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Key Points

• To our knowledge, we
provide the first
evidence implicating
SARS-CoV-2+

peripheral blood
megakaryocytes in
severe disease.

• Circulating
megakaryocytes
warrant investigation in
inflammatory disorders
beyond COVID-19.
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Several independent lines of evidence suggest that megakaryocytes are dysfunctional in

severe COVID-19. Herein, we characterized peripheral circulating megakaryocytes in a

large cohort of inpatients with COVID-19 and correlated the subpopulation frequencies with

clinical outcomes. Using peripheral blood, we show that megakaryocytes are increased in

the systemic circulation in COVID-19, and we identify and validate S100A8/A9 as a defining

marker of megakaryocyte dysfunction. We further reveal a subpopulation of S100A8/A9+

megakaryocytes that contain severe acute respiratory syndrome coronavirus 2 (SARS-CoV-

2) protein and RNA. Using flow cytometry of peripheral blood and in vitro studies on SARS-

CoV-2–infected primary human megakaryocytes, we demonstrate that megakaryocytes can

transfer viral antigens to emerging platelets. Mechanistically, we show that SARS-CoV-2–

containing megakaryocytes are nuclear factor κB (NF-κB)-activated, via p65 and p52;

express the NF-κB–mediated cytokines interleukin-6 (IL-6) and IL-1β; and display high

surface expression of Toll-like receptor 2 (TLR2) and TLR4, canonical drivers of NF-κB. In a

cohort of 218 inpatients with COVID-19, we correlate frequencies of megakaryocyte

subpopulations with clinical outcomes and show that SARS-CoV-2–containing

megakaryocytes are a strong risk factor for mortality and multiorgan injury, including

respiratory failure, mechanical ventilation, acute kidney injury, thrombotic events, and

intensive care unit admission. Furthermore, we show that SARS-CoV-2+ megakaryocytes are

present in lung and brain autopsy tissues from deceased donors who had COVID-19. To our

knowledge, this study offers the first evidence implicating SARS-CoV-2+ peripheral

megakaryocytes in severe disease and suggests that circulating megakaryocytes warrant

investigation in inflammatory disorders beyond COVID-19.
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Introduction

A feature of COVID-19 that has not attracted much attention is the
involvement of megakaryocytes (MKs), a cell type not typically
associated with acute inflammatory diseases. MKs are classically
restricted to the bone marrow, in which they function to produce
platelets, but smaller populations of MKs exist in the lungs and
spleen.1,2 Intravital imaging and other methods have revealed that
MKs migrate out of the bone marrow and enter the central venous
circulation in healthy condititions.1,3 MKs within the pulmonary
circulation display dynamic movement and actively release large
numbers of platelets.1 At least 50% of all circulating platelets
originate from MKs within the pulmonary circulation, suggesting
that the lungs are a major site for platelet biogenesis.1 Blood
samples obtained at the time of cardiac bypass surgery suggest
that mobilized MKs are filtered out at the site of the pulmonary
microvasculature.4-6 Yet some enter the systemic circulation,
appearing as smaller cells with considerably higher nuclear-to-
cytoplasmic ratios.6-8 Interestingly, pulmonary diseases, such as
bronchitis and bronchopneumonia, are associated with increases
in circulating MKs in both the pulmonary and systemic blood.1,9

Recently, MKs and platelets have been shown to play important
roles during pulmonary infection. Lung platelets are required for
neutrophil recruitment and transmigration during active infection
and regulatory T-cell recruitment and anti-inflammatory cytokine
expression during resolution.10,11 Lung MKs have recently been
shown to process and present antigens, express Toll-like receptors
(TLRs) and costimulatory molecules, and secrete and respond to
cytokines.1,2,12 Furthermore, studies on human MK development
have demonstrated differentiation trajectories that give rise to MK
subsets with immune signatures.13 Thus, MKs have the potential to
contribute to acute inflammatory diseases, especially those
affecting the lungs.

In COVID-19, MKs were first implicated in severe disease because
of widely observed thrombosis and platelet dysfunction. In patients
with severe disease, increased incidences of venous and arterial
thromboses are major contributors to mortality and morbidity.14

Platelets in COVID-19 are well described as hyperactivated and
prone to thrombosis and have been shown to contain active severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2).15-19

Moreover, rare platelet disorders, such as thrombotic thrombocy-
topenia, have been reported after SARS-CoV-2 vaccination, further
implicating the role of these cells in the viral immune response.20-22

Case series from COVID-19 autopsies have consistently reported
the presence of extramedullary MKs in a diverse array of diseased
organs. These include the coronary arteries of the heart, glomeruli
of kidneys, microvasculature and parenchyma of the lungs, sinu-
soids of the liver, and cortical capillaries of the brain.23-29 These
results support an increased mobilization of MKs to the peripheral
circulation in severe COVID-19. In agreement, histologic studies on
the bone marrow have found MK proliferation during active infec-
tion.27,30 Single-cell RNA-sequencing (scRNA-seq) studies of
COVID-19 peripheral blood have consistently found cell pop-
ulations that are positive for MK lineage genes and whose
frequencies increase with disease severity.31-34 This increase in
MKs is in contrast to platelet levels, which are often decreased to
near thrombocytopenic ranges in severe COVID-19.35-37 Some
8 AUGUST 2023 • VOLUME 7, NUMBER 15
scRNA-seq analyses have suggested that circulating MKs
contribute to COVID-19 disease through cytokine production.33,38

Yet, to our knowledge, no reports have studied circulating MKs in
patients with COVID-19 beyond the transcriptomic level.

