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Key Points

• MTV and ctDNA did
not correlate with
evidence of disease
1 month after axi-cel in
large B-cell lymphoma,
suggesting ongoing
therapy response.

• ctDNA can aid the
interpretation of a
positive 1-month PET
after CAR T-cell
therapy for a
comprehensive non-
invasive response
assessment.
-m
ain.pdf by guest
We examined the meaning of metabolically active lesions on 1-month restaging nuclear

imaging of patients with relapsed/refractory large B-cell lymphoma receiving axicabtagene

ciloleucel (axi-cel) by assessing the relationship between total metabolic tumor volume

(MTV) on positron emission tomography (PET) scans and circulating tumor DNA (ctDNA) in

the plasma. In this prospective multicenter sample collection study, MTV was

retrospectively calculated via commercial software at baseline, 1, and 3 months after

chimeric antigen receptor (CAR) T-cell therapy; ctDNA was available before and after axi-cel

administration. Spearman correlation coefficient (rs) was used to study the relationship

between the variables, and a mathematical model was constructed to describe tumor

dynamics 1 month after CAR T-cell therapy. The median time between baseline scan and

axi-cel infusion was 33 days (range, 1-137 days) for all 57 patients. For 41 of the patients

with imaging within 33 days of axi-cel or imaging before that time but no bridging therapy,

the correlation at baseline became stronger (rs, 0.61; P < .0001) compared with all patients

(rs, 0.38; P = .004). Excluding patients in complete remission with no measurable residual

disease, ctDNA and MTV at 1 month did not correlate (rs, 0.28; P = .11) but correlated at

3 months (rs, 0.79; P = .0007). Modeling of tumor dynamics, which incorporated ctDNA and

inflammation as part of MTV, recapitulated the outcomes of patients with positive

radiologic 1-month scans. Our results suggested that nonprogressing hypermetabolic

lesions on 1-month PET represent ongoing treatment responses, and their composition may

be elucidated by concurrently examining the ctDNA.
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Introduction

Treatment with CD19-targeted chimeric antigen receptor (CAR) T-cell therapy has led to unprece-
dented response rates in patients with relapsed or refractory (R/R) large B-cell lymphomas (LBCL).1-3

Response determination 1 month after CAR T-cell therapy is critical to guide the clinical care decisions.
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However, interpretation of fluorine-18 fluorodeoxyglucose positron
emission tomography/computed tomography (18F-FDG PET/CT)
scan imaging can be challenging because of the lack of specificity
of FDG-avid lesions, which may represent tumor, infection, and/or
inflammation. Although tissue biopsy remains the gold standard for
assessment, there is a strong desire to identify tumor noninvasively,
efficiently, and accurately to minimize patients’ physical pain and
emotional distress and expedite disease management.

We have previously demonstrated that metabolic tumor volume
(MTV)4 and circulating tumor DNA (ctDNA),5,6 although based on
different principles, can each serve to identify and quantify tumors
noninvasively and provide for the prognostication of clinical
response after CAR T-cell therapy.

We hypothesized that inflammation generated by continued CAR
T-cell antitumor activity contributes to FDG-avidity upon 18F-FDG
PET/CT imaging and may confound standard radiological evalua-
tion of response per the Lugano classification,7 particularly within a
few months of CAR T-cell therapy administration. The primary
objective of this retrospective study was to examine the relationship
between MTV and ctDNA before and after axicabtagene ciloleucel
(axi-cel) in patients with R/R LBCL in order to elucidate the etiology
of nonprogressing lesions with FDG uptake of unclear significance
on 18F-FDG PET/CT. Our secondary goal was to mathematically
describe the ongoing treatment response to axi-cel after infusion
and evaluate if inflammation may factor into the 1-month imaging
assessment.

