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Key Points

• Coagulation protease
aPC reduces FOXP3
promoter methylation,
inducing FOXP3
expression, and
leading to Treg-like
phenotype.

• The aPC-mediated
induction of FOXP3 is
linked to altered
mitochondrial
metabolism and
reduced
α-ketoglutarate and
glutamine availability.
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A direct regulation of adaptive immunity by the coagulation protease activated protein C

(aPC) has recently been established. Preincubation of T cells with aPC for 1 hour before

transplantation increases FOXP3+ regulatory T cells (Tregs) and reduces acute graft-versus-

host disease (aGVHD) in mice, but the underlying mechanism remains unknown. Because

cellular metabolism modulates epigenetic gene regulation and plasticity in T cells, we

hypothesized that aPC promotes FOXP3+ expression by altering T-cell metabolism. To this

end, T-cell differentiation was assessed in vitro using mixed lymphocyte reaction or

plate-bound α-CD3/CD28 stimulation, and ex vivo using T cells isolated from mice with

aGVHD without and with aPC preincubation, or analyses of mice with high plasma aPC

levels. In stimulated CD4+CD25− cells, aPC induces FOXP3 expression while reducing

expression of T helper type 1 cell markers. Increased FOXP3 expression is associated with

altered epigenetic markers (reduced 5-methylcytosine and H3K27me3) and reduced Foxp3

promoter methylation and activity. These changes are linked to metabolic quiescence,

decreased glucose and glutamine uptake, decreased mitochondrial metabolism (reduced

tricarboxylic acid metabolites and mitochondrial membrane potential), and decreased

intracellular glutamine and α-ketoglutarate levels. In mice with high aPC plasma levels,

T-cell subpopulations in the thymus are not altered, reflecting normal T-cell development,

whereas FOXP3 expression in splenic T cells is reduced. Glutamine and α-ketoglutarate
substitution reverse aPC-mediated FOXP3+ induction and abolish aPC-mediated suppression

of allogeneic T-cell stimulation. These findings show that aPC modulates cellular

metabolism in T cells, reducing glutamine and α-ketoglutarate levels, which results in

altered epigenetic markers, Foxp3 promoter demethylation and induction of FOXP3

expression, thus favoring a Treg-like phenotype.
9 June 2024
Introduction

The coagulation system is closely linked with inflammation in a reciprocal fashion. Yet, insight into the
regulation of adaptive immunity by coagulation proteases has been provided only recently. In the context of
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graft-versus-host diseases (GVHD), a frequent complication after
allogenic stem cell transplantation, the coagulation protease activated
protein C (aPC) modulates the T-cell response in the acute GVHD
(aGVHD) and chronicGVHD setting.1,2 In aGVHD, aPC increases the
frequency of FOXP3+ regulatory T cells (Tregs) through PAR2/PAR3-
dependent signaling in T cells.1 Intriguingly, a 1-hour preincubation
with aPC before transplantation or allogenic stimulation of T cells was
sufficient to increase FOXP3+ Treg frequency and reduce allogenic
T-cell activation, dampening T-cell activation in vitro and the severity of,
and inflammation in, aGVHD in vivo.

The protease aPC is efficiently generated by the complex of
thrombomodulin and thrombin, but this process is impaired in the
setting of endothelial dysfunction as observed in inflammation and
GVHD.3,4 Thus, loss of aPC generation because of endothelial
dysfunction may provide an important microenvironmental cue,
altering T-cell development and function.

The microenvironment, in part through cytokines and metabolites,
is a strong modulator of T-cell development and function.5-8 The
development of FOXP3+ Tregs preferentially uses oxidative lipid
metabolism, whereas effectors cells like T helper type 1 (Th1) cells
require high glycolytic activity.6,9-12 Thus, Treg development and
function is less dependent on glucose and glycolysis than effector
T-cell (Teff) development. Indeed, limited glucose availability
increases Treg function, whereas high glucose uptake character-
izes poorly suppressive Tregs.13,14 T cells are metabolically flexible
and can adapt to alternative substrates.6 Thus, not only glucose but
also glutamine act as metabolic substrates, increasing tricarboxylic
acid (TCA) cycle metabolites such as α-ketoglutarate (α-KG).6

Increased levels of α-KG promote the proliferation of Teffs,
whereas limiting α-KG promotes Treg development.15,16 α-KG and
other metabolites have multiple functions, including modification of
epigenetic regulators and, thus, linking intracellular metabolism to
T-cell development and function.17

Although the effect of microenvironmental metabolic cues on T-cell
development is established, it remains unknown to which extent
coagulation proteases modulate these processes. Epigenetic gene
regulation by coagulation proteases has been demonstrated for
aPC in the setting of chronic vascular complications such as dia-
betic kidney disease and atherosclerosis.18-20 However, the
mechanism through which aPC modulates epigenetic gene
expression and whether this relates to altered cellular metabolism
remains unknown.

