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Hematopoietic stem cell (HSC) gene therapy is a promising treatment option for a variety of genetic
diseases affecting the hematopoietic system, for example, sickle cell disease, HIV/AIDS, and certain
malignancies. However, current approaches target CD34+ hematopoietic stem and progenitor cells
(HSPCs), a heterogeneous population that contains <1% true HSCs with long-term multilineage
engraftment potential, which limits the efficiency and feasibility of such approaches. In order to increase
the targeting efficiency of true HSCs, reduce the costs for expensive clinical grade reagents (eg, viral
vectors and nucleases), and enhance the overall feasibility of HSC gene therapy, current efforts in the
field focus on either purifying or directly targeting HSCs ex vivo1,2 as well as in vivo.3,4 Especially for
strategies based on integrating viruses it remains unknown whether direct targeting of HSCs leads to
changes in the integration site (IS) profile that may adversely affect the safety of these strategies in
comparison with that of the currently used gold standard CD34-mediated approaches.

We have previously shown that the CD90+ subset of CD34+ HSPCs is highly enriched for HSCs and
exclusively responsible for rapid recovery as well as robust long-term multilineage engraftment in a pre-
clinical nonhuman primate stem cell transplantation and gene therapy model (Figure 1A).1,2 To confirm
long-term stability of gene modification as well as safety of our HSC-targeted gene therapy approach, we
closely followed up 3 animals that underwent transplantation with gene-modified CD34+CD45RA–CD90+

HSPCs for up to 5 years, analyzing their peripheral blood (PB) and bone marrow (BM) (Figure 1B). In the
PB, CD34+CD45RA–CD90+ cells remained the exclusive source of all mature blood cells throughout the
entire follow-up (Figure 1C; supplemental Figure 1A). Gene marking in peripheral white blood cells
(WBCs) continuously increased within the first 9 to 12 months, reaching a plateau thereafter. Simulta-
neously, the WBC, lymphocyte, red blood cell, and platelet counts stabilized within the normal range and
remained stable (supplemental Figure 1B). Nearly identical gene marking efficiency was found in T cells, B
cells, natural killer cells, granulocytes, and monocytes starting at 9 months after transplantation, indicating
successful gene modification and engraftment of long-term persisting multipotent HSCs without any
evidence of lineage-bias or skewing at any time (Figure 1C; supplemental Figure 1C).

The BM stem cell compartment in all 3 animals fully replenished within 3 to 6 months, showing
frequencies of phenotypic CD34 subsets similar to the pretransplantation baseline (Figure 1D;
supplemental Figure 2A). Most importantly, gene marking of CD34+ HSPCs as well as
CD34+CD45RA–CD90+ HSCs in the BM mirrored observed frequencies in the PB (Figure 1C;
supplemental Figure 2B). Interestingly, high gene marking was observed significantly earlier in the BM
stem cell compartment compared with that in PB WBCs, reaching stable levels of gene modification by
week 6. Gene-modified CD34+ and CD34+CD45RA–CD90+ demonstrated almost identical erythro-
myeloid colony-forming unit (CFU) potential in comparison with their unmarked counterparts, indi-
cating no impact of fluorescence assisted cell sorting (FACS)-purification and ex vivo gene modification
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Figure 2. Comparison of IS profiles in CD34 and CD90 animals. (A) Chromosomal mapping of IS distribution in CD34 (purple outside ring) and CD90 (orange inside ring)

animals. Bar height indicates the cumulative number of unique IS across all animals within a 1e6 base pair bin. (B) Correlation of the number of ISs within each bin across

both groups. (C) comparison of shared and unique IS near oncogenes in between CD34 and CD90 animals (top). Correlation of the mean normalized abundance of shared IS

near oncogenes between CD34 and CD90 animals (bottom). (D) Euler and Venn diagrams of in-gene IS overlap among animals within each group (left and middle) as well as

across CD34 and CD90 animals (right). (E) Percentage of in-gene ISs that were animal specific (red), partly shared (orange), and shared in between all animals of 1 group (blue)

for CD34 (left) and CD90 animals (right).
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on their differentiation potential (Figure 1E; supplemental
Figure 2C,D). CFU potential in bulk CD34+ cells was initially low
and recovered to normal rates over time, whereas sustained colony
formation was seen for CD34+CD45RA–CD90+ cells.
Figure 1. Stable and polyclonal gene modification in the PB and BM of Z13264. (A

CD34 subsets (CD90+CD45RA–, CD90-CD45RA–, and CD90–CD45RA+) FACS-purified

irradiation (TBI). (B) Animals were followed up for ~50 months collecting PB and BM. Bulk

CD3+; B cells: CD20+; natural killer cells: CD16+; monocytes: CD14+; and granulocytes:

euthanized because of multiple re-occurring cytomegalovirus (CMV) infections. (C) Expressi

via flow cytometry. (D) Longitudinal flow-cytometric quantification of HSPC subsets in the

(mCh+) (E) CD34+ as well as (F) CD34+CD90+ HSPCs. Unmodified and gene-modified s

14 days, and myeloid, erythroid, and as well as erythro-myeloid colonies quantified. (G-H) Po

CFU-G, granulocyte colony; CFU-GM, granulocyte-monocyte/macrophage colony; CFU-M

fluorescent protein; mCer, monomeric Cerulean; mCh, monomeric Cherry.

