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Key Points

• Multiomic investigation
of pretreatment bone
marrow identifies a
primary nonresponder
signature to CD19-
CAR in childhood
B-ALL.

• Primary nonresponders
harbor myeloid and
stem cell–like features
while maintaining a
pre–B-cell phenotype.
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CD19 chimeric antigen receptor T-cell therapy (CD19-CAR) has changed the treatment landscape

and outcomes for patientswith pre–B-cell acute lymphoblastic leukemia (B-ALL). Unfortunately,

primary nonresponse (PNR), sustained CD19+ disease, and concurrent expansion of CD19-CAR

occur in 20% of the patients and is associated with adverse outcomes. Although some failures

may be attributable to CD19 loss, mechanisms of CD19-independent, leukemia-intrinsic

resistance to CD19-CAR remain poorly understood. We hypothesize that PNR leukemias are

distinct compared with primary sensitive (PS) leukemias and that these differences are present

before treatment. We used a multiomic approach to investigate this in 14 patients (7 with PNR

and 7 with PS) enrolled in the PLAT-02 trial at Seattle Children’s Hospital. Long-read PacBio

sequencing helped identify 1 PNR in which 47% of CD19 transcripts had exon 2 skipping, but

other samples lacked CD19 transcript abnormalities. Epigenetic profiling discovered DNA

hypermethylation at genes targeted by polycomb repressive complex 2 (PRC2) in embryonic

stem cells. Similarly, assays of transposase-accessible chromatin–sequencing revealed reduced

accessibility at these PRC2 target genes, with a gain in accessibility of regions characteristic of

hematopoietic stem cells and multilineage progenitors in PNR. Single-cell RNA sequencing and

cytometry by time offlight analyses identified leukemic subpopulations expressingmultilineage

markers and decreased antigen presentation in PNR.We thus describe the association of a stem

cell epigenome with primary resistance to CD19-CAR therapy. Future trials incorporating these

biomarkers, with the addition ofmultispecific CAR T cells targeting against leukemic stem cell or

myeloid antigens, and/or combined epigenetic therapy to disrupt this distinct stem cell

epigenome may improve outcomes of patients with B-ALL.
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Introduction

CD19 chimeric antigen receptor T cells (CD19-CAR) have
improved treatment strategies and clinical outcomes for children
with relapsed/refractory B-cell acute lymphoblastic leukemia
(B-ALL), with ~80% to 90% of patients initially responding to
therapy.1-4 Unfortunately, primary nonresponse (PNR), defined as
progressive CD19+ disease, occurs in 10% to 20% of treated
patients despite the expansion of CD19-CAR. Significant efforts
have been made to understand the mechanisms of relapse, which
occur in ~50% of the patients who initially respond.5,6 About 10%
to 30% of the relapsed disease is CD19–, highlighting that target
expression is a critical component of durable outcomes with
CD19-CAR.2,7-11 Mechanisms of CD19 antigen loss in patients
treated with CD19-CAR include preexisting or acquired mutations,
aberrant splicing of the messenger RNA encoding the extracellular
domain of CD19,12-16 downregulation of CD19 surface
expression,8,17 and lineage switching to acute myeloid leukemia
(AML).18-21 Alternatively, PNR, which is characterized by CD19+

progressive disease, has been associated with high T-cell
exhaustion markers in the apheresis product used for cell
manufacturing or a decreased rate of CAR T-cell expansion.22,23

Genome-wide loss-of-function screens in cell lines have also
identified impaired death receptor signaling as another leukemia-
intrinsic mechanism of PNR.24 However, this loss of expression
of death receptor signaling pathways is not always correlated with
PNR in patients, suggesting that these mechanisms of resistance
are heterogenous and not completely understood.

To address the gap in the understanding of PNR and identify
pretreatment biomarkers, we performed a comprehensive molec-
ular characterization of patient bone marrow aspirates (BMAs)
before CD19-CAR treatment from a selected cohort of patients
treated on the PLAT-02 trial (NCT02028455), excluding patients in
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Figure 1. Schema of multiomic platform to investigate mechanism of PNR vs PS

cryopreserved BMAs to investigate PNR. Clinical annotations were used in integrative mu
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whom the lack of response was due to the loss of CD19 expres-
sion or early loss of CD19-CAR engraftment.7,23 We used a
multiomic approach consisting of a combination of genomic, tran-
scriptomic, epigenetic, and single-cell methods to identify preex-
isting, leukemia-intrinsic mechanisms of CD19-CAR resistance
(Figure 1). The identification of key markers of resistance in our
study could positively influence clinical decision making by identi-
fying patients likely to exhibit PNR to CD19-CAR and offer alter-
native, potentially curative, approaches.

Methods

Patient samples

Samples were cryopreserved prelymphodepletion BMAs from
patients with CD19+ B-ALL enrolled in NCT02028455. Patients
were stratified as primary sensitive (PS), defined as obtaining a
durable minimal residual disease negative (MRD−) complete
remission for more than 6 months, or PNR, defined as failing to
achieve and maintain MRD– by 63 days despite the ongoing CD19-
CAR engraftment and leukemic expression of CD19 via flow
cytometry. Additional details on the clinical trial, patient inclusion,
and sample processing are provided in the supplemental methods.

