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Genotoxicity remains an unknown safety concern of gene therapy. Molecular techniques for deter-
mining the frequency and genomic localization of vector integration are central to understanding
primarily integrating viral vectors (ie, retrovirus and lentivirus). Unlike these vectors, recombinant adeno-
associated virus (rAAV) vectors integrate into host genomes at low frequencies. Nevertheless, the
integration of rAAV sequences in oncogenic hotspots could theoretically lead to hepatocellular carci-
noma (HCC).1 This report describes the molecular characterization of the first case of HCC compli-
cating an rAAV gene therapy trial.

Studies using rAAV in mice reported low integration levels into host chromosomal sequences asso-
ciated with HCC.2,3 Investigations suggested that HCC was driven by microRNA-341 dysregulation
within the Rian locus, a hotspot for mouse genome integration. The Rian locus in mice has a human
ortholog, the human long-coding RNA, MEG8, which is overexpressed in some HCCs and may interact
with microRNA-367-3p in the pathogenesis and progression of some HCCs.4 Nevertheless, the
microRNA-341 locus found to be susceptible to rAAV insertional mutagenesis in mice has no human
homolog.5

Studies using mouse models have previously been performed, including work in tumor-prone mouse
species and under experimental conditions that stimulate cell proliferation, which suggests specific
components of vector design or administration may affect vector integration and infer greater risk of
tumorigenesis (eg, use of chicken β-actin or thyroxine-binding globulin enhancer/promoter, treatment in
the neonatal period, partial hepatectomy, and vector DNA–related contaminants).5-7 In studies specific to
hemophilia gene therapy, rAAV–factor IX (FIX) vectors in mice, dogs, and nonhuman primates showed no
evidence of vector integration leading to HCC up to 8 years after treatment.8-10 Recently, human bio-
repository analysis identified HCC with the insertion of wild-type AAV sequences, potentially implicating
wild-type AAV in some cases of HCC (although not rAAV, which does not carry any viral genes).11,12

At least 39 human trials have used rAAV to target the liver to correct primary liver diseases, lysosomal
storage disorders, liver protein synthetic deficiencies, and other metabolic disorders.13 Seventeen
studies of liver-directed rAAV hemophilia gene therapy have been published to date, comprising >320
patients followed up for 0.5 to 15 years.14,15 Current clinical experience identifies no added oncogenic
risk from liver-directed rAAV gene therapy. However, prior exposure to contaminating viruses in plasma-
derived clotting factor concentrates leads to chronic hepatitis, meaning older patients with hemophilia
have an increased incidence of HCC, which is a confounding factor.16 Considering the conflicting data
linking AAV specifically with HCC, the development of HCC in a recipient of liver-directed rAAV gene
therapy is a highly anticipated event.
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Table 1. Medical history, prior treatments, and baseline

characteristics

Parameter

Age 69 y

Sex Male

BMI 22 kg/m2

Medical history HBV Ab positive, HBV sAg negative (indicating
cleared prior infection), first detected in 1980

Non-A/B hepatitis since 1983, confirmed as HCV in
2003

HCV genotype 1a, RNA PCR load: 1.34E + 006
IU/mL

Minimal fibrosis: Fibroscan F0/F1 5.7 KPa obtained
late 2015 as workup before DAA treatment for
HCV eradication

Prior treatments DAA treatment in early 2016, total course 3 months,
as follows:
Dasabuvir 250 mg twice daily
Ribavirin 600 mg twice daily
Ombitasvir/paritaprevir/ritonavir as 12.5/75/50 mg
once daily

Family history Diverse malignancies

Alcohol consumption 0–2 units per wk

Other risk factors for HCC No diabetes

No known NAFLD risk factors

No evidence of significant fibrosis/cirrhosis or
steatosis at screening or before treatment

Screening Fibroscan score 4.3 KPa (inclusion criterion, ≤9)
Steatosis grade (CAP) 186 dB

Ab, antibody; BMI, body mass index; CAP, controlled attenuation parameter; DAA, direct-
acting antiviral; IU, international units; NAFLD, nonalcoholic fatty liver disease; PCR,
polymerase chain reaction; sAg, surface antigen.
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We report, to the best of our knowledge, the first event of HCC in a
recipient of rAAV gene therapy, including molecular characteriza-
tion of the tumor to examine the biology of the event, generate 1 of
the first human rAAV vector integration site (IS) profiles, and
advance understanding of rAAV vector safety.