Herein, we provide the first characterization of circulating MKs in a
cohort of 218 patients with COVID-19. We identify a highly path-
ologic subpopulation of circulating MKs that express S100A8/A9
and contain SARS-CoV-2 in the systemic circulation as well as in
lung and brain autopsy tissue. The S100A8/A9+ virus–positive
population displayed robust nuclear factor κB (NF-κB) activation,
with the expression of proinflammatory cytokines, and we demon-
strate that virus-containing MKs transfer SARS-CoV-2 antigens to
emerging platelets. Lastly, the frequency of S100A8/A9+ virus–
positive MKs is strongly associated with mortality and multiorgan
injury in a large cohort of patients who were hospitalized with
COVID-19.
Methods

Please see supplemental Methods for complete experimental
details.

Peripheral blood collection and processing

Venous blood was drawn from the median cubital vein into acid
citrate dextrose coated tubes under sterile conditions. Plasma was
separated via centrifugation at 300g for 10 minutes. Platelet-rich
plasma and buffy coat were further centrifuged at 1200g for
10 minutes, forming a cell pellet. The cell pellets were resuspended
in 1 mL of 90% fetal bovine serum with 10% dimethyl sulfoxide and
stored at −80◦C for ≤6 months until the time of analysis. Detailed
descriptions of the flow cytometry protocol, analyses, and related
statistical methods are provided in the supplemental Methods.

Study population and EMR data collection

Between August 2020 and March 2021, 1961 patients who were
hospitalized at University of Alabama at Birmingham (UAB) hospi-
tals with COVID-19 and who had a positive SARS-CoV-2 poly-
merase chain reaction result were enrolled in the Enterprise study.
Of these 1961 patients, peripheral blood was collected from 619,
and 218 were included in this study. Two patients had repeated
blood draw during their hospitalization. Patient demographics, past
medical history, biometrics, laboratory measurements, and all clin-
ical outcomes were obtained via electronic medical records
(EMRs) from the UAB. Of the 218 patients in our cohort, only 1
patient received a single dose of vaccine before blood sample
collection and flow cytometry experiments. Charlson comorbidity
indices were constructed for each patient using EMR data
collected before their COVID-19 encounter. Peak COVID-19 dis-
ease severity was assessed using the World Health Organization
(WHO) ordinal scale across 2 time intervals: the day of sample
collection and the entire inpatient stay (Table 1). Intensive care unit
(ICU) admission and mechanical ventilation were determined
based on admission and procedure time stamps.

Statistics

Statistical details of each experiment can be found in the figure
legends, and complete statistical methods are provided in the
supplemental Data.
SARS-CoV-2+ MEGAKARYOCYTES AND COVID-19 INFECTION 4201



Table 1. Complete study population characteristics

Characteristics Cohort (N = 218)

Age 61.21 (13.12)

BMI 33.59 (9.96)

Charlson comorbidity score 2.79 (2.07)

Time before sample collection (d) 5.88 (3.52)

Inpatient length of stay (d) 11.48 (16.31)

Sex

Female 92 (42)

Male 126 (58)

COVID-19 severity on day of sample collection (WHO score 4-7)

4: no supplemental oxygen 52 (24)

5: supplemental oxygen (<5 L/min) 92 (42)

6: high-flow nasal cannula (≥5 L/min) 40 (18)

7: invasive mechanical ventilation 34 (16)

Race

American Indian or Alaska Native 1 (0.5)

Asian 5 (2.3)

Black or African American 79 (36)

Hispanic or Latino 4 (1.8)

Multiple 1 (0.5)

White 123 (56)

Decline/refuse to disclose 4 (1.8)

Other 1 (0.5)

Medical history before COVID-19 admission

Myocardial infarction 69 (32)

Congestive heart failure 71 (33)

Peripheral vascular disease 52 (24)

Cerebral vascular disease 39 (18)

Chronic pulmonary disease 71 (33)

Diabetes without complications 75 (34)

Diabetes with complications 53 (24)

Renal disease 60 (28)

Cancer 25 (11)

Liver disease 8 (3.7)

HIV/AIDS 5 (2.3)

Vaccination status before sample collection

1 dose 1 (<1)

2 doses 0 (0)

Mean (standard deviation) for continuous variables age and BMI and for Charlson
comorbidity score, time before sample collection, and inpatient length of stay; and N (%) for
categorical variables.
All patient data was accounted for except for BMI for 1 patient. COVID-19 severity score

assessed using the WHO scale.
Charlson comorbidity scores were calculated based on medical history before each

patient’s COVID-19 admission.
BMI, body mass index.
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Study approval

Written informed consent was obtained from all patients, and the
study protocol was approved by the institutional review board of
UAB (IRB-300006291).
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Results

MKs are increased in peripheral blood in COVID-19

We started by confirming the presence of mobilized MKs in the
peripheral blood of patients with COVID-19 using flow cytometry
and available scRNA-seq. Using the scRNA-seq of peripheral
blood mononuclear cells from a total of 69 donor samples origi-
nating from 4 separate studies,32,34,39,40 we identified a popula-
tion of cells (Figure 1A) that specifically expressed MK lineage
genes, including integrin subunit β3 (ITGB3; CD61), integrin
subunit α2b (ITGA2B; CD41), platelet glycoprotein Ib α-chain
(GP1BA; CD42b), and platelet factor 4 (PF4; Figure 1B). MK
frequency in the scRNA-seq data was significantly increased in
samples originating from donors with severe COVID-19
(Figure 1C).

