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Higher graft cell dose does not influence development of acute or
chronic GVHD in haploidentical transplantation using PTCy
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The optimal graft composition and cell dose for haploidentical allogeneic peripheral blood stem cell
transplantation (PBSCT) using posttransplantation cyclophosphamide (PTCy) and the impact of these
characteristics on transplantation outcomes remain as unsettled questions. In general, studies examining the
impact of CD34+ cell dose in matched donor PBSCT have demonstrated improved survival with higher
doses, with the drawback of possibly increased rates of chronic graft-versus-host disease (GVHD).1-5

Whether these findings can be extended to transplantations performed using haploidentical donors with
PTCy has not yet been demonstrated. Nonetheless, early studies of haploidentical unmanipulated PBSC
allografts using PTCy were commonly performed with the restriction of CD34+ doses at 5 × 106/kg
recipient weight to minimize the risk of GVHD.6 This caution was sensible early on, given that mobilized
PBSC grafts, with ~10-fold increase in T-cell content, exert higher rates of chronic GVHD.7,8 Mussetti et al
reported the influence of graft composition (CD3+ cell count specifically) on chronic GVHD development
after haploidentical PBSCT with PTCy.8 However, recent studies have questioned the practice of capping
CD34+ cell doses in haploidentical PBSCT. Findings from these studies demonstrated the protective effect
of CD34+ graft content on nonrelapse mortality (NRM), with no association with GVHD.8-10

Im et al recently performed a registry-based analysis of recipients of PTCy-based haploidentical
transplantations, using outcomes reported to the Center for International Blood and Marrow Transplant
Research.11 These investigators found that donor age and graft source were the risk factors for acute
and chronic GVHD, respectively. The frequency of missing CD34+ cell dose was 6.7% of the cohort.
The Center for International Blood and Marrow Transplant Research typically omits data that are <95%
complete from the final analysis; therefore, the CD34+ dose was not considered as a predictor variable
in the final analysis of this study. We hypothesized that this variable, despite missing 6.7% of the cohort
values, retains interpretable values in the context of this study. Using the publicly available data set from
this study,11,12 we sought to examine whether the CD34+ cell dose was predictive of the clinical
outcomes of interest, considering patients with missing variables as an independent group. Because
marrow-derived products typically deliver a lower total CD34+ cell dose, we restricted our analysis to
patients who received PBSCT grafts.

The median age of this population (N = 375) was 55 years (range, 18-76). The patient, disease, and
transplantation characteristics are summarized in Table 1. We found an evident bias toward the use of
~5 × 106 CD34+ cells/kg recipient weight in the data set, suggesting that dose capping was widely
used within the cohort (Figure 1A).

We first sought to determine whether CD34+ cell dose was predictive of clinical outcomes using a
multivariable Cox proportional hazards model. Contributing covariates were evaluated in a univariable
framework, retaining variables that significantly contributed to outcomes in the multivariable model
(two-sided α error, 0.05). When analyzed as a continuous variable, there was no association between
the CD34+ cell dose and 1-year overall survival (hazard ratio [HR], 0.96; 95% confidence interval
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Table 1. Baseline characteristics and transplantation outcomes based on the CD34+ cell dose

Characteristic* <4†, n = 56 4-6†, n = 157 ≥6-8†, n = 46 ≥8†, n = 77 Missing, n = 39 P value

Recipient age at transplant, y 52 (38, 61) 54 (37, 64) 58 (42, 65) 58 (46, 66) 51 (35, 60) .11

Donor age at transplant, y 36 (25, 50) 40 (29, 51) 38 (32, 50) 36 (27, 45) 38 (31, 54) .4

Recipient sex, female 22 (39%) 61 (39%) 20 (43%) 35 (45%) 15 (38%) .9

Conditioning regimen < .0001

Bu/Cy 11 (20%) 43 (27%) 6 (13%) 19 (25%) 1 (2.6%)

TBI ± Flu/Cy, MAC 17 (30%) 40 (25%) 4 (8.7%) 14 (18%) 25 (64%)

