVHD mice, whereas it was significantly
reduced in the severe-GVHD mice, which was almost
undetectable 40 days after HCT (supplemental Figure 2; Figure 1G).

These results suggest that thymus damage caused by pre-
conditioning (radiotherapy) alone is partially reversible, and the
severity of cGVHD correlates with the degree of thymus damage.

MSCs administrated at aGVHD stage ameliorate

cGVHD

To investigate whether MSCs administrated at the aGVHD phase
could ameliorate cGVHD, severe-GVHD mice were IV treated with
MSCs from EGFP-transgenic C57BL/6J mice at a dose of 1 × 106
Figure 4. MSCs promote intrathymic T-lymphocyte development. The number and

CD3+CD4+:CD3+CD8+ T cells, Treg proportion, yield of CD4+ T cells and Tregs in the bl

are shown as mean ± SE (n = 4-6). (A) Representative flow patterns of CD4+CD8+ DP thy

(n = 4-6). (C) Representative flow patterns of gated CD4+ single-positive thymocytes show

as the mean ± SE (n = 4-6). (E) Representative flow patterns of gated CD3+ T cells in the

of CD4+ T cells, data shown as the mean ± SE (n = 4-6). (G) Representative flow patter

Percentage and yield of CD25+FoxP3+ in CD4+ T cells, data shown as the mean ± SE (n
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cells per mouse (MSC-GVHD) or normal saline (non–MSC-GVHD)
7 days after HCT (aGVHD symptoms peak); the non-GVHD mice
served as controls. More rapid improvement of aGVHD symptoms
was observed ~3 days after MSCs infusion compared with that in
non–MSC-GVHD mice (Figure 2A). The cutaneous cGVHD
score in the MSC-GVHD mice was lower than that in the
non–MSC-GVHD mice 40 days after HCT (Figure 2B). Moreover,
the MSC-GVHD mice gained enhanced survival, with ~75% sur-
viving for >60 days after HCT compared with ~40% of the
non–MSC-GVHD mice (Figure 2C). Histopathological analysis of
cGVHD target organs showed less injuries in the MSC-GVHD
mice than in the non–MSC-GVHD mice 60 days after HCT
(Figure 2D).

Thymus structure and cellularity were assessed on days 20 and
40 after HCT. The results showed that MSC-GVHD mice dis-
played less thymic atrophy and enhanced thymus cellularity than
the non–MSC-GVHD mice 20 and 40 days after HCT
(Figure 2E). The thymus of MSC-GVHD mice showed less tissue
damage with increased cell density in the cortex, recovered
corticomedullary demarcation (Figure 2F), and ameliorated
medulla area compared with non–MSC-GVHD mice at both time
points (Figure 2G).

These results indicated that MSCs administrated at the aGVHD
stage effectively decreased the incidence and severity of cGVHD,
which was related to repaired thymus damage.

MSCs repair TECs and promote T-lymphocyte

development

The proportion and number of TECs subpopulations were analyzed
with flow cytometry on days 7 (supplemental Figure 3), 20, and 40
after HCT. Moreover, TECs expressing major histocompatibility
complex class II (MHC II), a marker of TECs maturity, and auto-
immune regulator (Aire) of mTECs (Aire-positive mTECs participate
in the establishment of self-tolerance and regulatory T-cell [Treg]
induction) were also evaluated.

Results revealed that the number of both cortical TECs and mTECs
and the proportion of mTECs in TECs were significantly increased
in MSC-GVHD mice compared with that in non–MSC-GVHD mice
on day 40 (Figure 3A-B). Moreover, MSC-GVHD mice gained
markedly enhanced MHC II expression on TECs when compared
with non–MSC-GVHD mice (Figure 3C). Aire-positive mTECs
were also detected to be increased in MSC-GVHD mice when
compared with non–MSC-GVHD mice (Figure 3D).