Given (i) that 1-hour preincubation of T cells with aPC is sufficient
to induce Tregs and to dampen GVHD,1 (ii) that aPC epigenetically
regulates expression of some genes in the setting of chronic
vascular diseases,18-20 (iii) the established role of T-cell metabolism
in regulating T-cell differentiation,6,9,10,12 and (iv) the role of cellular
metabolism in the epigenetic control of T-cell development21,22 we
hypothesized that FOXP3 induction upon incubation of T cells with
aPC depends on altered cellular metabolism and associated
epigenetically controlled T-cell differentiation.
Methods

Mice

Wild-type (WT) C57BL/6 mice were purchased from Janvier S.A.S.,
St Berthevin Cedex, France. Transgenic APChigh mice (8 to 10-weeks
5056 GUPTA et al
old) expressing a human PC variant (D167F/D172K), which can be
efficiently activated in the absence of thrombomodulin, resulting in
elevated aPC plasma concentrations, have been described previ-
ously.1,23 Depletion of regulatory T cell (DEREG) mice have been
described previously24 and were backcrossed onto the C57BL/6
background for at least 10 generations. All animal experiments were
conducted in accordance with standards and procedures approved
by the local animal care and use committee (Landesverwaltungsamt
Halle and Landesverwaltungsamt Leipzig, Germany).

Human

All blood samples were collected from healthy donors in accor-
dance with the Declaration of Helsinki and Good Clinical Practice
Guidelines and with approval by the ethics committee (Ethics
commission of Medical Faculty, Leipzig University, Germany) and
the relevant regulatory authority (University Hospital Leipzig, Ger-
many). All participants provided written informed consent.

Cell isolation and mixed lymphocyte culture

To conduct the mixed lymphocyte reaction (MLR), human
CD4+CD25− cells were cultured with non-T cells containing
antigen-presenting cells. To isolate human CD4+CD25− cells,
peripheral blood mononuclear cells were isolated from peripheral
blood using a Ficoll-Paque (GE Healthcare) gradient, after which
non-T cells were depleted by magnetic beads using a MojoSort
human pan T-cell isolation kit following the manufacturer’s protocol.
Pan T cells were subjected to a human CD4+CD25+CD127dim/−

Regulatory T-Cell Isolation Kit II (Miltenyi Biotec), providing human
CD4+CD25+ Tregs and untouched CD4+CD25− cells. This
CD4+CD25− population is devoid of Tregs. Fluorescence-
activated cell sorting was used to determine cell purity, which
ranged from 95% to 98%. Non-T cells were irradiated (30 Gy) and
used as antigen-presenting cells.

Human CD4+CD25− cells were cultured in AIM V serum-free
medium (Life Technologies) for 2 hours (37◦C, 5% CO2) before
performing the MLR. To trigger allogenic T-cell reactions in the
MLR, CD4+CD25− cells and non-T cells from 2 genetically distinct
individuals were cocultured. In some experiments, 1 × 105

CD4+CD25− cells were preincubated with aPC (20 nM) or an
equal volume of phosphate-buffered saline (PBS) (control) in AIM V
serum-free medium (1 hour, 37◦C), washed with PBS to remove
any aPC, and then cocultured with 3 × 105 irradiated allogenic
non-T cells (ratio, 1:3) for 96 hours.

Plate-bound stimulation was carried out by coating plates with
αCD3 and αCD28 for 2 hours at 37◦C followed by washing of the
plate with PBS. T cells were seeded onto plates without or with
aPC preincubation (1 hour, 20 nM). In some experiments, cells
were supplemented with cell-permeable α-KG (dimethyl α-KG;
3.5 mM; Sigma-Aldrich) and glutamine (4 mM; Sigma-Aldrich)
during stimulation.