Methods

Patients

Seventy-two patients were originally enrolled in a prospective
multiinstitutional study that assessed the role of ctDNA in prog-
nostication before and after standard-of-care axi-cel in patients with
R/R LBCL treated from February 2018 to June 2019 at Stanford
University, Moffitt Cancer Center, and the University of Maryland
Medical Center.6 Based on the baseline 18F-FDG PET/CT scan
availability, 57 patients were included in the current retrospective
study to form the entire cohort. To account for baseline MTV most
closely representing disease at the time of treatment, patients who
received bridging therapy with baseline 18F-FDG PET/CT imaging
beyond the median time measured from the time of PET-CT
imaging to infusion of axi-cel were excluded to create a focused
cohort (n = 41). Bridging therapy was defined as any therapy in-
between apheresis and axi-cel infusion used to control lym-
phoma. Clinical data was collected retrospectively. No biopsies
were performed of FDG-avid lesions in patients that had not
already exhibited frank progression per the Lugano response
criteria. Approval for the review of patient records was obtained
from each center’s institutional review board.

Tumor burden derivation

MTV was measured in mL, with a threshold >41% maximum
standardized uptake value, and was calculated retrospectively in a
step-wise process on 18F-FDG PET/CT performed before, and at 1
and 3 months after axi-cel using custom tools on MIM PACS
version 6.8.4 (MIM Software Inc., Cleveland, OH), as described in
our previous work.4 The processing time per scan was recorded in
minutes. Baseline MTV results for 15 of the patients had been
22 AUGUST 2023 • VOLUME 7, NUMBER 16
derived and reported previously.4 Official radiology responses per
the Lugano criteria were available for all patients who had a month
1 and 3 restaging scan.

ctDNA values in lymphoma genomes per mL of plasma (Lg/mL)
were previously derived via next-generation sequencing from
plasma in a CFD tube (Roche Diagnostics, Indianapolis, IN) before
lymphodepletion (baseline) and after axi-cel.6 The clonotype found
at the highest concentration was tracked after first being identified
via polymerase chain reaction amplification of rearranged immu-
noglobulin H (IgH)-VDJ, IgH-DJ, and Igκ/λregions using universal
consensus primers from archival formalin-fixed, paraffin-embedded
samples or from the initial plasma sample collected. Minimal
residual disease sensitivity threshold was 10−6.

Mathematical modeling

The dynamics and interactions among healthy T cells (N), CAR
T cells (C), and the cancer (B) were described mathematically as
previously described8:

dN
dt

=−rN N ln[N +C
KN

]. (1)

dC
dt

= −rC(T ) C ln[N +C
KC

]. (2)

dB
dt

= (λB − δB)B − γ(C)B. (3)

Here, T = N +C is the total lymphocyte count, and rC(T ) =
λC + b(T−KN )2

a T 2+(T−KN )2, in which λC is a background expansion, and the
second term reflects that growth can be attenuated when the
overall (mostly healthy) T-cell population reaches capacity, modu-
lated by the 2 parameters a and b.

We extended this model to incorporate ctDNA (Z) and the
assumption that MTV (V ) comprises tumor (B) and inflammation
(I) in the relation V = B + I, with the following dynamics:

dZ
dt

= θ[αδB + βγ(C)]B − δZZ , (4)

dI
dT

= ϕγ(C)B − τI. (5)

To parameterize our mechanistic model, we used both previously
established parameter values8 as well as patient-level data from the
focused cohort for V (MTV) and Z (ctDNA) at all available time
points (described later in the article) for 2 representative patients.
ctDNA (Z) was assumed to enter the peripheral blood when the
tumor died, consistent with empirical observations.9,10 The variable
δZ is the rate of degradation of ctDNA, which we assumed to be
constant. The tumor B grows autonomously, with a birth rate λB,
dies with rate δB, and experiences tumor killing at a rate γB,
proportional to the number of CAR T cells. The parameter that
modulates ctDNA includes θ with units (Lg/mL)/(mL), which can be
thought of as the average amount of ctDNA introduced into the
peripheral blood per mL of the tumor. The parameters α, β are
ctDNA SUPPLEMENTS PET AFTER AXI-CEL 4609



Table 1. Patient characteristics at the time of axi-cel infusion and

clinical outcomes (n = 57)

Characteristic N = 57 (%)

Age (y)

Median, range 59, 19-76

Sex

Male 34 (60)

ECOG (0-5)

0-1 54 (95)

2 3 (5)