TBI ± Flu/Cy, RIC 23 (41%) 60 (38%) 32 (70%) 42 (55%) 10 (26%)

Flu/Mel 4 (7.1%) 11 (7.0%) 1 (2.2%) 1 (1.3%) 2 (5.1%)

Other 1 (1.8%) 3 (1.9%) 3 (6.5%) 1 (1.3%) 1 (2.6%)

HCT-CI .78

0 9 (16%) 22 (14%) 4 (8.7%) 12 (16%) 1 (2.6%)

1-2 15 (27%) 40 (25%) 17 (37%) 23 (30%) 12 (31%)

3+ 32 (57%) 91 (58%) 24 (52%) 42 (55%) 25 (64%)

Missing 0 (0%) 4 (2.5%) 1 (2.2%) 0 (0%) 1 (2.6%)

DRI .99

Low 4 (7.1%) 12 (7.6%) 2 (4.3%) 6 (7.8%) 4 (10%)

Intermediate 28 (50%) 78 (50%) 25 (54%) 34 (44%) 18 (46%)

High/very high 22 (39%) 60 (38%) 17 (37%) 35 (45%) 15 (38%)

Missing 2 (3.6%) 7 (4.5%) 2 (4.3%) 2 (2.6%) 2 (5.1%)

KPS .02

90-100 24 (43%) 83 (53%) 24 (52%) 34 (44%) 7 (18%)

≤80 31 (55%) 71 (45%) 21 (46%) 42 (55%) 32 (82%)

Missing 1 (1.8%) 3 (1.9%) 1 (2.2%) 1 (1.3%) 0 (0%)

Bu, busulfan; cy, cyclophosphamide; DRI, disease risk index; flu, fludarabine; GRFS, GVHD relapse-free survival; HCT-CI, hematopoietic cellular transplantation comorbidity index; KPS,
Karnofsky performance status; MAC, myeloablative conditioning; mel, melphalan; OS, overall survival; RIC, reduced intensity conditioning; TBI, total body irradiation.
*n (%); median (interquartile range).
†All cell doses listed as ×106 CD34+ cells per kg recipient weight.
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[95% CI], 0.91-1.004), grade 3 or 4 acute GVHD (HR, 1.01; 95%
CI, 0.92-1.11), moderate-to-severe chronic GVHD (HR, 1.03; 95%
CI, 0.96-1.10), NRM (HR, 0.97; 95% CI, 0.90-1.04), or primary
neutrophil engraftment by day 100 (HR, 0.92; 95% CI, 0.82-1.04).
Similarly, CD3+ cell dose was not predictive of the outcomes (data
not shown). CD34+ and CD3+ cell doses were weakly correlated
(Kendall τ, 0.10; P < .001). The missing rate for CD3+ cell dose
was 25.9%. The total nucleated cell dose was not available.

We then sought to determine whether the CD34+ cell dose cutoff
points commonly used in clinical decision-making were predictive
of categorical variables. We grouped the cohort based on the
CD34+ cell dose as follows: <4, from 4 to 6, from ≥6 to 8, and
≥8 × 106 CD34+/kg recipient weight to conform with common
clinically relevant cutoff points for stem cell dose. The clinical
outcomes are summarized in Table 1 and illustrated in Figure 1B-D.
Again, we found no association between CD34+ cell dose and
major transplantation outcomes.

To our knowledge, we present the largest analysis, to date, inves-
tigating the impact of CD34+ cell dose on major transplantation
outcomes in haploidentical PBSCT. Similar to previous studies in
this setting,8-10 we found no detrimental impact of increasing the
CD34+ cell dose on outcomes, including the development of grade
3 or 4 acute GVHD or moderate-to-severe chronic GVHD. In
4476 RESEARCH LETTER
addition, we found that CD3+ dose did not negatively influence
outcomes. No optimal dose emerged from our analysis, with a lack
of difference in major outcomes across commonly used CD34+

cell dose cutoff points. Collectively, these results call into question
the common practice of capping CD34+ cell dose in haploidentical
PBSCT.