Statistics

Results are expressed as mean ± standard error of the mean from
(n) independent experiments. Each in vitro experiment was con-
ducted in triplicates and dots in bar graphs reflect the average from
such triplicates. For in vivo experiments, each dot represents data
from 1 mouse. Statistical analyses were performed with the Stu-
dent t test or analysis of variance, as appropriate and indicated in
12 SEPTEMBER 2023 • VOLUME 7, NUMBER 17
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the figure legends. Post hoc comparisons of analysis of variance
were corrected with the method of Bonferroni, as indicated in
figure legends. Prism 8 software (GraphPad Software, San Diego,
CA) was used for statistical analysis. Values of P < .05 were
considered statistically significant.

Additional information is available in the supplemental Material.

Results

aPC induces FOXP3 Tregs via epigenetic modulation

Preincubation of magnetically sorted CD4+CD25− T cells with
aPC followed by stimulation with plate-bound αCD3 and αCD28
increased CD4+FOXP3+ cell abundance after 96 hours
(Figure 1A: supplemental Figure 1A), which is congruent with
observations in allogeneically stimulated pan T cells.1 Other sur-
face Treg markers like CTLA4, PD-1, and LAG3 were also
increased upon aPC preincubation, corroborating the induction of
a Treg-like phenotype upon aPC preincubation (supplemental
Figure 1B-D). The increased frequency of CD4+FOXP3+ cells
was associated with a reduction in CD4+T-bet+ andCD4+IFNγ+

cell abundance (Figure 1B-C). As magnetic separation of the
CD4+CD25− cell population can contain different memory T-cell
populations, which might contribute to Treg induction,25 we
determined the effect of aPC on purified naïve T cells under Treg
polarization conditions (supplemental Figure 2A). Preincubation of
naïve T cells with aPC likewise induced FOXP3 expression, which
corresponds with increased CD4+CD25+FOXP3+ frequency,
reflecting the observations made in CD4+CD25− cells (Figure 1D;
supplemental Figure 2B-D). Collectively, the induction of FOXP3
expression in pan T cells,1 in CD4+CD25− cells (Figure 1A), and in
naïve T cells (Figure 1D) support a model in which pretreatment of
T cells with aPC induces expression of FOXP3 and promotes Treg-
like cells.

Given that a 1-hour preincubation with aPC is sufficient for
induction of FOXP3 and Treg marker expression and that the Treg
transition from Th1/Th17/T-conventional cells is linked to epige-
netic reprogramming,15,26,27 we assessed whether aPC modifies
the epigenetic markers in αCD3/αCD28-stimulated CD4+CD25−

cells. Indeed, global 5-methylcytosine levels were decreased in
aPC-preincubated CD4+CD25− cells compared with those in
control CD4+CD25− cells 48 hours after αCD3/αCD28 stimulation
(Figure 1E). In parallel, global H3K27me3 levels, a repressive
marker associated with transcriptionally silenced genes, were
decreased in aPC-preincubated CD4+CD25− cells (Figure 1F).
Furthermore, compared with control CD4+CD25− cells, methyl-
ation of different regions of the FOXP3 promoter was markedly
reduced by preincubation with aPC of CD4+CD25− cells stimu-
lated with αCD3 and αCD28 (Figure 1G-H). These results suggest
that the aPC-mediated changes in the epigenetic landscape of T
cells lead to induction of FOXP3 expression.

Preincubation with aPC alters mitochondrial

metabolism in CD4
+
CD25

−
T cells

Epigenetic modifications in T cells are closely linked to cellular and
mitochondrial metabolism.21,22 Therefore, we observed mitochon-
drial metabolism in stimulated T cells with or without 1-hour aPC
preincubation. We used 2 independent experimental approaches:
CD4+CD25− cells stimulated (i) with plate-bound αCD3/αCD28,
12 SEPTEMBER 2023 • VOLUME 7, NUMBER 17
or (ii) in a MLR (Figure 2A-B). The oxygen consumption rate (OCR),
reflecting mitochondrial metabolism, was analyzed using the Sea-
horse analyzer. Parameters of mitochondrial respiration (OCR,
comprising basal and maximal respiration, spare respiratory
capacity, and adenosine triphosphate production) were reduced in
aPC-preincubated T cells compared with control T cells in both
experimental settings (Figure 2A-B; supplemental Figure 3A-C).
The reduced OCR in aPC-preincubated CD4+CD25− cells was
paralleled by a reduced extracellular acidification rate (ECAR),
representing glycolysis, suggesting that aPC induces metabolic
quiescence in T cells (Figure 2C; supplemental Figure 3D).