Using flow cytometry, we identified the presence of circulating MKs
as single CD61+ CD41+ cells that contained DNA (propidium
iodide; Figure 1D). This population demonstrated a high degree of
polyploidy, ranging from 2n to 32n (Figure 1D), a feature unique to
MKs. Fluorescence-activated cell sorter (FACS)-sorted CD61+

CD41+ DNA+ MKs, followed by cytocentrifugation, revealed large
cells ranging from 20 to 40 microns in size, with high nuclear-to-
cytoplasmic ratios (Figure 1E). In contrast to samples from
patients with COVID-19, blood from uninfected healthy donors
contained few, if any, circulating MKs (Figure 1F), and the fre-
quency of MKs in COVID-19 was nearly 2 magnitudes greater than
that observed in uninfected controls (Figure 1G).

Circulating MKs express S100A8/A9 in COVID-19

We used the scRNA-seq data from Figure 1 to identify markers of
potential pathologic MK subsets in severe disease. Differential
gene expression analysis comparing MKs in severe COVID-19 vs
uninfected healthy controls revealed robust upregulation of both
subunits of calprotectin, S100A8 and S100A9 (Figure 2A).
Because S100A8/A9 are typically associated with granulocytes
and classical monocytes, we stained for circulating MKs and
included antibodies to CD66b and CD14, markers of granulocytes
and classical monocytes, respectively, to exclude the possibility of
false positives from platelet/immune cell doublets. Circulating MKs
were tested negative for both CD66b and CD14 via flow cytometry
(supplemental Figure 6A), and scRNA-seq showed that circulating
MKs lacked expression of neutrophil and classical monocyte
markers (supplemental Figure 6B). In addition to S100A8/A9, MKs
in severe COVID-19 displayed strong type 1 interferon signatures
with upregulation of IFITM3 and IFI27 (Figure 2A). Examining
S100A8 and S100A9 expression in MKs across the entire scRNA-
seq cohort revealed an upregulation during active infection and into
early recovery (<7 days after first negative polymerase chain
reaction result), which reduced to baseline levels at later recovery
stages (>7 days; Figure 2B).

Flow cytometry of peripheral blood from 220 COVID-19 samples
revealed a robust expression of S100A8/A9 in MKs (mean, 68.9%
positive) compared with a low expression in platelets (mean,
0.480% positive; Figure 2C), providing additional evidence that the
MK lineage cells frequently observed in COVID-19 scRNA-seq are
MKs and not platelets. Flow cytometry comparison of S100A8/A9
expression in circulating MKs from uninfected controls vs COVID-
19 donors helped confirm that S100A8/A9 was highly upregulated
8 AUGUST 2023 • VOLUME 7, NUMBER 15



A dendritic cells

monocytes

stem cells

proliferating cells
B cells

RBCsT cells

megakaryocytes

UM
AP

2

UMAP1

B

scaled expression

0.0 0.5 1.0

monocytes

B cells

T cells

dendritic cells

stem cells

proliferating cells

RBCs

megakaryocytes

CD61
CD41

CD42b
PF4

C

uninfected

MK frequency

late recovery

early recovery

mild-moderate

severe

0.0 0.1 0.2

Proportion of total sample
0.3

***

0.4

D

105

104

104

103

105104

103

103

0 0CD
61

CD
45

CD41 Propidium iodide Propidium iodide
0 1041030 1041030

CD41+ CD61+
88.8 platelets

99.3

MKs
0.58

2N
4N

8N

16N

32N

F
105

104

103

102

–102
0CD

45

Propidium iodide
1051041030 1051041030

uninfected COVID-19

platelets
99.9

platelets
98.6

MKs
1.05

MKs
3.81E-3

G

0.0001

uninfected

n = 9 220

COVID-19

0.001

0.01

0.1

1

10 ****
circulating MKs

Pe
rc

en
t o

f l
ive

E FACS:
DNA+ CD61+ CD41+

20�m 20�m

Figure 1. Circulating MKs are increased in COVID-19. (A) scRNA-seq dimensionality reduction using uniform manifold approximation and projection of 317 562 cells derived

from 4 separate studies. MKs (4180 cells) are shown in red. (B) scRNA-seq marker genes used to identify circulating MKs. (C) Frequency of MKs relative to all cells from scRNA-

seq samples. Median ± minimum/maximum. Kruskal–Wallis one-way ANOVA with Dunn post hoc multiple comparisons test. All groups compared with uninfected control.

Adjusted P value ***P = .001 to .0001. Mild-moderate: n = 15; severe: n = 14; early recovery (<7 days after first negative polymerase chain reaction [PCR] test): n = 8; late

recovery (>14 days after first negative PCR test): n = 8; uninfected: n = 19. (D) Flow cytometry from UAB COVID-19 peripheral blood samples (n = 20) showing gating of CD61+

CD41+ DNA–positive MKs. The histogram shows ploidy distribution ranging from 2n to 32n. (E) Cytocentrifugation of FACS-sorted MKs stained with hematoxylin and eosin.