Bulk DNA and RNA sequencing and variant analysis

DNA and RNA were isolated and purified, and whole exome
sequencing (WES) and RNA sequencing (RNA-seq) was per-
formed using NextSeq 500 (Illumina, San Diego, CA); targeted,
long-read sequencing of the CD19 locus was also performed
(PacBio). Additional details are provided in the supplemental
methods.

Illumina EPIC methylation array

DNA was extracted, and methylation data were generated per
manufacturer protocols using the Infinium MethylationEPIC Bead
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Chip Kit (Illumina). Additional details, including bioinformatic anal-
ysis approaches, are described in the supplemental Methods.

ATAC-sequencing

Assays of transposase-accessible chromatin (ATAC) were per-
formed as previously described.25 The resulting ATAC libraries were
sequenced with NextSeq500 (Illumina) with paired-end reads.
Additional details, including bioinformatic analysis approaches and
identification of lineage-specific regions and motif enrichment ana-
lyses,26,27 are described in the supplemental methods.

Single-cell RNA-seq

Single-cell RNA-seq (scRNA-seq) experiments were done in
collaboration with the Single-Cell Analysis Facility of the National
Cancer Institute, Center for Cancer Research. Libraries were
generated with 10x Genomics technology using the 5′ v1.1 single-
cell gene expression assay and sequenced using NextSeq500
(Illumina). Additional details, including bioinformatic analysis
approaches, are described in the supplemental methods.

Mass CyTOF

Cytometry by time of flight (CyTOF) experiments were performed
as previously described.28,29 Data were acquired on a Helios Mass
Table 1. Cohort demographics, clinical characteristics, and response to

Patient

Response

categorization

Relapse status at

time of CD19-CAR Prior HCT

Prior

blinatumomab

Pre-CAR

leukemic bu

(n %)

S09 PNR Second relapse Yes (1) No 92

S27 PNR First relapse No No 97

S31 PNR second relapse No No 80

S37 PNR Third relapse Yes (1) No 59

S46 PNR 2nd Relapse Yes (1) Yes 94.5

S1023 PNR 3rd Relapse No No 100

S1057 PNR 1st Relapse No No 30

S01 PS 2nd Relapse Yes (1) No 59

S07 PS 2nd Relapse Yes (1) Yes 77

S19 PS 2nd Relapse Yes (1) No 75.8

S36 PS 2nd Relapse No No 85

S43 PS 4th Relapse Yes (2) No 23

S53 PS 3rd Relapse Yes (1) Yes 1.9

S58 PS 1st Relapse Yes (1) No 4.4

AMP, amplification; inv, inversion; Ph, Philadelphia chromosome (BCR-ABL1); PD, progressive

4220 MASIH et al
Cytometer (Fluidigm, Inc., San Francisco, CA). Additional details,
including antibody panel, bioinformatic analysis approaches, are
described in the supplemental methods.

Results

Patient cohort demographics

We included 14 treated patients who were enrolled in
NCT02028455. Available samples from PNR patients were
selected and matched to an equal group of PS patients who had
sufficient BMAs available. Seven were categorized as PNRs, and 7
as PS (Table 1; Figure 1). Patients were categorized as PNR if they
failed to achieve and maintain MRD– complete responses (CRs),
had concurrent CD19-CAR engraftment and expansion by day 63,
and had retention of CD19 antigen on the leukemic cell surface.
Our cohort were all CD19+, as detected via pretreatment flow
cytometry. These leukemias were composed of a spectrum of
cytogenetic and molecular subtypes, and these patients had varied
numbers of relapses and prior hematopoietic cell transplants
(HCTs) (Table 1). There were 3 patients who had previously
received the CD19-directed targeted therapy, blinatumomab. Of
these, 1 was a PNR, whereas the other 2 were PS. Among the
PNRs, 2 patients had restaging marrows demonstrating MRD– CR,
but within 3 weeks, they had reemergence of CD19+ ALL in the
CD19-CAR

rden

Known cytogenetics

Pre-CAR

surface

CD19

Post CD19-CAR

surface CD19

Best response and

duration

iAMP21 Positive Positive PD

iAMP21 Positive Positive PD

t(5;14) Positive Positive Initial MRD– CR;
CD19+ B-ALL present
within 3 wk

ETV6-RUNX1 Positive Positive Initial MRD– CR;
CD19+ B-ALL present
within 3 wk

46, XY, 22 PSTL+ Positive Positive PD

46, XY, t(9:12)(p24;p13)/
46, idem, del(1)(q41)/
47, idem, +8
IKZF deletion

Positive Positive PD

67-68 (3n), -X, i(X)(q10),
+1, i(1)(q10), −3, −4,
del(6)(q13q23), +6, −7,
+8, −10, −12, −13,
+14, −16, −17, −17,
+20, +22, +22/46,
XX(20)

Positive Positive PD

Ph-like Positive MRD– MRD– CR; ongoing >7 y

KMT2A-rearrangement Positive MRD– MRD– CR; ongoing >6 y

55, XX Positive MRD– MRD– CR; CD19
negative recurrence at
19 mo

46, XX with inv Positive MRD– MRD– CR; ongoing >5 y

Ph+ Positive MRD– MRD– CR; CD19+

recurrence at 11 mo

Trisomy 1, 4, 9, 10, 12,
17, 21

Positive MRD– MRD– CR; ongoing >5 y

Tetrasomy 21, Trisomy 8 Positive MRD– MRD– CR; ongoing >5 y

disease; PSTL, PSTL polymorphism; XX: duplication of X chromosome.
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setting of ongoing engraftment of CD19-CARs, suggestive of
CD19-independent resistance to CD19-CAR. The remaining PNR
samples exhibited progressive, CD19+ disease. All PS leukemias
obtained durable MRD– CRs. Although 2 patients, 1 with CD19–

disease at 19 months and 1 with CD19+ disease at 11 months,
ultimately became refactory, the other 5 patients continued in
ongoing remission without subsequent therapies at least 5 years
from treatment.