Next, we determined whether reduced mitochondrial oxygen con-
sumption is associated with a reduction in mitochondrial activity in
aPC-preincubated T cells. Pretreatment of CD4+CD25− cells with
aPC reduced the mitochondrial membrane potential (ΔΨm) relative
to that of control cells (Figure 2D). Taken together, these data
suggest that aPC induces metabolic quiescence in association
with reduced mitochondrial metabolism and mitochondrial mem-
brane potential in T cells, which may promote FOXP3 Treg
induction.

aPC reduces intracellular α-KG levels in T cells

Because metabolites of the TCA cycle modulate T-cell fate,15,16,21

we studied TCA metabolites. Pretreatment of CD4+CD25− cells
with aPC followed by αCD3/αCD28 stimulation for 24 hours
reduced pyruvate, citrate, and α-KG levels in T cells (Figure 3A).
The reduction of pyruvate, the end metabolite of glycolysis, is
congruent with the reduced ECAR and metabolic quiescence in
aPC-preincubated CD4+CD25− cells. Congruent with the reduced
ECAR and pyruvate levels in preincubated CD4+CD25− cells, aPC
reduced GLUT1 expression and glucose uptake in CD4+CD25−

cells (Figure 3B-C).

α-KG, a TCA metabolite known to regulate enzymatic epigenetic
modifiers, can also be derived from glutaminolysis in an anaplerotic
reaction (Figure 3D).16,28-30 The reduction of α-KG levels suggest
that its deficiency is not compensated by glutaminolysis. Hence, we
ascertained whether aPC affects intracellular glutamine and
glutamate levels. In comparison with control CD4+CD25− cells,
both glutamine and glutamate were reduced in aPC-preincubated
CD4+CD25− cells (Figure 3E). This reduction was associated with
reduced expression of SLC1A5 and SLC38A1, 2 key amino acid
transporters (Figure 3F).31-34 Thus, aPC reduces intracellular α-KG
availability by simultaneously suppressing glucose uptake and the
anaplerotic glutamine-dependent reaction.

α-KG or glutamine reverses the effect of aPC on

mitochondrial metabolism in CD4+CD25− cells

Because the reduced availability of glutamine and α-KG increases
FOXP3 expression, leading to induction of FOXP3 Treg fre-
quency,16,22 we examined the functional relevance of reduced
α-KG and glutamine for aPC’s effect on T cells by substituting cell-
permeable α-KG (dimethyl α-KG) or glutamine. After 24 hours of
stimulation with αCD3 and αCD28, the OCR was measured in
both control and aPC-preincubated CD4+CD25− cells (Figure 4A).
The reduction of mitochondrial metabolism as reflected by the
OCR and OCR-derived parameters were abolished upon exoge-
nous supplementation of cell-permeable α-KG or glutamine in
aPC-preincubated CD4+CD25− cells (Figure 4). Thus, substituting
aPC METABOLICALLY REPROGRAMS T CELLS 5057
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Figure 1. aPC reduces FOXP3 promoter methylation. (A-C) Frequencies of CD4+FOXP3+ (A), CD4+T-bet+ (B), and CD4+IFNγ+ (C) cells without (T) or with aPC (T + aPC)

preincubation (1 hour, 20 nM) as determined by flow cytometry 96 hours after activation of human CD4+CD25− cells with αCD3 and αCD28 (A-B, n = 5; C, n = 3). Bar graphs
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α-KG or glutamine restores mitochondrial metabolism in aPC-
preincubated αCD3/αCD28-stimulated CD4+CD25− cells.

The aPC-induced Treg-like phenotype is reversed

upon substitution of α-KG or glutamine

Using human CD4+CD25− cells, we investigated the effect of
α-KG and glutamine in an MLR without and with aPC for 96 hours.
FOXP3 induction by aPC was prevented upon addition of either
α-KG or glutamine (Figure 5A; supplemental Figure 4A). In parallel,
the aPC-induced suppression of T-bet and interferon γ, markers
reflecting Th1/Teff cells, was reversed upon the supplementation
of α-KG and glutamine (Figure 5B-C; supplemental Figure 4B-C).
Thus, supplementation of exogenous α-KG or glutamine reverses
the aPC-dependent induction of a Treg-like phenotype.

aPC suppresses T-cell proliferation by inducing Tregs.1 To deter-
mine whether the supplementation of α-KG and glutamine abol-
ishes this effect of aPC, we studied the proliferation of
CD4+CD25− cells in a MLR without or with aPC preincubation.
Indeed, the suppression of proliferation in aPC-preincubated T
cells was prevented by α-KG and glutamine supplementation.
(Figure 5D-E). Taken together, these results support a model in
which aPC promotes FOXP3+ Tregs by reducing α-KG and
glutamine availability.