(F) Representative flow cytometry plots showing the proportion of MKs relative to platelets in uninfected vs COVID-19 peripheral blood. (G) Quantification of MK frequency,

relative to all live events, using flow cytometry on peripheral blood from uninfected (n = 9 donors) vs COVID-19 (n = 218 patients; 220 samples). Mean ± standard error of the

mean (SEM). Unpaired 2-tailed t test with Welch correction; ****P < .0001. ANOVA, analysis of variance.

D
ow

nloaded from
 http://ashpublications.net/bloodadvances/article-pdf/7/15/4200/2069715/blooda_adv-2022-009022-m

ain.pdf by guest on 11 June 2024
in COVID-19 MKs (Figure 2D). Using in situ hybridization via flow
cytometry (PrimeFlow), we demonstrated that the vast majority of
MKs tested positive for S100A8/A9 protein are also positive for
S100A8/A9 messenger RNA (Figure 2E), confirming that MKs in
COVID-19 synthesize S100A8/A9. Using PrimeFlow, we further
showed that the S100A8/A9+ MKs also expressed IFITM3
(Figure 2F) and IFI27 (Figure 2G), 2 additional genes that are
unique to MKs from severe COVID-19 (Figure 2A). Lastly, we
8 AUGUST 2023 • VOLUME 7, NUMBER 15
FACS-sorted S100A8/A9+ and S100A8/A9− MKs and performed
imaging flow cytometry. S100A8/A9 was absent in the population
that was tested negative and strongly expressed in the cytoplasm
in those tested positive(Figure 2H). The cytoplasm in the S100A8/
A9+ population appeared highly granular (Figure 2H) with signifi-
cantly elevated side scatter (Figure 2I), consistent with S100A8/A9
packaging in granules, successfully isolating the pathologic subset
of MKs in COVID-19.
SARS-CoV-2+ MEGAKARYOCYTES AND COVID-19 INFECTION 4203
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A subpopulation of S100A8/A9+ MKs contain SARS-

CoV-2

Next, we hypothesized that S100A8/A9+ MKs may contain SARS-
CoV-2. Using an antibody specific to the SARS-CoV-2 spike
4204 FORTMANN et al
protein, a subpopulation of S100A8/A9+ MKs that contained the
viral antigen was identified, leading to 3 discrete MK populations:
S100A8/A9− virus–negative, S100A8/A9+ virus–negative-, and
S100A8/A9+ virus–positive (Figure 3A). SARS-CoV-2–containing
MKs appeared in variable frequencies across our COVID-19
8 AUGUST 2023 • VOLUME 7, NUMBER 15
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A9− spike protein–negative, S100A8/A9+ spike protein–negative, and S100A8/A9+ spike protein–positive. (B) Histogram showing PrimeFlow flow cytometry for SARS-CoV-2 RNA

in circulating MKs. Quantification of SARS-CoV-2 RNA in the 3 MK subpopulations (n = 8 donors). One-way ANOVA with Tukey post hoc multiple comparisons test; adjusted P value

is *P = .05 to .01 (C) Representative imaging flow cytometry from FACS-sorted MKs: S100A8/A9− spike protein–negative, S100A8/A9+ spike protein–negative, and S100A8/A9+

spike protein–positive. (D) Expression of proteins involved in SARS-CoV-2 viral infection in the 3 MK subpopulations (n = 7 donors). Mean fluorescent intensity of ACE2, TMPRSS2,

and FURIN. Dashed lines represent the geometric mean for isotype controls. One-way ANOVA with Tukey post hoc multiple comparisons test; *P = .05 to .01; **P = .01 to .001;

***P = .001 to .0001. (E) Immunofluorescence staining of lung tissue from a deceased patient who had COVID-19 with ARDS. (F) Immunofluorescence staining of brain tissue (cortex)

from a deceased patient who had COVID-19. Five channels are shown in panels E-F: brightfield (black pigment from TrueView autofluorescence quencher), green (CD61), yellow

(S100A8/A9), red (spike protein), and blue (Hoechst). All graphs are mean ± SEM. TMPRSS2, transmembrane protease serine 2.
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cohort, and virus–positive MKs that lacked S100A8/A9 expression
were not observed. PrimeFlow analysis targeting SARS-CoV-2
RNA revealed a significant increase in viral RNA specifically in
the spike protein–positive population (Figure 3B). Using imaging
flow cytometry on the 3 FACS-sorted MK populations, we found
that spike protein was specific to the virus–positive population and
was largely restricted to the perinuclear space, consistent with
SARS-CoV-2 assembly in the endoplasmic reticulum (Figure 3C).

The expression of proteins involved in SARS-CoV-2 infection were
analyzed across the 3 MK populations, including angiotensin-
converting enzyme 2 (ACE2), transmembrane protease serine 2,
and FURIN. ACE2 and transmembrane protease serine 2 were
specifically and significantly increased in the S100A8/A9+ virus–
positive MKs, whereas FURIN was significantly upregulated in
both S100A8/A9+ populations (Figure 3D).

Autopsy tissue from deceased donors who had COVID-19 was
used to determine whether S100A8/A9+ virus–positive MKs were
present outside of the systemic circulation. Because the lungs are
the primary site of infection, we reasoned that MKs in the lungs of
patients with COVID-19 would have a high probability of containing
the virus. Consistent with this notion, S100A8/A9+ spike protein–
positive MKs were present in the lungs of a COVID-19 donors with
confirmed acute respiratory distress syndrome (ARDS) (Figure 3E).
MKs were recently shown to plug cortical capillaries in patients
with COVID-19 with neurologic symptoms.26 Next, we analyzed
brain tissue from 8 different donors with COVID-19, and in the
cortex of 1 of the donors we observed S100A8/A9+ spike protein–
positive MKs within larger caliber blood vessels (Figure 3F).