Available cryopreserved samples ranged in quantity from 3 × 105

to 50 × 106 cells per patient. A complete analysis required a
minimum of 8 × 106 viable cells. For samples with fewer cells, we
prioritized specific assays as per the data that were most likely to
inform our analysis (supplemental Table 1). Samples with a
leukemic burden of <5% in the marrow were excluded from bulk
epigenetic and bulk differential expression assays to avoid con-
founding variables (Table 1; supplemental Table 1).

Undetected alterations in the CD19 extracellular

domain exist in some, but not all, primary

nonresponders before treatment

Associations between CD19-CAR resistance and CD19 depen-
dent and independent genomic alterations have previously been
reported.8,13,15,16 We hypothesized that definition of key resistance
markers could be derived from genomic alterations in pretreatment
leukemias. We therefore used WES and RNA-seq to interrogate
for genomic alterations associated with PNR. Overall, we found no
association between known leukemia specific alterations and
responses (Figure 2A; supplemental Table 2-3). Consistent with
previous findings, we identified genomic subtypes used for risk
stratification or known to correlate with responses to conventional
chemotherapy, but, interestingly, the risk associated with these
subtypes was not associated with the therapeutic efficacy of
CD19-CAR. For example, both patients with BCR-ABL1–positive
or Philadelphia chromosome-like–positive ALL, leukemic subtypes
known to be high-risk and correlate with poor response to ther-
apy,30-32 were PS. Conversely, for patient S37’s PNR leukemia
harbored the ETV6-RUNX1 fusion, a marker for excellent prog-
nosis.33 Remarkably, 1 patient (S07) with an MLL-rearranged
(KMT2A-AFF1) leukemia was PS, despite this subtype’s known
association with lineage switching to AML as an acquired resis-
tance mechanism to CD19-CAR.19

Per the eligibility requirements for the clinical trial, all leukemias
were CD19+ by pretreatment flow cytometry.7 By RNA-seq, there
were no statistical differences (P = 1.000) in CD19
gene expression between PNR and PS (Figure 2B). Because
alternative splicing of the CD19 extracellular domain (ECD),
particularly deletion of exon 2, is a well-established CD19-CAR
Figure 2. WES, Bulk RNA-seq, and targeted long-read PacBio sequencing of the C

pediatric patients with B-ALL within the study cohort stratified per the patient response. Pr

yellow, with alterations that were previously discovered by cytogenetics noted (#). Mutatio

variants were detected using WES. (B) Bulk RNA-seq showed no significant difference in C

Whitney two-tailed test (P = 1.000). Patient samples with <5% leukemic infiltration (S53

domain of top transcripts of the CD19 locus identified by PacBio sequencing. (D) Heatma

PacBio long-read sequencing across the patient samples. Notably, patient S1057 had sig

CD19-CAR. (E) Proportions of CD19 isoforms identified by PacBio sequencing in patient S

CD10 from patient S1057 do not reveal a significant CD19– population.

4222 MASIH et al
resistance genotype, we used targeted PacBio long-read
sequencing of complementary DNA generated from patient
CD19 mRNA to determine if different pretreatment isoforms were
associated with nonresponse. We identified multiple variant iso-
forms of CD19 in both PNR and PS, including the previously
described deletion of exon 2 or retention of intron 2 (Figure 2C;
supplemental Figure 1).8,13-17 Greater than 70% of all sequenced
CD19 transcripts were the wild-type isoform in all leukemias except
in 1 PNR, S1057. Notably, patient S1057 had a preexisting CD19
isoform with exon 2 alternatively spliced out in 47% of all detected
transcripts (Figure 2D-E; supplemental Figure 2), and thus, the
likely source of PNR in this case is antigen dependent.14 Clinical
flow cytometry did not reveal this patient as having either insuffi-
cient expression of surface CD19 or subpopulations lacking CD19
surface expression (Figure 2F). Interestingly, this patient’s leukemia
remained CD19+ after treatment with CD19-CAR. It is possible
that this splicing event affects the efficacy of CD19-CAR specific
killing without interfering with binding of the specific antibody used
for flow cytometry. With our results indicating a paucity of recurrent
driving genetic alterations associated with PNR, we hypothesized
that epigenetic regulatory mechanisms could be a source of
resistance to CD19-CAR.