aPC modifies the epigenetic and metabolic profile in

murine CD4+CD25− cells, promoting a Treg-like

phenotype

Because genetic manipulation of primary human T cells and in vivo
interventions in humans are challenging, we evaluated whether
aPC induces a Treg-like phenotype in mouse T cells via metabolic
reprogramming. In mouse CD4+CD25− cells, preincubation with
aPC (1 hour, 20 nM) reduced global 5-methylcytosine levels after
48 hours of αCD3 and αCD28 stimulation (Figure 6A), reflecting
the observations in human CD4+CD25−. Moreover, preincubation
with aPC decreased Foxp3 promoter methylation in mouse
CD4+CD25− compared with control cells (Figure 6B), mirroring
the observations in human T cells. Pyrosequencing analyses of 5
CpG sites within the murine Foxp3 promoter revealed reduced
methylation of all tested 5 CpG sites in aPC-preincubated αCD3/
αCD28-stimulated CD4+CD25− cells (Figure 6C). To determine
the functional relevance of reduced promoter methylation, we
transfected a murine T-cell line (EL4 cells) with a Foxp3 promoter-
driven luciferase reporter construct. Preincubation with aPC before
αCD3/αCD28 stimulation increased the promoter activity
compared with that in control cells (Figure 6C). Thus, pre-
incubation of CD4+CD25− cells with aPC reduces Foxp3-pro-
moter methylation, which translates into increased Foxp3-promoter
activity.
Figure 1 (continued) with dot plots summarizing data. (D) Frequency of CD4+FOXP3+

polarization condition as assessed by flow cytometry 5 days after activation of human näive T

(E-F) Global methylation changes, as reflected by 5-methylcytosine (5mC) (E, n = 4, human

aPC) preincubation followed by stimulation with αCD3 and αCD28 for 48 hours. Represent

from flow cytometry as the mean fluorescence intensity (MFI). (G-H) Schematic representat

used for methylation-specific polymerase chain reaction (PCR) (MSP) (G). FOXP3 promote

dot plot summarizing results of MSP in the FOXP3 promoter in human CD4+CD25− cells wi

stimulation with αCD3 and αCD28. The data are shown as the mean ± standard error of the

*P < .05, **P < .01, and ***P < .005.
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Next, to determine whether the aPC-induced metabolic changes
observed in stimulated human T cells (plate-bound αCD3/αCD28
or MLR) can be recapitulated in a disease setting, we isolated
T cells from mice with GVHD. Following our previously established
protocol,1 T cells were preincubated with aPC for1 hour before
transplantation and OCR parameters were analyzed ex vivo after
2 weeks. In comparison with control T cells, aPC-preincubated
T cells had lower levels of basal and maximal respiration and
adenosine triphosphate generation, whereas there was no signifi-
cant change in spare respiratory capacity (Figure 6E; supplemental
Figure 5). Thus, aPC-preincubation of murine T cells before
transplantation reduces mitochondrial respiration after induction of
GVHD, reflecting the observations made in activated human T cells
preincubated with aPC.

To determine whether the aPC-mediated induction of the Treg-like
phenotype depends on the altered cellular metabolism, we exog-
enously supplemented α-KG or glutamine in mouse T-cell culture.
To this end, we used DEREG mice, which express green fluores-
cent protein (GFP) under the control of a Foxp3 promoter, allowing
detection of Foxp3 promoter activity in primary cells. CD4+GFP−

cells isolated from these mice were subjected to ex vivo stimulation
with plate-bound αCD3/αCD28, and the frequency of GFP+ cells
was determined after 96 hours. aPC increased the frequency of
CD4+GFP+ cells, reflecting increased FoxP3 promoter activity
upon aPC pretreatment (Figure 6F). The aPC-mediated induction
of CD4+GFP+ T cells was markedly reduced in the presence of
α-KG or glutamine (Figure 6F), demonstrating that the induction
of FoxP3 promoter activity depends on the reduced availability of
α-KG and glutamine.