Histology

DLBCL, NOS 32 (56)

Unknown MYC and BCL2/BCL6 status 4 (7)

High grade B-cell lymphoma, with MYC and BCL2
and/or BCL6 rearrangements

10 (18)

B-cell lymphoma, unclassifiable, with features
intermediate between DLBCL and classical
Hodgkin lymphoma

11 (19)

Unknown MYC and BCL2/BCL6 status 3 (5)

Primary mediastinal B-cell lymphoma 4 (7)

Stage (I-IV)

I/II 15 (26)

III/IV 42 (74)

LDH level before conditioning > ULN

Yes 37 (65)

CRP level before conditioning > ULN

Yes 25 (44)

Ferritin level before conditioning > ULN

Yes 31 (54)

IPI score (1-5)

0 4 (7)

1-2 23 (40)

3-5 25 (44)

N/A or primary mediastinal B-cell lymphoma 5 (9)

Prior lines of therapy

Median, range 3, 1-7

Bridging therapy

Yes 33 (58)

Chemotherapy/targeted therapy 15 (26)

Steroids 3 (5)

Radiation therapy 7 (12)

Combination chemotherapy/targeted therapy ±
steroids ± radiation therapy

8 (14)

Received before baseline 18F-FDG PET/CT 10 (18)

N/A 1 (2)

Outcome n= 57 (%)

Clinical response to ax-cel

CR by last follow-up 35 (61)

ORR by last follow-up 52 (91)

CRES, CAR-T-cell-related encephalopathy syndrome; CRP, C-reactive protein; CRS,
cytokine release syndrome; DLBCL, diffuse large B-cell lymphoma; ECOG, Eastern
Cooperative Oncology Group performance status; LDH, lactate dehydrogenase; IPI,
International Prognostic Index; N/A, not applicable; NOS, not otherwise specified; ORR,
overall response rate; ULN, upper limit or normal.
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dimensionless and reflect the probability of ctDNA being released
through cell death. ϕ represents the degree of inflammation caused
by the CAR T cells killing the tumor, and τ is the clearance rate at
which inflammation is removed. All parameters are assumed to be
positive, and γ(C) = γB

C
kB+C.

We integrated the mathematical model and data from the focused
cohort in the following way: for model fitting, we used the Julia
packages DifferentialEquations, Optim, and BlackBoxOptim, which
would find a set of best-fit parameters for equations 4 and 5
assuming previously established cancer cell proliferation rates8

of 0.15 per day. This provided a set of best-fit parameters for
individual patients, describing the kinetics of ctDNA and tumor vol-
ume/inflammation according to equations 3 to 5. We selected to
present and discuss the fits for 2 representative patients based upon
day 30 staging results: 1 PET+/ctDNA+ and 1 PET+/ctDNA–.

Statistical analysis

All correlations between MTV and ctDNA were performed by
Spearman correlation and the coefficient (rs) was reported.

The median follow-up for survivors was calculated between the
date of CAR T-cell administration and the date of last contact, and
overall survival (OS) and progression-free survival (PFS) were
calculated since the time of CAR T-cell infusion until death, pro-
gression, or last contact. Differences in OS and PFS were found
via the Kaplan-Meier and log-rank tests, and hazard ratios (HRs)
and 95% confidence intervals (95% CIs) were reported. Survival
was reported for the focused cohort at baseline per low vs high
tumor burden group, defined by our previously derived and vali-
dated baseline MTV cutoff value of 147.5 mL4 and pre-
lymphodepletion ctDNA cutoff of 100 Lg/mL.6 Overall response,
including partial (PR) and complete response (CR) at 3 and
6 months, respectively, as well as the overall response and CR if
achieved by the last follow-up, were reported for the entire cohort.
Cytokine release syndrome and CAR T-cell related encephalopathy
syndrome rates were reported for the entire cohort.

P < .05 was defined as statistically significant. Analysis was con-
ducted using GraphPad Prism version 9.0.2 (161) for Windows
(GraphPad Software, San Diego, CA; www.graphpad.com).