Identification of a predictive methylation signature of

PNR that is suggestive of a stem cell phenotype

Because one established form of acquired resistance to CD19-
CAR is lineage reprogramming from B-ALL to AML, we hypothe-
sized that changes in the leukemic epigenome could confer
plasticity and lead to alternative causes of PNR.19,21 Using array-
based DNA methylation, we identified 238 differentially hyper- or
hypomethylated regions (DMR) characteristic of pretreatment
PNRs compared with that of PSs (P < .05; PNR-DMRs),
(Figure 3A; supplemental Table 4). This analysis was performed on
11 samples (6 PNR and 5 PS), excluding S1057, S53, and S58
because of low sample availability or low tumor burden. Using gene
set enrichment analysis (GSEA) and hypergeometric pathway
enrichment of the hypermethylated PNR-DMRs, we identified an
enrichment of promoter hypermethylation at genes known to be
targets of PRC2 repression in embryonic stem cells (ESCs)
(BENPORATH_PRC2_TARGETS; P = 8.15E-25 and BENPOR-
ATH_ES_WITH_H3K27ME3; P = 5.67E-29) (Figure 3B;
supplemental Table 4).34 Interestingly, hypermethylation at
these genes has previously been associated with tumor-intrinsic
resistance of chronic lymphocytic leukemia to HCT, and therapy
resistant cancer stem cells in other tumor types have been
shown to share this repression pattern.34,35 Therefore, our results
suggest that hypermethylation of these regions in PNR could
predispose them to a less differentiated phenotype with inherent
D19 of B-ALL from PNR and PS patients. (A) Pretreatment genomic landscape of

ior CD19-targeting therapy with blinatumomab is designated in green. Fusions are in

ns are in blue with hotspot mutations noted (*). No stop-gain, frameshift, or splicing

D19 expression between responders (PS) and nonresponders (PNRs), using Mann-

and S58) were excluded from the analysis. (C) Schematic depicting the extracellular

p showing the proportion as a percentage of detected CD19 transcripts via targeted

nificant preexisting transcripts without CD19’s exon 2, the known binding domain of

1057. (F) Pre-CD19-CAR flow cytometry data for CD19 (clone J3-119) vs CD45 and
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strategy of a publicly available data set of MPAL vs single-phenotype acute leukemias36 (D) Pathways enriched in MPAL-DMRs (n = 2204) detected by a hypergeometric Fisher

exact test. (E) Venn diagram showing that the 70 overlapping regions between MPAL-DMRs and PNR-DMRs are enriched for SUZ12, JARID2, EZH2, and EED targets based on

ENRICHR analysis.
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plasticity, rendering leukemia cells resistant to CD19-CAR–medi-
ated killing.

DNA methylation has previously been shown to be a cause of the
inherent plasticity seen in mixed phenotype acute leukemias
(MPALs), independently of subpopulation lineage-specific genomic
alterations.36 We hypothesized that our leukemias could harbor a
similar DNA methylation pattern. To explore this, we analyzed a
DNA methylation data set from a previously published, independent
cohort of acute leukemias (n = 159) including MPALs.36 We
compared the methylation profiles of the MPALs (n = 50) with the
other single lineage acute leukemias, including AML (n = 15),
B-ALL (n = 29), and T-ALL (n = 30) (Figure 3C). We identified
2204 uniquely differentially methylated regions characteristic of
MPALs associated with lineage-independent, leukemic plasticity
(MPAL-DMRs) and found that, of these, the hypermethylated genes
are also enriched for ESC repressive signatures (BENPOR-
ATH_ES_WITH_H3K27ME3; P = 1.13E-16) and ESC PRC2 tar-
gets (BENPORATH_PRC2_TARGETS; P = 5.16E-14) (Figure 3D;
supplemental Table 6-7). We then compared the MPAL-DMRs with
our cohort’s PNR-DMRs and revealed an overlap of 70 hyper-
methylated genomic regions (Figure 3E; supplemental Table 8).
Using ENRICHR, we found that genes associated with these
specific regions are bound by multiple PRC2 components and
cofactors in human ESCs (Figure 3E; supplemental Table 9).37,38

Thus, our results indicate that the relatively hypermethylated regions
characteristic of PNR are also repressed in ESCs and cancer stem
cells (CSCs) and associated with inherent leukemic plasticity, which
may be important in resistance to CD19-CAR. Furthermore, these
regions of hypermethylation are characteristic of PNR compared
with those of PS and have the potential to be used as a pretreatment
biomarker to identify these cases of nonresponse.

Maintenance of a B-ALL phenotype with acquisition

of hematopoietic progenitor chromatin landscapes in

PNR

In order to further characterize the phenotype associated with our
described methylation signature, we performed ATAC-seq. Com-
parison of PNR (n = 6) and PS (n = 5) leukemias revealed 2128
differentially accessible regions (FDR ≤ 0.05) and an overall
increase in the accessible chromatin domains in PNR leukemias
compared with that in PS (Figure 4A-B). GSEA and hypergeo-
metric pathway enrichment analysis revealed stem cell and prolif-
eration modules in the PNR defining accessible regions
(Figure 4C).34 Increased expression of these genes has previously
been associated with repression of the PRC2 target genes we
found to be hypermethylated in PNR, further supporting a stem cell
phenotype (Figure 4C; supplemental Table 10).34 Consistent with
our discovered methylation signature, we observed a decreased
accessibility at the same ESC PRC2 target genes found to be
Figure 4. Differential chromatin accessibility, motif, and gene expression analysis o

PNR and PS leukemias. PNR and PS defining accessible regions (n = 2128) were determin

regions shared and regions defining leukemias from PNR and PS. (C) GSEA shows increased

(D) GSEA shows decreased accessibility at regions known to be repressed in embryonic and

characteristic (AUROC) for key motif enrichment in regions whose accessibility was specific

expression of the indicated TFs, measured for each leukemia sample as the Z-score of CPM

consortium. Each of the presented TFs is both upregulated and known to bind to one of th
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hypermethylated in our PNR leukemias (Figure 4D; supplemental
Table 10).