These results suggest that MSCs promote the quantity and
maturity of TECs. More importantly, MSCs may enhance the
establishment of self-tolerance in the thymus by elevating Aire
expression on mTECs.
proportion of CD4+CD8+ DP thymocytes and thymic Tregs, the ratio of

ood were assessed on day 20 and day 40 after HCT with flow cytometry. The results

mocytes. (B) Percentage and yield of DP thymocytes, data shown as the mean ± SE

n as CD25 vs FoxP3. (D) Percentage and yield of CD4+CD25+FoxP3+, data shown

blood shown as CD4 vs CD8. (F) The ratio of CD4+ T cells to CD8+ T cells and yield

ns of gated CD4+ T cells in the peripheral blood shown as CD25 vs FoxP3. (H)

= 4-6). *P ＜ .05; **P ＜ .01; ***P ＜ .001; ****P ＜ .0001.
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To explore the effect of MSCs in intrathymic T-lymphocyte devel-
opment, the yield of CD4+CD8+ double-positive (DP) thymocytes
and thymic Tregs were analyzed in mice 7 (supplemental Figure 3),
20, and 40 days after HCT. Furthermore, the ratio of CD3+CD4+ T
cells to CD3+CD8+ T cells, Treg proportion, yields of CD4+ T cells
and Tregs in the blood were also analyzed.

Results revealed that the number and proportion of DP thy-
mocytes in the MSC-GVHD mice were significantly higher
than in non–MSC-GVHD mice 20 and 40 days (Figure 4A-B)
after HCT. The number and proportion of thymic Tregs were
also markedly increased in MSC-GVHD mice 20 and 40 days
after HCT compared with that in non–MSC-GVHD mice
(Figure 4C-D).

The number of CD4+ T cells and the ratio of CD3+CD4+ T cells
to CD3+CD8+ T cells in the blood was significantly higher in
MSC-GVHD mice than in non–MSC-GVHD mice 40 days after
HCT (Figure 4E-F). The number and proportion of Tregs in
the blood of the MSC-GVHD mice was also significantly higher
than in non–MSC-GVHD mice 20 and 40 days after HCT
(Figure 4G-H).

To further verify whether MSCs can promote de novo generation
of T cells, mice were injected with TCD-BM from EGFP-transgenic
C57BL/6J and splenocytes from wild-type C57BL/6 donors
(Figure 5A). Using flow cytometry, GFP expression can be
detected in the majority of thymus-dependent de novo T cells,
whereas it can not be detected in T cells expanded through
thymus-independent pathway. Results showed that on day 20
after HCT, the proportion of GFP+ T cells in the peripheral blood,
spleen, and lymph nodes of the non-GVHD group accounted for
>50% of CD3+ T cells, whereas the peripheral T cells in the
GVHD groups were mainly derived from donor T cells in graft.
Compared with the non-MSC group, the proportion of GFP+ T
cells in the MSC-GVHD group was significantly higher
(Figure 5B). Similarly, on day 40 after HCT, GFP+ T cells in the
non-GVHD group were predominant in the peripheral T cells pool
and further increased in GVHD groups. The proportion of GFP+ T
cells in the MSC-GVHD mice was still higher than that in non–
MSC-GVHD mice (Figure 5B), which suggested that MSCs pro-
moted de novo generation of T cells.

Mouse mammary tumor virus (MMTV)-encoded superantigens
can influence the murine T-cell repertoire, and the T-cell
response to MMTV superantigens is restricted by T-cell receptor
Vβ chains, such as CD4+CD8+ thymocytes expressing the Vβ5
chains that undergo programmed cell death in BALB/c mice
carrying exogenous MMTV-8.37-39 Therefore, detecting the
proportion of Vβ5+ T cells in thymus-dependent de novo T cells
via flow cytometry can reflect the negative selection of recipient
thymus. Results showed that the proportion of Vβ5+ in GFP+ T
Figure 5. MSCs promote de novo generation and negative selection of T cells. A

(non-GVHD) or these plus 1 × 106 splenocytes fromWT C57BL/6J donor were transplante

(non–MSC-GVHD) on day 7 after HCT. (A) Schematic diagram depicting generation of the E

(FACS) plots (left) and quantification (right) of GFP+ T cells in CD3+ T cells of the blood, s

mice for each group). (C) Representative FACS plots (left) and quantification (right) of GFP+

20 and day 40 after transplantation (n = 6 mice for each group). *P ＜ .05; **P ＜ .01; **
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cells in the peripheral blood, spleen, and lymph nodes of the
GVHD mice was significantly higher compared with that in the
non-GVHD mice on day 20 after HCT, whereas the intervention
of MSCs significantly reduced the proportion of Vβ5+ in GFP+ T
cells compared with that in the non-MSC group. Similarly, the
same results were observed on day 40 after HCT (Figure 5C),
which suggest that MSCs improved the negative selection of
GVHD mice.