Results

Patient characteristics

Baseline patient characteristics and clinical outcomes for all patients
are presented in Table 1. The median time between baseline
18F-FDG PET/CT and administration of CAR T-cell therapy was
33 days (range, 1-137 days; interquartile range [IQR], 44.5 days).

Biomarker values and correlation

Baseline and available posttreatment MTV and ctDNA values are
reported in Tables 2 and 3. The median processing time of a scan
at baseline (n = 42) was 30 minutes (range, 8-217 minutes; IQR,
84.5 minutes); at 1 month (n = 47), was 8 minutes (range,
2-180 minutes; IQR, 4 minutes); and at 3 months (n = 35), was
5 min (range, 2-145 minutes; IQR, 11 minutes). Processing
time per scan correlated strongly with MTV at baseline (rs, 0.71;
P < .0001), 1 month (rs, 0.81; P < .0001), and 3 months (rs, 0.89;
P < .0001).
4610 DEAN et al 22 AUGUST 2023 • VOLUME 7, NUMBER 16
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Table 1 (continued)

Characteristic N = 57 (%)

ORR at 3 months 31 (54)

ORR at 6 months 26 (46)

Follow-up and survival

Median follow-up for survivors in months (range) 20.7 (2.7-32.9)

Median OS in months (95% CIs) Not reached

Median PFS in months (95% CIs) 13.4 (12.2-13.5)

Toxicity, grade

CRS 1-3 50 (88)

3 1 (2)

N/A 3 (5)

CRES 1-4 30 (53)

3-4 15 (26)

N/A 3 (5)

CRES, CAR-T-cell-related encephalopathy syndrome; CRP, C-reactive protein; CRS,
cytokine release syndrome; DLBCL, diffuse large B-cell lymphoma; ECOG, Eastern
Cooperative Oncology Group performance status; LDH, lactate dehydrogenase; IPI,
International Prognostic Index; N/A, not applicable; NOS, not otherwise specified; ORR,
overall response rate; ULN, upper limit or normal.
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We correlated MTV and ctDNA values at baseline, 1 month, and
3 months after axi-cel. At baseline, in the entire cohort, MTV
correlated weakly with ctDNA (rs, 0.38; P = .004); in the focused
cohort, the correlation became stronger (rs, 0.61; P < .0001)
(Figure 1A,B). We evaluated the impact of bridging therapy on
measurements of baseline tumor burden. For 23 patients who
received bridging therapy after baseline imaging, there was no
correlation of MTV and ctDNA (rs, 0.08; P = .71). However, for 34
patients who did not receive bridging therapy or received it
before baseline imaging, there was a significant correlation (rs,
0.57; P = .0004). The timing of the baseline scan in relation to
axi-cel administration also affected the relationship between MTV
and ctDNA, with significant correlation found when the scans were
performed closer to therapy but not otherwise (quartile [Q] 1 rs,
Table 2. MTV and ctDNA values at the times of PET assessment before

Biomarker Baseline

MTV [mL] n = 57 N =

Entire cohort Focuse

Median 52.93 4

Range 2.3-2256.24 2.3-2

IQR 283.3 13

ctDNA [Lg/mL] n = 57‡ n =

Entire cohort Focuse

Median 95.09 5

Range 0-17903.02 0-65

IQR 878.84 85

*Because of unavailable PET, MTV could not be derived for 1 patient not in CR and was mark
†Similarly, MTV could not be derived for 2 patients not in CR and marked as 0 mL for 10 patie
‡ctDNA on day 0 was used as baseline in 1 patient without prelymphodepletion ctDNA.
§ctDNA was not checked in 3 patients without disease progression.
‖ctDNA was not checked in 11 patients without disease progression.

22 AUGUST 2023 • VOLUME 7, NUMBER 16

0

0.78 [P = .0008]; Q2 rs, 0.58 [P = .0296]; Q3 rs, 0.075; [P = .79];
and Q4 rs, −0.066 [P = .82]). At 1 month after CAR T-cell therapy,
in the entire cohort (n = 53), MTV had a moderate positive corre-
lation with ctDNA (rs, 0.59; P < .0001; Figure 1C). At 3 months, in
the entire cohort (n = 37), the correlation between the 2
biomarkers was the strongest (rs, 0.89; P < .0001; Figure 1D).
When patients with undetectable MTV and ctDNA were excluded,
the correlation between the biomarkers became nonsignificant
at 1 month (n = 33; rs, 0.28; P = .11; Figure 1E) but remained
significant at 3 months (n = 15; rs, 0.79; P = .0007; Figure 1F).