SARS-CoV-2–containing MKs transfer viral antigens

to emerging platelets

In our cohort with COVID-19, a low and heterogenous frequency of
platelets containing viral antigen (Figure 4A) was observed, which
has previously been reported by other groups.15,18 Interestingly, we
found a strong positive correlation between virus–positive platelets
and virus–positive MKs (R2 = 0.46; P < .001; Figure 4B), sug-
gesting that SARS-CoV-2–containing platelets may be derived
from virus–positive MKs. Consistent with this hypothesis, virus–
positive MKs displayed a striking and highly significant increase
in ploidy (Figure 4C), a sign of MK maturation that is associated
with platelet production. Moreover, using imaging flow cytometry,
we found the presence of spike protein in emerging proplatelets on
virus–positive MKs (Figure 4D).

To explore whether MKs are capable of transferring virus/viral
antigen to platelets, we generated primary human MKs from
CD34+ cord blood cells, enriched the MKs to ~95% purity, and
infected them with SARS-CoV-2 (WA-1 strain). After removal of
the inoculant, we plated the MKs in tissue culture–treated wells
and stimulated the cells with phorbol myristate acetate to induce
platelet production. Platelets from the infected cultures contained a
low level of spike protein (Figure 4E), which was entirely absent
from the uninfected control cultures (Figure 4F). In agreement, viral
antigen was detectable in acetylated-tubulin–positive proplatelet
extensions from SARS-CoV-2–infected MKs, which was absent in
uninfected controls (Figure 4G), suggesting that virus–positive
MKs are capable of transferring SARS-CoV-2 antigen, and
possibly whole virus, to emerging platelets.
4206 FORTMANN et al
SARS-CoV-2–containing MKs produce NF-κB-
mediated cytokines and display a hyperactivated

phenotype

To determine whether SARS-CoV-2–containing MKs contribute to
COVID-19 inflammation, we probed inflammatory signaling path-
ways across the 3 circulating MK populations. A robust and sig-
nificant upregulation of the NF-κB subunits p52/p100 (Figure 5A)
and p65 (Figure 5B) was found specifically in the virus–positive
MKs. Given the strong NF-κB signature, expression of NF-κB-
mediated cytokines, interleukin-8 (IL-8), IL-1β, and tumor necrosis
factor α was measured across the 3 circulating MK populations. In
agreement, only the virus–positive MKs displayed a significant
upregulation of IL-8 (Figure 5C) and IL-1β (Figure 5D) and a trend
toward increased tumor necrosis factor α (P = .09; Figure 5E).

The expression of TLRs TLR2, TLR3, and TLR4, all 3 of which are
known to drive NF-κB activation, was examined. TLR2 was signif-
icantly upregulated in both S100A8/A9+ populations but was
dramatically higher in virus–positive MKs compared with S100A8/
A9+ virus–negative MKs (Figure 5F). TLR3 was equally upregu-
lated in both S100A8/A9+ populations (Figure 5G). TLR4 was
specifically upregulated in only the virus–positive MKs (Figure 5H).
Similar to TLR3, ICAM1 was equally upregulated in both S100A8/
A9+ populations (Figure 5I). HLA-DR showed a unique expression
pattern with significant upregulation only in the S100A8/A9+ virus–
negative population (Figure 5J), potentially suggesting a role for
antigen presentation in this subset of MKs.

MK-specific activation markers were quantified across the 3 sub-
sets. P-selectin, a marker of degranulation and an adhesion protein
involved in vascular tethering during thrombosis, was equally
upregulated in both S100A8/A9+ populations (Figure 5K). Acti-
vated GPIIb/IIIa, a marker of thrombin/adenosine 5′-diphosphate
activation and a receptor that binds fibrinogen and von Willebrand
factor during thrombosis, was specifically and significantly
increased in the virus–positive MKs (Figure 5L). Lastly, the
expression of antiplatelet drug targets, P2Y12 and PAR-1, was
investigated as potential therapeutic options for modulating
hyperactivated MKs. Both P2Y12 (Figure 5M) and PAR-1
(Figure 5N) were significantly and equally increased in both
S100A8/A9+ populations of MKs. Together, these data suggest
that virus–positive MKs display an NF-κB–mediated inflammatory
signature, are hyperactivated, and potentially prone to thrombosis.

SARS-CoV-2–containing MKs are associated with

mortality and multiorgan injury

Next, we sought to understand the clinical significance of circu-
lating MKs in COVID-19 by integrating EMR data with flow
cytometry measurements in cryopreserved blood. Peripheral blood
was collected from 218 patients who were fully unvaccinated and
with COVID-19+ who were admitted to the UAB hospital from fall
2020 through spring 2021. The mean patient age was 61 ± 13
years (± standard deviation); 58% were male; the mean body mass
index was 34 ± 10; the mean Charlson comorbidity score was
2.8 ± 2.1; and the average time to sample collection, relative to
admission, was 5.9 ± 3.5 days (Table 1). COVID-19 disease
severity was computed on the day of sample collection using the
WHO 8-point ordinal scale (Table1). Using Spearman correlation
analysis, we observed a statistically significant association with
8 AUGUST 2023 • VOLUME 7, NUMBER 15
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increased length of hospital stay and cumulative 60-day adverse
outcomes with the S100A8/A9+ virus–positive MK proportion
(Figure 6A). Conversely, we found that the S100A8/A9− virus–
negative MK proportion had the opposite correlation with the
length of stay and cumulative adverse outcomes (Figure 6A). Next,
we compared the relative frequencies of the 3 MK subpopulations
with each donor’s peak COVID-19 WHO severity score at 2 time
points: (1) day of sample collection (Figure 6B, left) and (2) entire
inpatient stay (Figure 6B). We found that the COVID-19 severity
scores at both time intervals were directly proportional to the fre-
quency of S100A8/A9+ virus–positive MKs (Figure 6B) and
inversely proportional to the S100A8/A9− virus–negative MKs
(Figure 6B). Conversely, S100A8/A9+ virus–negative MKs
remained constant with respect to severity scores (Figure 6B).