These results suggest that MSCs promote the de novo generation
of T cells and self-tolerance establishment, which may be the
underlying mechanism of MSCs reduction of incidence and
severity of cGVHD in aGVHD mice.

CCR9+ MSCs are the major effector cells

ameliorating cGVHD

To explore the mechanism of MSCs homing to the thymus, che-
mokine expression of the thymus in severe-GVHD mice 7 days after
HCT and chemokine receptors of MSCs were analyzed. CCL25
was found to be the most expressed chemokine in the thymus of
GVHD mice (Figure 6A), whereas CCR9, the only specific receptor
for CCL25, was detected in MSCs (Figure 6B-C). To further
determine whether the CCL25-CCR9 axis guides MSCs to home
to the thymus, CCR9-overexpressed MSCs (MSCsCCR9+) and
CCR9-knockdown MSCs (MSCsCCR9−) were prepared
(Figure 6B-C), and their thymic homing ability compared with that
of MSCsCCR9WT on days 1, 7, and 14 after MSCs infusion. The
results showed that MSCsCCR9WT was distributed mainly in the
cortex of the thymus, with a small amount in the medulla, 7 days
after MSCs infusion. MSCsCCR9− were almost undetectable in the
medulla and appeared sporadically in the cortex. A significantly
large number of MSCsCCR9+ were present in the thymus, espe-
cially in the medulla when compared with MSCsCCR9WT and
MSCsCCR9− (Figure 6D). The distribution of MSCs in the thymus
on days 1 (supplemental Figure 4A) and 14 (supplemental
Figure 4B) after infusion were similar to that on day 7.

To determine whether CCR9+ MSCs were the major effector cells
to ameliorate cGVHD, we assessed the cutaneous cGVHD score
and survival rate 60 days after HCT in the 3 groups. The results
showed that MSCCCR9+ GVHD mice displayed lower cutaneous
cGVHD scores than MSCCCR9WT GVHD and MSCCCR9− GVHD
mice (Figure 6E-F). Moreover, ~90% of MSCCCR9+ GVHD mice
survived for >60 days after HCT, compared with ~75% of
MSCCCR9WT GVHD mice and ~ 50% of MSCCCR9− GVHD mice
(Figure 6G).

These data indicate that MSCs depend on the CCL25-CCR9
axis for homing to the thymus and that CCR9+ MSCs are the
major effector cells repairing the thymus and ameliorating
cGVHD.
pproximately 2.5×106 TCD-BM from EGFP-transgenic C57BL/6J donor alone

d into BALB/c mice. Recipients treated with WT MSCs (MSC-GVHD) or normal saline

GFP-BM GVHD murine model. (B) Representative fluorescence-activated cell sorting

pleen, and lymph node of recipients on day 20 and day 40 after transplantation (n = 6

Vβ5+ T cells in CD3+ T cells of the blood, spleen, and lymph node of recipients on day

*P ＜ .001.
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Discussion

Thymus damage caused by aGVHD results in limited thymus-
dependent T-cell reconstitution, negative selection failure, and
Treg loss, which contributes to cGVHD.5,7-9,11 Therefore,
strategies that prevent or treat cGVHD may be efficacious if
they alleviate thymus damage caused by aGVHD.11 Previous
preclinical studies exploiting castration, thymic transplantation,
adoptive cell therapies, hormones/growth factors, and cyto-
kines have demonstrated enhanced thymic function and
immune reconstitution after allo-HSCT.40-42 However, current
agents are failing, in terms of safety and efficacy, in clinical
settings.40,43 This study confirmed that aGVHD resulted in
thymus damage and that the incidence and severity of cGVHD
were related to the degree of thymus damage in a murine
GVHD model. The disruption of thymic architecture recovered,
and the incidence and severity of subsequent cGVHD
decreased after MSCs treatment. These findings suggest that
MSCs may be effective candidates for thymus repair and
GVHD treatment.