5134 RESEARCH LETTER
To evaluate the clonal diversity and confirm polyclonal engraftment,
fluorochrome-expressing lineages from the PB, as well as CD34+

cells,. were FACS-purified DNA was extracted and integration site
analysis (ISA) was performed (Figure 1B). ISA demonstrated highly
) CD34+ HSPCs from 3 pigtail macaques were enriched with immunomagnetic beads,

, transduced, and cotransplanted after myeloablative conditioning with total body

WBCs were collected as indicated with red symbols, whereas blood lineages (T cells:

CD11b+CD14-) were FACS-purified, as indicated with black symbols. Z15086 was

on of fluorochromes in PB WBCs, PB lineages, and BM HSPCs longitudinally tracked

BM. (E-F) Colony-forming cell potential of unmodified (mCh– ) and gene-modified

ubsets were sort-purified into colony-forming cell assays, assays incubated for 10 to

lyclonal engraftment in the (G) PB and (H) BM. BFU-E, Burst forming unit–erythrocyte;

, monocyte/macrophage colony; CFU-MIX, erythro-myeloid colony; GFP, Green
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polyclonal engraftment in PB WBCs (Figure 1G; supplemental
Figure 3A), BM WBCs (Figure 1H; supplemental Figure 3B) as
well as BM CD34+ cells (Figure 1I; supplemental Figure 3C). No
evidence for the outgrowth of dominant clones was observed in
any of the 3 animals or tissues longitudinally, confirming no
increased risk of adverse viral integration in comparison with that of
the current gold standard CD34-mediated strategies.

To further confirm the safety of our CD90-targeted gene therapy
approach, we compared the ISA data of these 3 animals trans-
planted with CD90+ cells (CD90 animals) with that of 5 historical
controls receiving CD34+ cells (CD34 animals) (supplemental
Table 1). Chromosomal mapping of ISs demonstrated nearly
identical patterns (R2=0.607) of transgene localization within
genes in both groups (Figure 2A,B). Very high similarity of IS pro-
files between animals transplanted with genetically modified CD34-
and those with CD90-enriched cells confirmed that historically
described lentiviral IS patterns were not altered due to the direct
gene-modification of CD34+CD45RA–CD90+ HSCs. Percentages
of 4.8% and 4.2% in-gene ISs in 371 and 476 total genes were
found to be associated with previously described oncogenes in
CD34 and CD90 animals, respectively. The majority of ISs near
oncogenes was shared, no correlation was observed in the abun-
dance, and no clonal outgrowth was associated with these ISs in
both groups (Figure 2C), showing no increased risk of insertional
mutagenesis with our CD90-targeted gene therapy approach.

Lastly, we determined the impact of direct HSC modification and
enhanced sampling on the reproducibility of IS patterns by
comparing the data of individual animals within and across both
groups (supplemental Figures 4 and 5). Correlations among CD34
animals were generally weak or very weak because of the vast
12 SEPTEMBER 2023 • VOLUME 7, NUMBER 17
majority of genes with IS not being shared. A weak to moderate
correlation was reached when CD34 animals were compared with
CD90 animals. A strong to very strong correlation was only observed
for the comparison among CD90 animals, indicating that increased
sampling leads to highly reproducible IS profiles (supplemental
Figure 4). Overlap of in-gene IS across animals was further visual-
ized via Euler/Venn diagrams (Figure 2D,E). Almost 50% of in-gene
ISs were uniquely found in individual CD34 animals, with as little as
2.3% found in all 5, whereas 46% of all in-gene ISs were shared
across CD90 animals, with 28.7% found only in individual animals.
Despite lower sampling, the vast majority (86.6%) of ISs found in
CD34 animals was detected in the CD90 cohort.

Here, we showed that direct lentiviral gene-modification of CD90+

HSCs resulted in stable long-term multilineage engraftment and
high level of gene modification in the blood and BM without any
increased risk of oncogenic events or the outgrowth of dominant
clones. Furthermore, increased sampling, paired with direct modifi-
cation of CD90+ cells enhanced the reproducibility of IS patterns in
comparison with those of the current gold standard CD34-mediated
protocols. Increased reproducibility and reliability of clonal tracking
will be especially important, turning HSC gene therapy into a routine
application, and will enhance the ability to monitor for rare adverse
events in patients during recovery and in the long-term.

Our results are highly encouraging for all ongoing efforts in the field
of ex vivo HSC gene therapy to enrich and directly target a more
refined population in order to reduce the amount of expensive
gene-modifying agents, increase the on-target efficiency, and
enhance the overall feasibility of this promising approach. Beyond
the application shown here and gene modification of HSCs ex vivo,
our findings should be of high importance to HSC-targeted in vivo
RESEARCH LETTER 5135
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applications using either untargeted or targeted vectors. Our
studies in the preclinical nonhuman primate model demonstrate
that HSC-targeted gene therapy approaches are efficient and safe
paving the way for the next generation of HSC gene therapy ex vivo
as well as in vivo.
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