aPC dampens T-cell metabolism and increases

peripheral CD4
+
FOXP3

+
cell frequency in vivo

To determine whether aPC affects T-cell development in vivo, we
analyzed APChigh mice that express a hyperactivatable PC variant
resulting in increased aPC levels.23 APChigh mice are protected
from GVHD, which is associated by FOXP3 induction and
increased Treg frequency.1 Analysis of thymocytes revealed no
differences between WT and APChigh mice (supplemental
Figure 6A-B). Thus, the frequency of CD4+ and CD8+ single-
positive and double-positive T cells were comparable in the
thymus of WT and APChigh mice (supplemental Figure 6C). Further
analyses demonstrated that also naïve T cells (CD62L+ CD44−),
central memory T cells (CD62L+ CD44+), and Teffs
(CD62L−CD44+) in the thymus were comparable among WT and
APChigh mice (supplemental Figure 6D-E). Congruent with normal
T-cell development, the frequency of CD4+FOXP3+ (Tregs) cells in
the thymus was comparable in APChigh mice and WT mice,
whereas the CD4+FOXP3+ frequency in the spleen was increased
cells without (Tn) or with aPC (Tn + aPC) preincubation (1 hour, 20 nM) under Treg

cells (Tn) with αCD3 and αCD28 (n = 5). Bar graphs with dot plots summarizing data.

), and H3K27Me3 (F, n = 4, human) in CD4+CD25− cells without (T) or with aPC (T +

ative histogram (E, left) and bar graph with dot plot (E, right; F) summarizing the results

ion of human FOXP3 promoter showing CpG sites in different regions and amplicons

r methylation of different regions (methylation-specific PCR, n = 4 each group, H) and

thout (T) or with aPC (T + aPC) preincubation (1 hour, 20 nM) followed by 48 hours of

mean (SEM); statistical significance was determined by 2-tailed Student t test (A-H):

aPC METABOLICALLY REPROGRAMS T CELLS 5059



B
MLR

Donor A Donor B

± aPC

Oligomycin FCCP
Rotenone/

Antimycin A

* *

100

80

OC
R 

(p
m

ol/
m

in)

Time (minutes)

60

40

20

0
0 20 40 60 80

T

T+aPC

*

*
* *

* * *

A

T-cell

�CD3+�CD28

Plate bound �CD3/CD28
activation

FACS, Sea-Horse,
Metabolomics etc.

± aPC, 1hr

80

Oligomycin FCCP
Rotenone/

Antimycin A

OC
R 

(p
m

ol/
m

in)

Time (minutes)

60

40 * * *

*
* *

20

0
0 20 40 60 80

T

T+aPC

0

OC
R 

(p
m

ol/
m

in)

ECAR (mpH/min)
0 5 10 15 20

40
T

T+aPC

35

30

25

20

C

M
FI

 T
M

RE

T

T+
aP

C

0

1000

2000

3000

4000

5000
***

%
 o

f M
ax

TMRE

T

T+aPC

100

80

60

40

20

0

100 101 102 103 104 105 106

D

Figure 2. aPC preincubation reduces mitochondrial respiration in CD4
+
CD25

−
cells. (A-B) Independent experimental approaches to study mitochondrial metabolism in

stimulated T cells: stimulation of human CD4+CD25− cells by plate-bound αCD3 and αCD28 for 48 hours (A, top); stimulation of human CD4+CD25− cells using an MLR
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panels A-B were created using BioRender.com.
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in APChigh mice (Figure 7A). Collectively, these results show that
primary T-cell development is not altered in APChigh mice, whereas
aPC promotes FOXP3 Treg development in peripheral lymphoid
organs.
12 SEPTEMBER 2023 • VOLUME 7, NUMBER 17
Because aPC reduces α-KG and glutamine availability in T cells
in vitro, we determined whether T-cell metabolism is altered in T
cells of APChigh mice. Upon αCD3/αCD28 stimulation, mitochon-
drial metabolism (as reflected by OCR-related parameters) was
aPC METABOLICALLY REPROGRAMS T CELLS 5061
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reduced in CD4+CD25− cells from APChigh mice compared with
CD4+CD25− cells from WT mice (Figure 7B; supplemental
Figure 6F). To determine whether the reduced OCR in APChigh-
derived CD4+CD25− cells and increased CD4+FOXP3+ cell fre-
quency in APChigh mice depend on reduced availability of α-KG, we
supplemented α-KG in cultured CD4+CD25− cells obtained from
APChigh mice ex vivo. Supplementation of α-KG restored all
parameters of the OCR (Figure 7C; supplemental Figure 7A-D)
and reduced the frequency of CD4+FOXP3+ cells in αCD3/
αCD28-stimulated CD4+CD25− cells obtained from APChigh mice
(Figure 7D; supplemental Figure 7E).
5062 GUPTA et al
The results obtained in APChigh mice demonstrate that chronically
elevated aPC levels alter T-cell metabolism and induce FOXP3
expression. In our previous work1 and the aforementioned analyses
(Figures 1-6), we demonstrated that short-term stimulation of T
cells with aPC in vitro is sufficient to alter T-cell metabolism and
induce a Treg-like phenotype. To determine whether short-term
stimulation with aPC is sufficient to alter T-cell metabolism and
induce a Treg-like phenotype in vivo, we either injected aPC 3
times on alternate days (days 1, 3, and 5) and analyzed the mice on
day 7, or we injected aPC only once and analyzed mice 48 hours
later (Figure 7E). In both cases T-cell metabolism (OCR) was
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Figure 7. T-cell metabolism is homeostatically regulated by aPC, which induces Treg frequency in vivo. (A) Bar graph with dot plot showing the percentages of