Etranacogene dezaparvovec, comprising a liver-directed rAAV5
vector containing a codon-optimized Padua-variant human FIX
transgene and a liver-selective promoter, is the first systemically
delivered AAV gene therapy approved to treat hemophilia B by the
US Food and Drug Administration and the European Regulatory
Authorities.

The phase 3 HOPE-B trial (NCT03569891) enrolled 54 adult
males with hemophilia B (FIX ≤ 2%), including participants with
prior hepatitis B virus (HBV; n = 9) and hepatitis C virus (HCV; n =
31) infection, and excluding participants with cirrhosis or advanced
fibrosis.17 Participants received a single intravenous dose of etra-
nacogene dezaparvovec (2 × 1013 genome copies per kg). Liver-
specific assessments included twice-yearly α-fetoprotein mea-
surements and annual ultrasound over 5 years follow-up. The trial
was conducted in accordance with the International Council for
Harmonisation Good Clinical Practice guidelines and ethical prin-
ciples originating in the Declaration of Helsinki. The protocol was
approved by institutional review boards and independent ethics
committees at each trial site.

Molecular analyses were conducted by GeneWerk GMBH (Hei-
delberg, Germany) independently from the sponsor and included
the following experiments:

• Vector copy number measurement using quantitative polymer-
ase chain reaction.

• Vector DNA IS analysis by shearing extension primer tag
selection/ligation-mediated polymerase chain reaction (triplicate
analyses: 3 × 500 ng DNA input).18,19

• Whole-genome sequencing (WGS) via Illumina next-generation
sequencing platform (singlicate analysis: 1 μg DNA input).

• RNA sequencing transcriptome profiling, RNA fusion products,
and differential RNA expression.

Detailed methodology and results are provided in the supplemental
Material. Final interpretation of the results was evaluated by inde-
pendent consultants experienced in clinical hepatology, hematol-
ogy, and genetics, and by the HOPE-B trial independent data
monitoring committee.

The patient who developed HCC received etranacogene deza-
parvovec in October 2019. Medical history, prior treatments, and
baseline characteristics are presented in Table 1. The patient’s
history of hepatitis virus infections and advanced age were HCC
risk factors.

A chest computerized tomography with angiography including
visualization of the upper abdominal organs and liver ultrasound
performed 1 and 3 months after treatment revealed no liver
abnormalities; α-fetoprotein levels remained within normal range.
There were no notable changes in transgene (FIX) expression
levels after the expected increase to steady-state.

The per-protocol, 1-year (day 365) postdose abdominal ultrasound
revealed a subcapsular liver lesion. A subsequent abdominal
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computerized tomography revealed a single 3.1-cm lesion in
segment 8. A needle biopsy (day 389) specimen revealed pre-
dominantly healthy liver tissue, with a single atypical focus
consistent with HCC. Immunohistochemistry was positive for
glutamine synthetase, HSP-70, and glypican-3, with increased
capillarization (CD34). Histology of surrounding liver tissue showed
steatosis grade 1, slight lobular infection, and periportal fibrosis (no
certain bridging), consistent with nonalcoholic fatty liver disease.

The patient underwent exploratory laparotomy for surgical excision
(day 443). Intraoperative ultrasound revealed a secondary liver
lesion 0.8 cm in diameter in segment 2/3; biopsy confirmed a 90%
likelihood of HCC. Specimens from the resected secondary lesion
and adjacent healthy liver tissue were analyzed for histopathology
and molecular integration. The primary tumor was not excised
because of the complex location, possible morbidity, and minimal
impact on the multifocal HCC prognosis. Histopathology and
immunohistopathology confirmed the occurance of moderately
differentiated HCC. Results from adjacent tissue were consistent
with the observations from the preoperative biopsy specimen.