Transcription factors (TFs) are known to determine cell identity
through modulating chromatin accessibility patterns and driving
transcription.39 In order to investigate which TFs were associ-
ated with the differential accessibility seen in our patient sam-
ples, we employed motif enrichment in differential elements of
accessibility (MEDEA). Using a collection of 208 motifs repre-
sentative of the known repertoire of human TF binding specific-
ities, we found enrichment for 41 motifs as defined by AUROC ≥
0.55 in at least 1 leukemia sample (Figure 4E; supplemental
Figure 3).26 We then evaluated the RNA expression levels of
the TFs known to recognize these enriched motifs and quantified
their upregulation as the Z-score of counts per million reads
relative to the 53 healthy human tissues profiled by the GTeX
consortium. The RUNX motif was similarly enriched in PNR and
PS, and both exhibited similar expression of RUNX1, a known
master TF in B-ALL (Figure 4E-F). We additionally observed a
pronounced enrichment for E2A, EBF1, ETS1, and ZBTB18
motifs, across all samples but higher in PNR than in PS
(Figure 4E). We saw increased RNA expression of TCF4 (P =
.005), ERG (P = .005), and EBF1 (P = .024), which are mem-
bers of the E2A, ETS, and EBF families, respectively, in PNR
relative to PS (Figure 4F). We validated this increased expression of
TCF4 (P = .008) and ERG (P = .048) and the similar expression of
RUNX1 (P = .867) using quantitative reverse transcription poly-
merase chain reaction (supplemental Figure 4). Interestingly,
increased expression of ERG, an important lineage specifier for
hematopoietic development, has been demonstrated to be leuke-
mogenic and associated with poor clinical outcomes in both AML
and ALL.40-43 Notably, patient S37 with PNR leukemia, harbors a
ETV6-RUNX1 translocation, which could bind to the abundant
RUNX and ETS motifs identified. Together, these results suggest
that these TFs are associated with and could influence the chro-
matin landscapes observed in PNR.

To examine if the differentially accessible regions, TF motif
enrichments, and increased levels of specific TF expression were
reflective of a loss of pre-B-cell identity, we compared our ATAC-
seq data with those of a previously published data set of 13
healthy hematopoietic cell types from healthy human donors
(n = 39).44 Overall, chromatin accessibility profiles from PNRs
and PSs were clustered together relative to healthy hematopoi-
etic cells (Figure 5A). Interestingly, PNR defining peaks were
characteristic of multiple hematopoietic cell types, including both
myeloid, lymphoid, and progenitor phenotypes. We further
explored this relationship between the leukemias in our cohort
and healthy hematopoietic cells by creating phylogenic trees
based on distance as measured by Pearson correlation. We
found that all the leukemia samples were closely clustered,
suggesting a shared B-ALL accessible chromatin signature
f PNR and PS leukemia. (A) Volcano plot comparing chromatin accessibility between

ed by an FDR ≤ 0.5. (B) Heatmap depicting ATAC-seq peaks by sample at accessible

accessibility at regions known to be active in embryonic and cancer stem cells in PNR.

cancer stem cells in PNR. (E) Heatmap showing the area under the receiver operating

to leukemia cells, as determined by MEDEA.26 (F) Box plots showing increased RNA

(counts per million reads) values against 53 normal human tissues profiled by the GTeX

e motifs enriched in PNR leukemias. NS, not significant; **P ≤ .01; *P ≤ .05.
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(Figure 5B). Interestingly, we observed no significant differences
in regions defining CLPs or B-cells, confirming that PNR leuke-
mias maintain their B-cell identity. However, the peaks in PNR
leukemias were more highly correlated with more primitive cell
types, including hematopoietic stem cells (P = .037), multipotent
progenitors (P = .047), lymphoid-primed multipotent progenitors
(P = .039), granulocyte-macrophage progenitors (P = .037), and
common myeloid progenitors (P = .048) relative to those in PS
leukemias (Figure 5C). By gaining accessibility at regions asso-
ciated with hematopoietic progenitors, including those of both
myeloid and lymphoid lineages, our data suggest that PNRs are
less differentiated and may contain an increased plasticity when
compared with PS. Furthermore, rather than losing a B-ALL
phenotype, PNR leukemias gain characteristics of progenitor and
myeloid lineages.

PNR samples have leukemic subpopulations

coexpressing lymphoid, myeloid, and hematopoietic

progenitor markers

It is possible that the stem cell signatures we detected in our
epigenetic analyses are due to subpopulations of leukemic stem
cells. To further investigate our hypothesis of primitive and plastic
subpopulations leading to PNR to CD19-CAR, we used single-cell
transcriptomics and proteomics to define leukemic heterogeneity
within PNR and PS leukemias not previously detected using flow
cytometry. Using scRNA-seq, we captured a total of 51 784 cells,
representing B-ALL as well as healthy cells along the hematopoi-
etic spectrum (Figure 6A). We were able to identify the B-ALL cells
and healthy cells of hematopoiesis using Uniform Manifold
Approximation and Projections (UMAP) and cell type annotation
with gene sets derived from previously published RNA-seq data of
different stages along the hematopoietic spectrum.44 We then
bioinformatically isolated the B-ALL cells (n = 41 666), clustered
them, and focused our analysis only on leukemia-intrinsic differ-
ences (Figure 6A-B; supplemental Table 11).