CD4+FOXP3+ cells in the spleen and thymus in WT and APChigh mice (flow cytometry) (n = 4). (B) Seahorse analysis showing the OCRs (line graph summarizing the results) in

CD4+CD25− cells isolated from WT and APChigh mice and stimulated ex vivo with plate-bound αCD3 and αCD28 for 48 hours, n = 5. (C) Seahorse analysis showing the OCR

(line graph summarizing the results) in CD4+CD25− isolated fromWT and APChigh mice and stimulated ex vivo with plate-bound αCD3 and αCD28 without (APChigh) or with α-KG
supplementation (48 hours, 3.5 mM, WT + α-KG; APChigh + α-KG). (D) Representative bar graph with dot plot summarizing CD4+FOXP3+ expression in CD4+CD25− cells

isolated from WT and APChigh mice and stimulated with plate-bound αCD3 and αCD28 and experimental conditions as described in panel C (n = 5). (E) Schematic illustration of
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Seahorse analysis depicting the OCR (line graph summarizing results) in CD4+CD25− cells isolated from experimental mice as described in panel E, and stimulated ex vivo with
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from WT mice injected with PBS or aPC once (1×) or thrice (3×) (n = 5). The data are shown as the mean ± SEM; statistical significance was determined by 2-tailed Student t

test for panel A; 2-way ANOVA for panels B-C,F; 1-way ANOVA for panels D,G. Significance is represented in panel B: *P < .05 (WT vs APChigh); panel C: *P < .05 (WT vs
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reduced and the frequency of CD4+FOXP3+ cells was increased
in splenic T cells analyzed ex vivo (Figure 7F-G; supplemental
Figure 8), corroborating results obtained in APChigh mice.
Notably, aPC injection once was sufficient to reduce mitochondrial
metabolism (OCR) and to increase the frequency of CD4+FOXP3+

cells (Figure 7F-G; supplemental Figure 8). The observed effects of
aPC injections (once or thrice) on T-cell metabolism and FOXP3
expression corroborates a long-lasting effect of aPC on T cells,
congruent with an epigenetic regulation of FOXP3.

Discussion

The cytoprotective functions of aPC, which are, at least in part,
independent of its anticoagulant effects, are well established.35,36

One of the unexplained findings regarding the cytoprotective
effects of aPC is its long-lasting effect despite its short half-life in
various in vivo models.37-40 In the PROWESS study, the first study
to evaluate the effect of aPC in patients with sepsis, the use of aPC
during the first 3 days resulted in a survival benefit on day 28, indi-
cating a prolonged protective effect of aPC also in humans.41 Here,
we provide a potential explanation for such long-lasting effects of
aPC. Building on recent insights demonstrating that 1 hour pre-
incubation of T cells is sufficient to dampen their activation, we
demonstrate that aPC suppresses cellular metabolism, thus limiting
the availability of metabolites required for epigenetic gene regulation,
specifically of α-KG, which is necessary for FOXP3 and Treg
induction. Upon supplementation with α-KG, aPC-induced Foxp3
promoter demethylation is reversed, reducing Foxp3 promoter
activity and CD4+FOXP3+ cell abundance. Notably, aPC injection
once into mice was sufficient to reduce mitochondrial metabolism
(OCR) and to increase the abundance of CD4+FOXP3+ cells
(Figure 7F-G; supplemental Figure 8). Considering the short half-life
of aPC in vivo (~22 minutes) the observed effects on T-cell meta-
bolism and FOXP3 expression, even after only a once-off aPC
injection, corroborates a long-lasting effect of aPC on T cells,
congruent with an epigenetic regulation of FOXP3. Taken together,
we show that aPC promotes epigenetic reprogramming of T cells by
dampening cellular metabolism and restricting metabolite availability.
These results provide new insights into the effect of aPC on adaptive
immunity and provide a possible explanation for the long-lasting
effects of aPC observed in various disease models.