The patient underwent transarterial chemoembolization for the lesion
in segment 8 with doxorubicin (55 mg once, intra-arterial) 5 weeks
after surgery. The patient subsequently received orthotopic liver
transplantation on day 851 after treatment (February 2022) with a
single preoperative bolus of FIX concentrate. The patient developed
progressive transplant failure because of hepatic artery thrombosis
RESEARCH LETTER 4967



Table 2. WGS and RNA sequencing analyses

WGS results

Expected findings if HCC was caused by rAAV

direct integration

Expected findings if HCC was not caused by

rAAV direct integration Observed findings

Integration of vector sequences in or near known
oncogenes.

Common HCC mutations (eg, TP53 or NFE2L2).21 WGS provided a genome coverage of 120× and
107× for the HCC and HCC-adjacent sample,
respectively.

No AAV ISs near oncogenes. WGS identified 3 additional ISs in the HCC and 2 in
the HCC-adjacent sample.

No IS was identified in >1 read, indicating a low IS
rate in the liver and a lack of a dominant IS in the
HCC sample.

Independent of etranacogene dezaparvovec
treatment there were the following mutations:
Mutations in TP53, NFE2L2, and PTPRK
Large chromosomal rearrangements in
chromosomes 1, 8, and X, characteristic of HCC

In addition, vector integration events occurred at a
low rate and in genomic sites not known to be
associated with HCC.

RNA sequencing transcriptome profiling

Not described. Differential expression of genes previously identified
in HCC.

RNA transcripts identified that are among the most
consistently differentially expressed in HCC
(arising independent of AAV), including COL1A1,
LCN2, AEBP1, and CRP.

AEBP1, Ae binding protein 1; COL1A1, α-1 type I collagen; CRP, C-reactive protein; LCN2, lipocalin-2.
For more detailed results, please see supplemental Material.
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and, ultimately, had to undergo a second orthotopic liver transplant.
Since then, the patient has been recovering well.

Molecular analysis of rAAV sequences in HCC and HCC-adjacent
samples had 3.21 and 4.11 vector copies per cell, respectively. In
both samples, many vector-vector fusion sequences were detec-
ted, demonstrating that most vector genomes were episomal, with
~1 in 10 000 integrated. There were 56 unique ISs in the HCC
and 39 in the HCC-adjacent sample; <0.03% of cells (~60 of
250 000 cells) had AAV vector integration. In both samples, no
dominant ISs were found; the highest shearing count detected was
2, indicating that the insertion occurred in only 2 cells. All the
remaining IS detected had only 1 shearing count.

WGS detected a deletion on chromosome 8 (Table 2), which is
present in 48% of HCCs arising outside of gene therapy.20

Moreover, mutations within HCC-associated genes were
apparent, including TP53, NFE2L2, and PTPRK. WGS and RNA
sequencing of the HCC-adjacent sample revealed a premalignant
genetic signature. Transcriptome profiling and analysis identified
features and genes highly associated with HCC.

If HCC development was driven by AAV vector integration,
frequent IS and a dominant IS would be expected; neither was
observed in this patient’s samples. Furthermore, WGS would show
integration in/near known HCC oncogenes (eg, TP53 and
NFE2L2), which did not occur. Instead, mutations within these, and
other, characteristically HCC-associated genes were observed
independent of associated AAV integration.

The patient’s prior history of hepatitis virus infection and advanced
age were risk factors for HCC. Although most hepatitis-related
HCCs occur in individuals with advanced fibrosis or cirrhosis,22 up
to 20% of HCCs occur in noncirrhotic livers.23,24 Generally, the risk
4968 RESEARCH LETTER
of HCC is higher in the population with hemophilia vs that in the
general population, partly because patients with hemophilia have
higher rates of hepatitis virus infection (with/without sustained viral
response) and HIV infection.25 HCV and HIV coinfection accelerates
liver deterioration in patients with hemophilia.26 Patients with
hemophilia with HBV/HCV infection are generally also older than
those with HBV/HCV infection but without hemophilia, with age-
related HCC risk factors such as nonalcoholic fatty liver disease
or nonalcoholic steatohepatitis, obesity, and excessive alcohol use.25

In conclusion, the molecular and vector integration analysis of the
index case of HCC after liver-directed rAAV-based gene therapy
established no relationship to rAAV administration, and provides a
model for investigating neoplasms in future clinical application of
gene therapy with integrating vectors. Collection of real-world data
on HCC occurrence through gene therapy–specific registries will
also be critical to understanding the long-term risk of malignancies
associated with AAV vector integration.
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