Lastly, we investigated the association between circulating MKs and
COVID-19 adverse events with a multivariate logistic regression
model, controlling for age, body mass index, and preadmission
comorbidity score. Using ICD-10 billing code data for respiratory
failure, mechanical ventilation, acute kidney injury (AKI), thrombotic
events, ICU admission, and all-cause mortality, we evaluated MK fre-
quencies as a continuous variable in the 30-day outcome window. For
every 20% increase in S100A8/A9+ virus–positive MKs, we observed
increased adjusted odds ratios (ORs) for each outcome: respiratory
failure (OR, 2.42; 95% confidence interval [CI], 1.55-4.36; P < .001),
mechanical ventilation (OR, 2.75; 95% CI, 1.48-5.56; P < .001), AKI,
(OR, 1.82; 95%CI, 1.12-2.96; P = .01), thrombotic events (OR, 1.91;
95% CI, 1.13-3.15; P = .012), ICU admission (OR, 2.05; 95% CI,
1.05-3.64; P = .011), and all-cause mortality (OR, 1.71; 95% CI,
1.18-2.51; P = .005) (Figure 6C). A 20% increase in S100A8/A9−

virus–negative MKs was found to be protective, with lower ORs for
each 30-day outcome, with the exception of thrombosis: respiratory
failure (OR, 0.48; 95% CI, 0.19-0.80; P = .006), mechanical venti-
lation (OR, 0.23; 95% CI, 0.08-0.45; P < .001), AKI (OR, 0.56;
95% CI, 0.29-0.89; P = .010), thrombotic events (OR, 0.63; 95% CI,
0.32-1.02; P = .064), ICU admission (OR, 0.43; 95% CI, 0.19-0.76;
P = .002), and all-cause mortality (OR 0.57, 95% CI, 0.37-0.81; P =
.004) (Figure 6C). Again, no statistically significant associations were
found for S100A8/A9+ virus–negative MKs (Figure 6C). The positive
association with inpatient length of stay, greater COVID-19 severity,
and increased adverse event rates strongly suggests that virus-
containing MKs play an important role in severe SARS-CoV-2
infection.

Discussion

The main findings of this study include the identification of a unique
subpopulation of MKs that is strongly associated with mortality and
adverse events in patients hospitalized with COVID-19. We
demonstrate that DNA-positive CD41+ CD61+ MK cells are poly-
ploid, ~100-fold more frequent in individuals with COVID-19 than
Figure 4. SARS-CoV-2–containing MKs transfer viral antigen to platelets. (A) Repr

low virus–positive proportions. (B) Linear regression comparing virus–positive MK frequen

content analysis in circulating MKs using propidium iodide and RNase treatment. Quantifica

One-way ANOVA with Tukey post hoc multiple comparisons test; adjusted P value is ****P

protein in emerging platelets. (E) Flow cytometry plots of platelets from primary human MKs in

of virus+ platelets from primary human MKs (n = 6 cultures). Unpaired two-tailed t test; *P =

Four channels are shown: CD61 (purple), acetylated tubulin (green), spike protein (red), and
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in uninfected controls and occasionally have proplatelet pro-
trusions. The defining marker of COVID-19 MKs, S100A8/A9, is
expressed by nearly 70% of all circulating MKs and by <1% of
circulating platelets in donors with COVID-19. In addition, we
provide evidence demonstrating that infected MKs can vertically
transfer SARS-CoV-2 antigens to emerging platelets. Mechanisti-
cally, we demonstrate that S100A8/A9+ virus–positive MKs display
strong NF-κB activation, and we found that only the virus–positive
MKs produced significantly increased levels of NF-κB-mediated
cytokines, IL-8 and IL-1β.

Despite the relatively small number of reports focusing on MKs in
COVID-19, these cells have appeared in surprisingly high fre-
quencies in untargeted COVID-19 studies. In autopsy case series,
MKs are hyperproliferative in the bone marrow and have been found
in numerous diseased organs during acute infection.23-29 scRNA-
seq studies on peripheral blood of patients with COVID-19 have
consistently found rare cell populations that are positive for MK
lineage genes and whose frequencies directly correlate with disease
severity.31-34,38 Many scRNA-seq studies have annotated these cells
as platelets, despite a lack of confirmatory evidence as well as
technical concerns regarding the ability of droplet-based scRNA-seq
to detect individual platelets, which contain at least a 1000 times
less messenger RNA than an average leukocyte.41 For this reason,
there have been no published studies, to date, using droplet-based
scRNA-seq on confirmed, highly purified platelets.42,43 Even for
platelet aggregates, hundreds to a few thousand platelets in a single
droplet would be expected to be required to reach the observed
average of 2566 transcripts per cell for the MK cluster.