T-cell development depends on the thymus microenviron-
ment.44,45 The thymic microenvironment consists of a complex
mixture of epithelial and mesenchymal cells, interdigitating
dendritic cells, and macrophages.44 Cortical TECs in the cortex
trigger positive selection to generate CD4+CD8+ DP T cells,
whereas mTECs together with dendritic cells enriched at the
cortical-medullary junction and the medulla are responsible for
negative selection to generate self-tolerance.46 Aire in mTECs
drives organ-specific antigen expression and mediates the
negative selection of autoreactive T cells as well as the gen-
eration of Tregs.47,48 MSCs, as a subset of stromal stem cells
in the thymus microenvironment, play an important role in
thymic development and regeneration.49,50 To date, the
mechanism by which MSCs protect or repair TECs has not
been clearly explained. Some studies found that MSCs play a
crucial role in TECs proliferation by secreting KGF, IGF1, IGF2,
FGF7, BMP4, and retinoic acid.51-57 Liu et al demonstrated
that MSCs could facilitate the functional maturation of residual
thymic epithelial precursors in the Foxn1−/− thymus.50 In this
study, MSCs were found to repair the thymus as shown by
promoting the quantity and maturity of TECs and elevating the
proportion of Aire+ mTECs in GVHD mice. Based on relevant
literature, we speculated that MSCs might promote the prolif-
eration and maturity of TECs, or protect TECs from further
destruction through direct cell-to-cell contact and indirectly
secreted cytokines, thus improving the positive and negative
Figure 6. CCR9
+
MSCs are the major effector cells homing to the thymus and am

harvested 7 days after HCT for RNA isolation and RNA-sequencing microarray analysis. Heatm

shown as (mean + 1) centered log2 expression. CCR9-WT MSCs (MSCsCCR9WT) from EGF

and lentivirus encoded CCR9-specific short hairpin RNA (MSCsCCR9−). Quantitative revers

used to analyze the messenger RNA (mRNA) or protein expression of CCR9 in MSCsCCR9

MSCsCCR9− were intravenously infused into mice with severe-GVHD on day 7 after HCT. (D

immunofluorescence staining on day 7 after infusion. Total number and distribution of EGF

cryosections in triplicate mice, dotted lines trace the border between the cortex and medulla.

expressed in the cortex and lowly expressed in the medulla); CK5, (red, expressed in the med

2, MSCCCR9+ GVHD; 3, MSCCCR9WT GVHD; 4, MSCCCR9- GVHD; and 5, non–MSC GVH

MSCCCR9+ vs MSCCCR9−, P < .001; MSCCCR9WT vs MSCCCR9−, ns). (G) Survival curve (
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selection of thymocytes, as well as the recovery of immune
balance in the peripheral.

The therapeutic efficacy of MSCs largely relies upon their ability to
home to target tissues.25,26 Chemokines and their receptors are
major mediators for MSCs homing to target tissues.29,32 In this
study, CCL25, also known as thymus-expressed chemokine, was
detected to be highly expressed in the thymus of GVHD mice. By
comparing the thymus homing and GVHD amelioration properties
of MSCsCCR9WT, MSCsCCR9+, and MSCsCCR9−, we found that
CCR9+ MSCs are the major effector cells that repair the thymus
and ameliorate GVHD. Furthermore, MSCsCCR9− were also
detected in the thymus, indicating that there might be another axis
guiding MSCs homing to the thymus.

In summary, this study demonstrates that MSCs can decrease the
severity of cGVHD in a murine GVHD model. The underlying
mechanism is that MSCs repair the damaged thymus caused by
aGVHD. Unlike previous studies on the immunomodulation of
MSCs that focused on their impact on the peripheral immune pool,
our study provides a new viewpoint of MSCs ameliorating GVHD
and other autoimmune diseases.
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P-transgenic mice were transduced with lentivirus to overexpress CCR9 (MSCsCCR9+)

e transcription polymerase chain reaction (qRT-PCR) (B) and flow cytometry (C) were
WT, MSCsCCR9+, and MSCsCCR9−. EGFP-expressing MSCsCCR9WT, MSCsCCR9+, and

) The presence and distribution of EGFP-expressing MSCs were examined via in situ

P+ cells in the cortex and medulla were quantified per microscopic scale of thymus

Data are presented as mean ± SE. Signals: EGFP, (green, MSCs); CK8 (purple, highly

ulla). Scale bars, 50 μm. (E) Mice from each group on day 60 after HCT (1, non-GVHD;

D). (F) Cutaneous cGVHD symptom score (MSCCCR9WT vs MSCCCR9+, P < .01;

MSCCCR9+ vs MSCCCR9−, P < .05). *P < .05; **P < .01; ***P < .001.
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