We further evaluated the relationship between MTV obtained at
each of the 3 time points to all ctDNA values. In the focused cohort,
baseline MTV correlated best with ctDNA at prelymphodepletion
(rs, 0.61; P < .0001). The correlation varied more during the first
month compared with later time points (Figure 2A). The correlation
after day 28 was overall poorer (Figure 2B). In the entire cohort,
MTV at 1 month correlated best with ctDNA on day 28 (n = 53; rs,
0.60; P < .0001; Figure 2C), and MTV at 3 months correlated with
ctDNA on day 90 (n = 37; rs, 0.89; P < .0001; Figure 2D).

Baseline biomarker association with survival

At baseline, in the focused cohort, 32 patients had low (range,
2.3-145.86 mL) and 9 patients had high (range, 166.18-2106.56 mL)
MTV; 24 patients had low (range, 0-98.16 Lg/mL) and 17 patients had
high (range, 127.92-6542.75Lg/mL)ctDNA. LowvshighMTV, and low
vs high ctDNA, were associated with better PFS (HR, 0.17; 95% CI,
0.03-0.71; P < .0001 vs HR, 0.11; 95% CI, 0.04-0.3; P < .0001)
andOS (HR, 0.19; 95%CI, 0.04-0.8; P= .0003 vs HR, 0.13; 95%CI,
0.04-0.39; P = .0002), respectively. Patients with low MTV/low
ctDNA (low-risk group) had better survival compared with those with
either low MTV/high ctDNA or high MTV/low ctDNA (intermediate-risk
group) or high MTV/ high ctDNA (high-risk group) (Figure 3).

Patterns of lymphoma response and progression

From baseline to 1 month, 51 patients had a confirmed decrease
in MTV on imaging (n = 56), with a median reduction of MTV of
47.78 mL (range, 1.91-2251 mL; IQR, 235.63 mL). The day
and after axi-cel

1 month 3 months

41 N = 56* N = 46†

d cohort

2.68 0.74 0

106.56 0-3369.13 0-697.97

0.24 12.06 15.73 mL

41 n = 54§ n = 42‖
d cohort

8.1 0 0

42.75 0-2944.85 0-10291.34

6.89 11.98 13.67

ed as 0 mL for 8 patients in CR.
nts in CR.
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Figure 1. Correlation of MTV with ctDNA at baseline, 1 month, and 3 months. The correlation of baseline MTV with ctDNA strengthened in the focused cohort

(B) compared with the entire cohort (A). The correlation was moderate at 1 month (C) and the strongest at 3 months (D). For patients with evidence of disease, there was no

correlation at 1 month (E), but the correlation persisted at 3 months (F).

Table 3. ctDNA values at additional time points before and after axi-cel

Day 0 Day 7 Day 14 Day 21 Day 56 Day 180 Day 270 Day 300 Day 360

ctDNA n = 43 n = 57 n = 54 n = 49 n = 35 n = 26 n = 12 n = 1 n = 20

Median 16.14 4.85 0 0 0 0 0 0 0

Range 0-12449 0-31664 0-14551 0-1540 0-8131 0-4916 0-1637 0-0 0-3180

IQR 342.2 101.8 28.06 30.6 7.850 0.1725 0 0 0

4612 DEAN et al 22 AUGUST 2023 • VOLUME 7, NUMBER 16
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Figure 2. Correlation of baseline, 1 month, and 3 months MTV with ctDNA at different time points. (A-B) Baseline MTV correlated best with ctDNA at prelymphodepletion