Leukemic cells comprised 5 transcriptionally distinct clusters.
Cluster frequency differed depending on patient response and no
cluster was made up of only 1 sample (supplemental Table 12).
Pretreatment PNR leukemias showed an increased number of cells
in clusters 2 and 5 (Figure 6B-C; supplemental Figure 5A-C;
supplemental Table 12-13). Cluster 2 is defined by relatively
increased expression of genes known to interact with PRC2, cause
cell proliferation, and prevent apoptosis (MALAT1); and those
critical for maintaining leukemic stem cell phenotypes (JMJD1C)
(supplemental Table 14).45-48 Notably, Cluster 5 had an increased
expression of MPO (P = 2.91E-192), a myeloid lineage marker,
with high expression in 91.4% of all cluster 5 cells (Figure 6D;
supplemental Figure 5C; supplemental Table 14). In order to better
understand the differentiation state of our identified clusters and
elucidate if any of them are precursors to others, we employed
Figure 5. Comparisons of chromatin accessibility patterns from a data set of no

correlation values between pretreatment leukemias and 13 subtypes of cells from differen

Pearson correlation between leukemias and subtypes of normal hematopoiesis from 3 sep

similarity with healthy cells of hematopoietic development by Pearson correlation show that

difference between the groups’ similarities to B cells or CLPs. Statistical significance was d

common myeloid progenitor; CLPs, common lymphoid progenitors; GMP, granulocyte-ma

multipotent progenitor; MPP, multipotent progenitor; MEP, megakaryocyte-erythroid proge
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RNA velocity analysis. Notably, Cluster 5 is predicted to be more
primitive than all other clusters, and Cluster 2 is predicted to be a
precursor to Clusters 1, 3, and 4 (Figure 6E-F). Taken together, this
supports the existence of more primitive leukemic subpopulations
that maintain a higher degree of multilineage potential in PNR.

To further evaluate this finding, we used our single-cell proteomic
data, which was performed on the 6 samples available (2 PNR and 4
PS) (supplemental Table 1). CyTOF analyses based on our
hematopoietic focused panel (supplemental Table 15) detected 17
distinct cell populations, including both healthy immune cells and
multiple leukemic populations (Figure 6G-H; supplemental
Figure 6A-B; supplemental Table 16). Only one cluster of
leukemic cells (cluster 16) was found to significantly differ between
PNR and PS leukemias (P = .01). This population expressed surface
markers of myeloid (CD33) and lymphoid (CD19, CD22) lineage, as
well as CD34, which is expressed on hematopoietic progenitors
(Figure 6H; supplemental Figure 6A-B). These results further sup-
port the existence of leukemic populations with both stem cell and
myeloid features that could confer resistance to CD19-CAR.

Decreased antigen presentation and a differential

T-cell phenotypes exist in PNR prior to CD19-CAR

To determine if there were differences in gene expression between
PNR and PS leukemias independent of cell clustering, we compared
gene expression of PNR and PS B-ALL cells from our scRNA-seq
data set. To avoid sample bias, up to 2000 randomly selected
cells were used per sample. Interestingly, we found a decrease in
apoptotic genes (BAX) and increased expression of genes known to
inhibit apoptosis (MTRNR2L8) and maintain leukemic stem cell
populations (CXCR4 and ID3) in PNR samples (supplemental
Table 17).49-52 Concurrently, we found decreased expression in
lineage-specific genes associated with B-cell development (JCHAIN
and CD79B) and major histocompatibility complex class II genes,
suggesting a less differentiated phenotype for PNR compared with
PS samples (supplemental Table 17).53,54 Using GSEA of the same
subset of leukemic cells, we then compared PNR with PS and found
downregulation of discrete immune relevant and B-cell differentiation
gene sets in PNR (supplemental Table 18). Notably, there was a
significant decrease in antigen presentation and processing path-
ways in PNR (NES, −1.59; P = .004) (supplemental Table 18;
Figure 6I). We then plotted the average expressions of the genes in
this pathway in each cell, compared PNR and PS, and showed that
cells from patients with PNR leukemia displayed a marked down-
regulation of antigen presentation and processing independent of
cell cluster (Figure 6J).

In order to explore whether there were any preexisting phenotypic
differences in the patients’ T cells, we then performed differential
expression analysis of bioinformatically isolated T cells from our
scRNA-seq data (supplemental Table 19). Comparing T cells from
PNR with those from PS samples revealed further differences in
rmal hematopoiesis with patients in this study. (A) Heatmap showing Pearson

t stages of normal hematopoietic development. (B) Phylogenetic tree based on

arate healthy human donors. (C) Comparisons between PNR and PS stratified by

PNR (coral) are more similar to hematopoietic progenitors than PS (blue). There is no

etermined by Kolmogorov-Smirnov tests, and significance (P ≤ .05) is noted (*). CMP,

crophage progenitor; HSC, hematopoietic stem cell; LMPP, lymphoid-primed

nitor; NK-cell, natural killer cell.