One potential explanation for why MKs are increased in the peripheral
circulation in COVID-19 is that the reduction in circulating platelets
during severe infection elicits emergency megakaryopoiesis as a
compensatory mechanism to maintain platelet levels. In agreement,
acute inflammation is known to induce megakaryopoiesis,44 and
autopsy case series on bone marrow from patients with COVID-19
have confirmed the hematopoietic expansion of MKs.27,30 Further-
more, it is known that at least 50% of all platelets are derived from
circulating MKs within the pulmonary microvasculature.1 Thus, emer-
gency megakaryopoiesis would be expected to increase the mobili-
zation of MKs to the pulmonary circulation for platelet production, as
has been observed in experimental bacterial pneumonia.1 In healthy
physiological conditions, the pulmonary microvasculature limits MKs
from entering the peripheral circulation.4-6 In COVID-19, this mecha-
nism is likely compromised because of pulmonary damage, potentially
leading to MK escape into the peripheral circulation, as has been
observed in other diseases of the lung.9

Of the S100A8/A9-expressing MKs, we isolated a subpopulation
that contain SARS-CoV-2 protein and RNA, suggestive of active
viral infection. Our group is not the first to provide evidence that
SARS-CoV-2 is capable of infecting MKs. At least 2 autopsy case
esentative flow cytometry plots of platelets from patients with COVID-19 with high and

cies to virus–positive platelet frequencies (n = 218 patients; 220 samples). (C) DNA

tion of DNA content in the 3 MK subpopulations (n = 218 patients; 220 samples).

< .0001. (D) Imaging flow cytometry of virus–positive MKs. White arrows indicate viral

fected with SARS-CoV-2 showing spike protein–containing platelets. (F) Quantification

.05 to .01. (G) Immunofluorescence of primary human MKs infected with SARS-CoV-2.

4′ ,6-diamidino-2-phenylindole (DAPI; blue). All graphs show mean ± SEM.
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Figure 5. SARS-CoV-2–containing MKs produce NF-κB-mediated cytokines and have a hyperactivated phenotype. (A) Flow cytometry plot of circulating MKs showing

expression of NF-κB subunit p65. Quantification of p65 expression in the 3 MK subpopulations (n = 14 donors). (B) Flow cytometry plot of circulating MKs showing expression

of NF-κB subunit p52/p100. Quantification of p52/p100 expression in the 3 MK subpopulations (n = 14 donors). (C-E) Histograms and accompanying quantification of

PrimeFlow flow cytometry for cytokines in circulating MKs. (C) IL-6 (n = 8 donors), (D) IL-1β (n = 8 donors), and (E) TNF-α (n = 8 donors). (F-J) Percent positive quantification for

immunomodulatory proteins from flow cytometry on circulating MKs (n = 14 donors), (F) TLR2, (G) TLR3, (H) TLR4, (I) ICAM1, and (J) HLA-DR. (K-N) Mean fluorescent

intensity quantification of (K-L) MK activation markers and (M-N) MK drug targets. (K) P-selectin (n = 20 donors), (L) activated GPIIb/IIIa (n = 11 donors), (M) P2Y12

(n = 82 donors), and (N) PAR-1 (n = 138 donors). Dashed lines in panels K-N represent the geometric mean for the respective isotype control. Percent positive graphs for

antibody-based stains in panels A-B,F-J represent percent positive relative to the respective isotype control. All statistical analyses were performed using one-way ANOVA with

Tukey post hoc multiple comparisons test. All graphs are given as mean ± SEM. Adjusted P values are *P = .05 to .01; **P = .01 to .001; ***P = .001 to .0001; ****P < .0001.

TNF-α, tumor necrosis factor α.
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Figure 6. SARS-CoV-2–containing MKs are associated with mortality and severe adverse events in COVID-19. (A) Spearman correlation analysis of continuous

candidate model variables and cumulative 60-day postadmission outcomes for each patient (respiratory failure, mechanical ventilation, acute kidney injury, thrombotic events, ICU

admission, and death). Each patient was limited to the first occurrence of a given outcome, resulting in a cumulative outcome maximum of 6. Statistical significance was assessed

using Spearman correlation with Bonferroni P value adjustment for multiple hypothesis testing between candidate variables (X = nonsignificant; bold text, P value < .05).

(B) Analyses comparing the WHO scale of COVID-19 severity on the day of sample collection (left) and peak severity during the entire inpatient stay (right) vs the circulating

MK frequency for each subpopulation (* indicates intragroup and # indicates intergroup; */# = 0.05-0.01, **/## = 0.01-0.001, ***/### = 0.001-0.0001, ****/#### < 0.0001).