(n = 41) (rs, 0.61; P < .0001) within the first month and overall: day 0 (n = 28) (rs, 0.56; P = .002), day 7 (n = 41) (rs, 0.57; P = .0001), day 14 (n = 38) (rs, 0.6; P < .0001),

day 21 (n = 33) (rs, 0.54; P = .001), day 28 (n = 38) (rs, 0.6; P < .0001), day 56 (n = 23) (rs, 0.64; P = .001), day 90 (n = 31) (rs, 0.48; P = .006), day 180 (n = 19) (rs, 0.53;

P = .02), day 270 (n = 5) (rs, 0.71; P = .4), and day 365 (n = 13) (rs, 0.58; P = .04). (C) MTV at 1 month correlated best with ctDNA on day 28 (n = 53) (rs, 0.60; P < .0001):

prelymphodepletion (n = 56) (rs, 0.38; P = .004), day 0 (n = 43) (rs, 0.50; P = .0007), day 7 (n = 56) (rs, 0.58; P < .0001), day 14 (n = 53) (rs, 0.50; P = .0001), day 21

(n = 48) (rs, 0.59; P < .0001), day 56 (n = 34) (rs, 0.41; P = .02), day 90 (n = 41) (rs, 0.48; P = .002), day 180 (n = 25) (rs, 0.39; P = .05), day 270 (n = 12) (rs, 0.32; P = .15), and

day 365 (n = 19) (rs, 0.18; P = .47). (D) MTV at 3 months correlated best with ctDNA on day 90 (n = 37) (rs, 0.89; P < .0001): prelymphodepletion (n = 46) (rs, 0.28; P = .06), on

day 0 (n = 32) (rs, 0.39; P = .03), day 7 (n = 46) (rs, 0.54; P = .0001), day 14 (n = 44) (rs, 0.46; P = .002), day 21 (n = 39) (rs, 0.49; P = .002), day 28 (n = 44) (rs, 0.41; P = .006),

day 56 (n = 30) (rs, 0.69; P < .0001), day 180 (n = 25) (rs, 0.53; P = .007), day 270 (n = 12) (rs, 0.23; P = .64), day 365 (n = 20) (rs, 0.15; P = .54).
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30 scan of 1 patient with PR was unavailable for review. This
correlated to the Lugano response criteria, in which 4 patients
progressed and 2 patients had stable disease (SD) (of which 1
had increased MTV, and the other had reduced MTV). The scans
of 19 patients were available for review at the time of progres-
sion: 15 patients had an increase in MTV >50% compared with
that observed in the prior scan, with half of them developing new
lesions in addition to an increase in FDG uptake in a lesion.

Responses to axi-cel are shown over time (Figure 4). At 1 month
after axi-cel, 28 patients were in CR: 5 patients had positive ctDNA,
with 2 patients experiencing progression of disease; 21 patients
had negative ctDNA, with 14 remaining in CR; and 2 patients who
remained in CR did not have ctDNA values available. At the same
assessment time point, 25 patients were in PR: 14 patients had
22 AUGUST 2023 • VOLUME 7, NUMBER 16
positive ctDNA, with 13 whose disease progressed; 8 had negative
ctDNA, with 6 converting to CR; ctDNA was unavailable for 1
patient with progression of disease. There were 2 patients with SD:
1 who had positive ctDNA had progression of the disease by
3 months, and the other who had negative ctDNA achieved CR by
1 year. All 4 patients with progression of disease at 1 month had
positive ctDNA.

For the patients with evidence of disease at 1 month (n = 33), 19
had both detectable MTV and ctDNA, with 18 experiencing
progression of disease (4 at 1 month, 13 at 3 months, and 1 at
6 months) and 1 achieving CR at 3 months. There were
9 patients with detectable MTV but no ctDNA, of which 7 ach-
ieved CR (1 marked as CR based on the Lugano criteria at
1 month, 3 at 3 months, 2 at 6 months, and 1 at 1 year), whereas
ctDNA SUPPLEMENTS PET AFTER AXI-CEL 4613
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2 had progression of disease at 3 months. The remaining 5 of
the 33 patients with undetectable MTV but detectable ctDNA,
3 remained in CR, whereas 2 progressed (1 at 3 months and 1
at 1 year).