PRIMARY NONRESPONSE TO CD19-CAR IN PEDIATRIC ALL 4227



B

1 2 3 4 5

PS PNR

Leukemia Cells
(n = 41, 666)

A

Primary Sensitive

1 2 3 4 5

Primary Non-Responder

C

MALAT1
RPS4Y2
MPO
DUSP6
NFKBIZ
ANKRD28
FOSB
TNFAIP3
SERPINE1
FBXW7
KLF6
JUN
TLE4
FUS
JMJD1C
NR3C1
MIR181A1HG
CCNL1
NEAT1
RBM39
HIST1H4C
MKI67
UBE2C
TYMS
MCM7
H2AFZ
HMGN2
TUBA1B
TUBB
STMN1
HMGB2
RPL12
RPL5
RPL10
EEF1A1
FTH1
RPL39
TPT1
NACA
RPL30
RPL34
DUT
PKM
MIF
ENO1
MCM5
RANBP1

–1.5

–1

–0.5

0

0.5

1

1.5

Cluster
Expression

3 4 1 2 5

Cluster

D

E
Velocity Analysis 

F
5

2

3

1

4

Primary Sensitive

Primary Non-Responder

Frequency in
Cluster 16

Fr
eq

ue
nc

y (
%

 o
f t

ot
al 

ce
lls

)

P = .01

4

3

2

1

HG
tSNE of CyTOF Data 

tSNE1

tS
NE

2

CD19+

CD22+

CD33+

CD34+

CD27+

CD45RA+

HLA-DRlow

Antigen Presentation and Processing

Decreased Expression in PNR

En
ric

hm
en

t s
co

re

P adjusted = 3.58E-3
NES = -1.59

0.00

–0.25

–0.50

–0.75

I
Antigen Presentation and Processing Pathway Expression 

Per Cell Average 
Gene Expression

Primary Non-Responders Primary Sensitive

0.0

0.6

1.2

J

All Cells (n = 51, 784) 

Monocytes

B cells

CD4+ T cells

CD8+ T cells

Erythroid

B-cell ALL

NK cells

Figure 6. scRNA-seq and CyTOF analyses of PNR and PS. (A) UMAP projection showing cells captured by scRNA-seq from pretreatment patient BMA. Cell type is classified

and annotated using SingleR and referenced transcriptomic data sets.44 (B) UMAP of bioinformatically isolated B-ALL cells colored per the cluster (1-5; upper) and clinical

response to CD19-CAR (PNR and PS; lower). (C) Pie chart depicting relative frequency of PNR or PS leukemic cells per cluster. (D) Heatmap of most significantly differentially

expressed genes based on the cluster. Scale depicts normalized expression of each gene per cluster. (E) RNA velocity analysis of scRNA-seq data overlaid on UMAP colored by

cluster. Arrows represent high-dimensional vectors predicting the future cell state of cells within the UMAP. (F) Partition-based graph abstraction (PAGA) summarizes the

predicted cell trajectories between the clusters. Notably, Cluster 5 is the most primitive cluster, and cells in Cluster 2 are projected to progress to Clusters 1, 3, and 4.

4228 MASIH et al 8 AUGUST 2023 • VOLUME 7, NUMBER 15

D
ow

nloaded from
 http://ashpublications.net/bloodadvances/article-pdf/7/15/4218/2069698/blooda_adv-2022-008977-m

ain.pdf by guest on 29 M
ay 2024



D
ow

nloaded from
 http://ashpublications.net/bloodadvances/article-pdf/7/15/4218/2069698/blooda_adv-2022-008977-m

ain.pdf by guest on 29 M
ay 2024
pretreatment phenotypes (supplemental Figure 7, and Table 20).
We found a significant downregulation of genes involved in T-cell
cytotoxicity and peripheral homeostasis in PNR. These included the
granzymes, GZMA (P = 1.67E-11) and GZMB (P = 3.73E-6),
perforins (PRF1; P = 1.49E-12), and other key components of
functional T-cell responses, such as EIF5A (P = 1.02E-75),
PRDX1 (P = 5.75E-48), and RPS26 (P = 0), a gene previously
shown to be important for T-cell homeostasis (supplemental
Figure 7, and supplemental Table 20).55 This implies that not
only is PNR leukemia less immunogenic, but it coexists with a dif-
ferential phenotype of T cells prior to treatment with CD19-CAR.

Discussion

Factors contributing to leukemia-intrinsic PNR to CD19-CAR in
pediatric ALL remain poorly understood, and current predictive
markers are insufficient to reliably identify patient responses. To
discover novel markers of PNR to CD19-CAR, specific to cases in
which CD19 expression is maintained with ongoing CD19-CAR
engraftment, we employed an integrated, multiomic approach,
with focus on future clinical feasibility, to analyze pretreatment
BMAs from patients known to respond or not respond to CD19-
CAR.

Using CD19 targeted PacBio long-read sequencing, we detected
exon 2 skipping, which has previously been associated with relapse
after the initial response to CD19-CAR, in 1 case of PNR. This was
not detected in the pretreatment clinical workup, indicating that the
current evaluation approach using flow cytometry of the CAR
directed antigen may not be able to predict both antigen depen-
dent and independent PNR. Although this sequencing method is
not directly quantitative, it suggests that using sequencing
methods or careful matching of the flow cytometry antibody to the
CAR binder could improve evaluation of antigen quality and
quantity, and thus prediction of response.