Evidence for epigenetic gene regulation by aPC has previously
been obtained in models of chronic vascular disease. Thus, in the
context of diabetes mellitus, aPC suppresses epigenetically
sustained expression of p66Shc in glomerular cells and plaque-
associated macrophages and of p21 in tubular cells.18,20 Sup-
pression of epigenetically sustained p66Shc and p21 expression by
aPC is linked to DNMT1 induction.19,20 Intriguingly, DNMT1 is
linked to mitochondrial metabolism.42,43 Hence, it is possible that
the previously observed epigenetic gene regulation by aPC via
DNMT1 is mechanistically linked to altered mitochondrial meta-
bolism; however, this possibility needs to be addressed in future
studies. Taken together, these results establish that aPC epige-
netically controls gene expression, which appears to be linked to
altered cellular metabolism.

Although this study provides a rationale for prolonged effects of
aPC by demonstrating that aPC modulates cellular metabolism and
thus epigenetically controls gene expression, the exact mecha-
nisms through which aPC conveys these effects remain to be
5066 GUPTA et al
shown. A potential explanation is the reduced uptake of substrates
from the extracellular milieu, as suggested by the reduced
expression of amino acid transporters and GLUT1 and the reduced
intracellular glucose and glutamine levels in the current study.
Indeed, solute transporters including amino acid transporters and
GLUT1 are considered “gatekeepers of immune cells,” controlling
their differentiation and function.44 The function of Teffs depends
on GLUT1 expression and increased glycolysis, and Teffs are
characterized by an increased mitochondrial potential.45-48

Congruently, GLUT1 deficiency, although having no impact on
resting T cells in vivo, preferentially suppresses Teff development
upon stimulation, for example, in the setting of experimental
GVHD.47 Conversely, inhibition of glycolysis, for example, by
transforming growth factor β1, or reduced glucose uptake main-
tains FOXP3 expression, increases Treg abundance, and maintains
their immunosuppressive function.13,14,49 In this study we show
normal T-cell development but induction of CD4+FOXP3+ cells in
APChigh mice, in stimulated CD4+CD25− cells, and in stimulated
naïve T cells preincubated with aPC. The induction of
CD4+FOXP3+ cells is associated with reduced GLUT1 expression
and reduced pyruvate and α-KG levels.

Deficiency of α-KG can be compensated by an anaplerotic reaction
providing glutamate as a substrate for α-KG. aPC reduces the
expression of 2 major amino acid transporters, ASCT2 and
SNAT1, and lowers intracellular glutamine levels in T cells, sug-
gesting that this pathway to restore α-KG levels is likewise sup-
pressed by aPC. Glutamine, which fuels this anaplerotic reaction,
suppresses FOXP3 expression and Treg induction.16 Conversely,
limited glutamine supply and reduced α-KG levels are sufficient to
promote Treg development, immunosuppressive cytokines, and
resolution of inflammation.16 These and the current observations,
together with the previous finding that aPC dampens aGVHD by
induction of Tregs1 support a model in which aPC promotes Treg
development by reducing substrate uptake (glucose and gluta-
mine), glycolysis, and TCA-activity in T cells (Figure 7). As α-KG–

dependent suppression of Tregs has been recently linked to
increased de novo lipid biosynthesis,22 further studies should
address whether aPC modulates other metabolic pathways in T
cells such as lipid biosynthesis.

An eminent question is whether the observed effects of aPC on
cellular metabolism and epigenetic gene regulation are specific for
aPC. Thrombin has been reported to alter metabolites in macro-
phages and platelets, suggesting that other coagulation proteases
may convey similar effects.50,51 Furthermore, loss of endothelial
thrombomodulin expression and reduced aPC levels have not only
been observed in GVHD but also in other diseases associated with
endothelial dysfunction, such as atherosclerosis, diabetes mellitus,
and sepsis.3,19,52 Whether reduced aPC levels and dysbalanced
coagulation activity with increased prothrombotic activity translates
into altered cellular metabolism and epigenetic gene regulation in
these diseases remain to be shown.

Here, we have demonstrated that aPC modulates T-cell meta-
bolism and thus T-cell differentiation. These data support a concept
in which altered coagulation protease activity contributes to a
specific micromilieu affecting cellular metabolism and differentia-
tion of T cells. Further work is required to characterize the effect of
altered coagulation protease activity, not only on immune cells but
also in other cells.
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