Dynamics of tumor burden, ctDNA, and inflammation

Given the uncertain response or durability of response at 1 month
after CAR T-cell therapy based on imaging alone, we used a deter-
ministic version of our previously described mathematical model of
CAR T-cell dynamics,8 expanded to include ctDNA and inflammation
as part of the MTV measurement (Figure 5A). We assumed that a
portion of metabolic activity near or at the tumor site may be related to
inflammation associated with the completed or ongoing killing of
cancer cells by CAR T cells (Figure 5B). The mathematical model was
fitted to 2 patients with PET+ disease on day 30 and adequate lon-
gitudinal data to compare with that of the model (Methods): 1 patient
who was tested PET+ and ctDNA+ on day 30 and later progressed,
4614 DEAN et al
and 1 who was tested PET+ but ctDNA– on day 30 and achieved
long-term remission. Comparing these cases, the model recapitulated
the dynamics of the first 30 or 60 days but showed some discrepancy
at later time points (Figure 5C-F) and correctly recapitulated pro-
gression (Figure 5C,D) and durable remission (Figure 5E,F).

Discussion

The results of our multicenter, prospective sample study in patients
with R/R LBCL receiving axi-cel demonstrated an ongoing treat-
ment response in patients with nonprogressing FDG-avid lesions
on 1-month posttherapy 18F-FDG PET/CT scans. The lack of
correlation between quantifiable MTV and detectable ctDNA
implied activity, either continued cancer killing and/or inflammation,
at known prior disease sites. Because patients had not undergone
tissue biopsies, we used a modified version of an existing mathe-
matical model of the dynamics of CAR T-cell treatment at 1 month
that successfully recapitulated clinical responses in patients with
PR or SD. Our results indicated that plasma ctDNA served as a
physical biologic identifier of a radiologically visualized, metaboli-
cally active, residual tumor. Given the test’s low level of detection,
its absence suggested that FDG-avid lesions likely represented
localized inflammation induced by CAR T-cell therapy. Thus, we
showed that concurrent ctDNA added specificity to the 1-month
positive restaging 18F-FDG PET/CT.

Our work focused on developing comprehensive noninvasive
response assessments of patients undergoing CAR T-cell therapy.
We learned about the imaged tumor’s response through the use of
consecutively detected ctDNA via next-generation sequencing.
LBCL ctDNA monitoring has been shown to be a promising
technique with prognostic potential for accurate identification and
quantification of disease at diagnosis,11 during and after first-line
therapy,12 and before13 and after CAR T-cell therapy.5,6,13 An
alternative technique of low-pass whole-genome sequencing of
cell-free DNA to find somatic copy number alterations has also
been investigated in patients with LBCL treated with CAR T-cell
therapy,14 and in one study, results at baseline were combined with
surrogates of disease burden, lactate dehydrogenase, and the
number of extranodal sites to prognosticate clinical outcomes.15

Liquid biopsies can be particularly advantageous in cases for
which tissue biopsies are not feasible or the risks outweigh the
benefits, as in patients with PR or SD 1 month after CAR T-cell
therapy with small residual FDG-avid lesions on imaging.

By accurately and efficiently deriving MTV, we quantified the total
amount of metabolic activity on imaging. This allowed us to go
beyond recognizing a scan result as a binary positive or negative
for disease. Importantly, baseline MTV and ctDNA are concordant,
particularly when removing the impacts of bridging therapy and
timing. Both high-baseline ctDNA and MTV were associated with
poor clinical outcomes. This is a redemonstration of ctDNA’s value
as an emerging biomarker within a proportion (n = 57) of the same
cohort of patients we reported on previously (n = 69)6 and another
validation of MTV as an imaging biomarker in a largely unique
patient cohort (n = 42/57).4 Combining the 2 biomarkers, patients
in the low-risk group before axi-cel showed significantly better PFS
and OS than those in the intermediate- or high-risk groups. This
prognostic model is yet to be validated prospectively but may be
possible after the completion of an ongoing clinical study
(NCT05255354).
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Here, the lack of correlation between ctDNA and MTV at 1 month
may be explained by the mechanism of action of CAR T-cell
therapy and the ongoing treatment response. Oscillations between
the 2 variables during the first month after infusion likely resulted
from active tumor killing induced directly or indirectly by axi-cel,
which has a median time to radiologic response of 0.9 months.16