Here, we uncovered a stem cell–like epigenome (SCE) as a novel
candidate biomarker of PNR to CD19-CAR. Screening for a SCE
phenotype with epigenetic analyses could be translated into clinical
practice to prevent futile therapy in this high-risk patient population.
We discovered that PNR leukemias harbor a distinct methylation
profile, characterized by DNA hypermethylation at genes known to
be targeted by PRC2 repression in ESCs and an associated SCE.34

Notably, we saw significant overlap between this profile and regions
of DNA hypermethylation known to be associated with the plasticity
seen in MPAL.36 PNR defining chromatin accessibility implicated a
stem cell phenotype with characteristics of self-renewal and multi-
lineage potential. Interestingly, we saw this epigenetic profile inde-
pendently of leukemic subtype, and the 1 patient in our cohort who
exhibited a KMT2A-AFF1 alteration, which has been previously
associated with a lineage switch to AML under CD19-CAR immune
pressure, was PS.19,21 Importantly, this patient did not harbor the
SCE phenotype, including methylation signature or gained regions
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of chromatin accessibility characteristic of multipotent progenitors.
This supports that SCE is a unique phenotype of CD19-CAR
resistance rather than a precursor to lineage switching.

We further explored the leukemic phenotype associated with the
epigenetic profile by bioinformatically isolating B-ALL cells from our
scRNA-seq data and identified an increased expression of stem
cell and myeloid lineage markers, including MPO, in clusters that
were more frequent in PNR. These clusters also had increased
expression of genes known to interact with PRC2. Overall, PNR
leukemias had increased expressions of anti-apoptotic and leuke-
mia stem cell associated genes, suggesting that these cells are
likely more primitive and harbor increased plasticity. Further sup-
porting this, we observed coexpression of myeloid, lymphoid, and
hematopoietic progenitor surface protein markers in PNR
subpopulations.

Although the change in the phenotype in B-ALL is often referred
to as a lineage switch or a change to AML, our data, in which
CD19 and other markers of lymphoblasts are retained, suggest
that plasticity is an inherent property of the disease in a subset of
patients and can confer resistance to immunotherapy. One could
hypothesize that this discovered SCE, therefore, protects the
leukemic cell from T-cell cytotoxicity, and the ongoing CD19
targeting pressure to downregulate antigen or lineage switch is
therefore removed. The current understanding of blood cell
development from long-lived progenitors is that lineage potential
can be a retained property, even as certain malignant clones
retain the phenotypic appearance of a committed lineage.56

Future studies to further characterize the leukemias in patients
who undergo a lineage switch will be an important addition to this
work.

Although our results provide several new lines of evidence for
antigen-independent CD19-CAR resistance, this study had several
limitations. Our cohort was small, with only 14 patients, and the
leukemias were heterogenous, consisting of multiple subtypes.
Additionally, our bulk analyses were performed on whole BMAs,
rather than on isolated B-ALL cells. It is possible that some of our
results arise from differences in the leukemic burden, although this
was mitigated by our use of the single-cell analyses, which
corroborated our findings. Previous work has described antigen-
independent sources of CD19-CAR resistance, including the
reduced expressions of death receptor genes in leukemia cells.24

Although we did not observe this in our cohort, this further high-
lights that genomic alterations of CD19 or downregulation of these
death receptors are not the only factors contributing to nonre-
sponse in these patients. It will be important for future studies to
expand the number of patients screened to determine the sensi-
tivity and specificity of SCEs to identify PNRs, and our described
protocols would need to be refined to be suitable for use in the
clinic. Furthermore, although we describe an association between
SCE and PNR to CD19-CAR, we did not identify the exact
OF analyses of PNR and PS leukemias. Cluster 16 was the only cluster occurring at a

4+, CD33+, CD27+, and HLA-DRlow. (H) Plot of frequency (%) of cells being

ed in PNR leukemias (P = .01; two sample t test). (I) GSEA of cell count normalized

rocessing pathway genes (NES, −1.59; P = .004). (J) UMAP showing per cell average

at the observed decrease in the antigen presentation and processing pathway is

PRIMARY NONRESPONSE TO CD19-CAR IN PEDIATRIC ALL 4229



D
ow

nloaded from
 http://ashpublications.net/bloodadvances/article-pdf/7/15/4218/2069698/blooda_adv-2022-
mechanism causing the resistance to cytotoxic killing. Future
mechanistic and in vivo studies using matched patient leukemias
and CD19-CARs are required to uncover the underlying biology
and improve the targeting of this PNR phenotype.

In summary, we developed a comprehensive multiomic approach to
evaluate patient BMA and describe the association of SCE with
PNR to CD19-CAR therapy, which is not readily identified by stan-
dard pretreatment flow cytometry. Our results support further
refinement of the eligibility criteria for CD19-CAR, and future trials of
combination therapy with epigenetic modifying agents. Continued
investigation into the leukemic biology of PNR will provide informed
clinical decision making, novel therapeutic strategies, and improved
outcomes for patients with this devastating disease.
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