In contrast to 2 recent studies in this setting, we did not observe a
protective effect of an increased CD34+ cell dose against
NRM.9,10 We also did not observe inferior survival outcomes in
patients who received cell doses <5 × 106 CD34+/kg or any
impact of CD34+ cell dose on neutrophil engraftment. In recent
reports from Elmariah et al and a registry analysis from the Euro-
pean Society for Blood and Marrow Transplantation, both groups
advocated targeting cell doses >5 × 106 CD34+/kg based on the
increased risk of NRM driven by infection observed with lower
doses. In contrast, Mussetti et al found that the CD34+ cell dose
was only protective in the setting of bone marrow grafts but not
when peripheral blood stem cells were used in haploidentical
transplantations performed with PTCy. The reason for this
discrepancy across studies is unclear and may be related to dif-
ferences in the populations studied. Our failure to detect differ-
ences in outcomes with low cell doses may be related to the fact
that only a minority of patients received doses of <5 × 106 CD34+

cells/kg. Because of the small number of patients who received a
22 AUGUST 2023 • VOLUME 7, NUMBER 16



0

25

50

75

100

0 5 10 15 20

CD34+ (106/kg)

N

A

Days post HCT
Ab

so
lut

e 
ris

k
0 20 40 60 80 100

0 %

25 %

50 %

75 %

100 %

CD34+

Cell Dose (106/kg)
<4

4−6

6−8

>8

Missing

B

CD34+

Cell Dose (106/kg)
<4

4−6

6−8

>8

Missing

Months post HCT

Su
rvi

va
l p

ro
ba

bil
ity

0 6 12 18 24

0 %

25 %

50 %

75 %

100 %

C

Months post HCT

Ab
so

lut
e 

ris
k

0 1 2 3

0 %

25 %

50 %

75 %

100 %

CD34+

Cell Dose (106/kg)
<4

4−6

6−8

>8

Missing

D

Months post HCT

Ab
so

lut
e 

ris
k

0 6 12 18 24

0 %

25 %

50 %

75 %

100 %

CD34+

Cell Dose (106/kg)
<4

4−6

6−8

>8

Missing

E

Figure 1. Outcomes in patients who underwent mobilized blood–derived related haploidentical allogeneic HCT. (A) Frequency plot of CD34+ stem cell dose per

recipient weight (kg). There is a strong bias toward the use of ~5 × 106 CD34+ cells per kg. (B) Cumulative incidence of primary neutrophil engraftment based on the CD34+ cell

dose per kg. (C) Overall survival. (D) Cumulative incidence of grade 3 or 4 acute GVHD. (E) Cumulative incidence of moderate-to-severe chronic GVHD.
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very low CD34+ cell dose, the results might have limited the power
so should be interpreted with caution.

The limitations of our study include heterogeneity of the data set
with regard to conditioning intensity, underlying disease, donor
characteristics, and specific GVHD prophylaxis agents used
alongside PTCy, which were not controlled for. In addition, 6.7% of
the cohort had missing data regarding cell dose, which may have
introduced bias, although we did not find differences in outcomes
in this proportion of patients. The total nucleated cell dose was not
available and could not be investigated as a potential contributor to
the clinically relevant outcomes. The rates of cytokine release
syndrome were also not available for analysis; studies have shown
mixed findings regarding the impact of CD3+ or CD34+ cell dose
on cytokine release syndrome incidence and severity.13-16 Finally,
as noted, cell doses were heavily clustered at ~5 × 106 CD34+

cells per kg, which might have affected the statistical power to
detect differences in outcomes outside this range.

We conclude that restricting the CD34+ cell dose to 5 × 106

CD34+ cells per kg recipient weight, although common practice, is
not warranted based on these data. Prospective studies may
consider omitting strict cell dose restrictions from the treatment
22 AUGUST 2023 • VOLUME 7, NUMBER 16
plan. Larger sets are needed to determine whether cell doses of <4
million CD34+ cells per kg are safe and to better elucidate the
relationship between cell dose and NRM in haploidentical PBSCT.
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