The death of the tumor was confirmed by the reduction of
median MTV and ctDNA in our nonprogressing patients at 1 month.
Although LBCL tumor typically consists of up to 90% tumor cells
causing FDG uptake on scans,17 we suspected localized inflam-
mation caused by the CAR T-cell therapy clearing tumor contrib-
uted to residual FDG-avid lesions on 1-month restaging 18F-FDG
PET/CT. Loss of correlation at 1 month, but not 3 months, after
therapy for those patients with either persistent MTV, ctDNA, or
both was likely due to ongoing treatment response.

To reproduce tumor response at 1 month after axi-cel, we pro-
posed a mathematical model that is an extension of previous work.8

This modeling is a novel approach to conceptualizing immuno-
therapy effects.18 We used a deterministic version of a hidden
Markov model, a type of stochastic method representing an
autonomous system whose future state depends only on its current
state at any given time.19 The hidden nature of the model comes
from the fact that although MTV is observable, it not only comprises
tumor but also inflammation. The difference between these 2
quantitates must be inferred. This inference can be accomplished
by using detectable ctDNA, which provides a proxy for tumor
growth activity (vs inflammation). Incorporating ctDNA in our study
distinguishes it from other published works, in which FDG-avidity
obtained from 1-month imaging alone was used to predict the
risk of lymphoma progression.20,21 By depicting tumor dynamics,
our model was able to predict clinical outcomes in patients with
measurable MTV 1 month after axi-cel. The model supports the
hypothesis that localized tumor inflammation plays a role in ongoing
tumor PET avidity, thus implying that in the absence of ctDNA,
FDG-avid lesions on a scan may represent inflammation. The cur-
rent data does not allow complete parametrization and validation of
our mathematical model. Rather, the model effort is a starting point
22 AUGUST 2023 • VOLUME 7, NUMBER 16
for novel hypotheses regarding the joint kinetics of ctDNA, MTV,
and inflammation.

Serial plasma ctDNA measurements assisted with capturing the
patients’ ongoing response to therapy. The response is otherwise
clearly visible only on spaced-out imaging studies. The clearance
rate of ctDNA may explain the remaining detectable ctDNA at
1 month via PET in patients in CR who eventually achieved durable
CR.22 Although ctDNA may be undetectable in patients with CR at
1 month, upon relapse of disease, ctDNA can rise sharply. In our
original prospective study of the test,6 the dynamics of ctDNA were
described in detail, and we reported sensitivity of 94% and spec-
ificity of 82% for the test in subjects with PR or SD. The results in
this follow-up study confirm that a one-time value of ctDNA reflects
instantaneous tumor burden, as evidenced by the mismatched
timing of measurement with MTV, leading to a poorer correlation.
Future work should further elucidate ctDNA dynamics and account
for the timing of the 2 tests.

Strengths of the study include the multicenter approach, the use of
ctDNA, which relies on clonotype identification of tumors with high
specificity and sensitivity, the ability to quantify tumor burden
accurately via MTV, the incorporation of data from multiple time
points, and the modification of an existing mathematical model as
evidence for inflammation leading to PET positivity after CAR T-cell
therapy. Limitations include its retrospective nature, unavailable
imaging or ctDNA results in all patients at all time points, different
timing of MTV and ctDNA at baseline, preventing capturing tumor
burden contemporaneously, limitations of the ctDNA test itself (in
particular, nonsecretion by certain tumors and inability to detect
disease below the current limit of detection), lack of biopsies in
patients with FDG-avid PET lesions after CAR T-cell therapy in the
absence of frank progression, and the hypothesis-generating
nature of the modified mathematical model, which is not yet vali-
dated as a tool for clinical response prediction.

In conclusion, we showed that plasma ctDNA might serve as a
valuable supplementary test to standard 18F-FDG PET/CT scan
imaging at 1 month by enhancing the accuracy of noninvasive
ctDNA SUPPLEMENTS PET AFTER AXI-CEL 4615
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response assessment of LBCL in patients receiving CAR T-cell
therapy.
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