(C) Multivariate logistic regression models showing the likelihood of selected 30-day outcomes per 20% increase in each MK subpopulation (3 models per outcome; age,

body mass index, and preadmission Charlson comorbidity score covariables not shown). Bootstrapped 95% CIs (n = 1000 bootstraps) are denoted as a bar to the right and left of

each corresponding adjusted OR square. Event rates for each outcome are shown above each set of models. Statistical significance was assessed using the Wald test

and is denoted by solid or open squares. Outcomes were determined using ICD-10 billing codes from each patient encounter. See supplemental Table 1 and supplemental

Figures 8-10 for a complete breakdown of outcome billing codes and supplemental Tables 2-4 for regression model details.
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series on bone marrow from patients with COVID-19 have found
the presence of SARS-CoV-2 in MKs.27,45 At least 1 other
study demonstrated in vitro infectivity of primary human MKs,46 and
2 reports have shown infectivity of immortalized human mega-
karyoblastic leukemia cells (MEG-01).46,47 Importantly, a recent
study similarly demonstrated SARS-CoV-2+ MKs in bronchoalveolar
4210 FORTMANN et al
fluid of patients with severe COVID-19.48 However, to our
knowledge, we are the first to show SARS-CoV-2 in peripheral
MKs in COVID-19. Moreover, at least 1 other virus, dengue virus,
is known to infect MKs.49-51 Interestingly, both infections are
associated with thrombosis, thrombocytopenia, and platelet
hyperactivation.
8 AUGUST 2023 • VOLUME 7, NUMBER 15
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Several research groups have demonstrated the presence of
SARS-CoV-2 in platelets, yet how platelets obtain SARS-CoV-2
remains an area of active debate. Some reports have suggested
that platelets acquire the virus through canonical ACE2-mediated
entry, whereas others have shown that SARS-CoV-2 is endocy-
tosed as complexes with other molecules in an ACE2-independent
manner.15,18,47,52,53 Here, we provide the first evidence suggesting
that virus-containing platelets can also originate from virus–positive
MKs. This finding is not surprising given that, during thrombopoi-
esis, MKs transfer cytoplasm and organelles to platelets.54 More-
over, the endoplasmic reticulum, in which SARS-CoV-2 replicates,
physically interacts with the demarcation membrane system in
MKs, which forms the cell membranes of platelets.55 However, a
limitation of our study is that we did not assess platelet-derived viral
expansion in permissive cells. Therefore, we cannot rule out the
possibility that MKs transferred only viral antigen, as opposed to
active virus, to emerging platelets. Nonetheless, it remains to be
seen which of these mechanisms, or combination thereof, is the
predominant means of viral acquisition by platelets in COVID-19.

Several recent publications have indicated that NF-κB signaling
differentiates severe from mild/moderate COVID-19, and our
results suggest that this theme extends to circulating MKs.56,57

Signaling through TLR2, TLR3, and/or TLR4 are plausible expla-
nations for the observed NF-κB upregulation in virus–positive MKs.
TLR2 and TLR4 are particularly intriguing because both are
canonical drivers of NF-κB activation, virus–positive MKs specif-
ically express high levels of both receptors, and the bacterial
ligands for each are increased in severe COVID-19.39,58 TLR3,
which binds double-stranded viral RNA, can also signal through
NF-κB but predominantly uses IRF3/STAT1. Because S100A8/
A9+ MKs display a universal interferon signature (IFITM3 and
IFI27), TLR3 signaling seems less likely to explain the specific NF-
κB activation observed in virus–positive MKs. Other receptors
beyond TLRs also likely contribute to NF-κB activation in virus–
positive MKs because this is a common target of many inflamma-
tory pathways.

Lastly, we investigated the clinical significance of circulating MKs in
a cohort of 218 inpatients with COVID-19. Using Spearman corre-
lation analysis, we found statistically significant correlations between
S100A8/A9+ virus–positive MK proportion, cumulative 60-day
adverse events, and inpatient length of stay. Similarly, using the
WHO ordinal scale of COVID-19 severity, we found strong stepwise
correlations with circulating MKs, with virus–positive MKs directly
correlated with severity, and S100A8/A9− MKs inversely correlated
with severity. Using a more stringent 30-day adverse event time
window, we found that virus–positive MKs positively correlated with
respiratory failure, mechanical ventilation, AKI, thrombotic events,
ICU admission, and all-cause mortality. Conversely, S100A8/A9−

MKs inversely correlated with each of these outcomes, apart from
thrombosis. These data provide compelling evidence implicating
circulating MKs in COVID-19, and we have pinpointed all the risk to
the virus–positive population. Moreover, given the strong associa-
tions with mortality and adverse events, virus–positive MKs may
represent a novel biomarker for severe COVID-19 but confirmatory
multicenter studies are needed as well as studies that have access
to peripheral blood at the time of admission.

In summary, a relatively rare cell population, S100A8/A9+ virus–
positive MKs, is associated with a broad diversity of pathologies
8 AUGUST 2023 • VOLUME 7, NUMBER 15
in COVID-19. Although further studies are needed to attribute
causation to virus–positive MKs, there are several mechanisms by
which MKs could contribute to COVID-19 adverse events. For
example, larger MKs pose a physical risk to intravascular flow and
have been found to plug vessels in a variety of vascular beds.23-29

Increased surface expression of P-selectin and activated GPIIb/IIIa
likely exacerbate their propensity for leukostasis. MKs are also a
major source of circulating calprotectin (S100A8/A9) in COVID-
19, a potent signaling molecule and well-known risk factor for
severe disease.46 Moreover, MKs secrete NF-κB–mediated cyto-
kines such as IL-6 and IL-1β, thereby promoting systemic inflam-
mation. Lastly, through potential vertical transfer of SARS-CoV-2 to
emerging platelets, MKs may spread the virus throughout the body
in the form of hyperactivated platelets. When considering COVID-
19 from a network standpoint, each newly produced platelet would
multiply the reach of an individual MK, making it easier to appre-
ciate how a rare cell population like S100A8/A9+ virus–positive
MKs could have such outsized effects.
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