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Clonal hematopoiesis (CH), defined as the clonal expansion of mutated hematopoietic stem and pro-
genitor cells, is associated with the development of hematologic cancers, cardiovascular disease
(CVD), and other adverse health outcomes.1-3 CH is thought to expand with older age resulting in an
increasing variant allele frequency (VAF) over time.1 Thus, the frequency of CH detection in a given
population is dependent on the age and sensitivity of sequencing techniques, with ultradeep
sequencing detecting low-VAF variants.4 CH is also associated with race, smoking, and exposure to
oncologic therapy.5-8 Environmental stressors may increase the likelihood of both mutational acquisition
and clonal fitness. Oncologic therapy has been previously shown to increase the fitness advantage of
mutant hematopoietic stem and progenitor cells, particularly those bearing mutations in the DNA
damage response (DDR) pathway, including TP53, PPM1D, and CHEK2.9,10 However, the extent to
which therapy-induced CH expansion persists after the completion of therapy has not been defined.

Survivors of childhood cancer are a growing cohort in whom CH has not been routinely assessed; an
estimated 500 000 survivors are currently alive in the United States.11 Despite excellent 5-year survival
rates, survivors of childhood cancer remain at a lifelong risk of premature morbidity and mortality,
including a 15-fold risk of death due to subsequent malignant neoplasm (SMN) and a sevenfold risk of
death due to CVD,12,13 with particularly pronounced risks noted after exposure to chemotherapy and/or
radiotherapy, generally in a dose-dependent fashion.14,15 Survivors have also been noted to have higher
rates of premature aging.16,17 We hypothesized that CH mutations would be enriched in survivors of
childhood cancer previously exposed to cytotoxic therapy because of the increased selection of pre-
existing CH clones, which may, in part, explain their increased risk of SMN, CVD, and premature aging.
Here, we compared the frequency of CH between survivors of childhood cancer and matched controls
using error-corrected deep sequencing. We show that survivors have higher frequencies of CH than
age-matched controls and that this increased frequency of CH persists for many years after treatment.

This was a retrospective case-control study survivors of childhood, adolescent, and young adult cancer
and matched controls. Cases included individuals diagnosed with a solid tumor or lymphoma at ≤28
years of age and treated with systemic chemotherapy and/or radiotherapy who were ≥13 years of age
and ≥6 months since the completion of therapy at peripheral blood sample collection during routine
clinical visits. Age-matched controls (5-year age groups) with and without a history of cancer were
included, given the evidence of shared genomic risk factors between cancer and CH. Controls included
1 group of treatment-naive individuals recently diagnosed with a nonhematologic cancer at Sloan
Kettering Cancer Center and another group of healthy adolescents and young adults from Washington
University without a cancer history.
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Samples collected from all participants were batched and
sequenced using a custom targeted amplicon-based UMI
sequencing platform (ArcherDX), which included complete exons
of DMNT3A, TET2, ASXL1, TP53, CHEK2, and targeted regions
of PPM1D, SRSF2, SF3B1, and JAK2.9 The samples were
sequenced at an average depth of 19 830 bp. Variant calling was
performed using Mutect2, Vardict, and Lofreq2, with additional
postvariant calling filters applied to remove artifacts and germline
variants. Using this approach, we were able to reliably identify
mutations with a VAF >0.1%. CH mutations were annotated as
potential drivers using previously published CH annotations and
oncology knowledge databases, including the Catalogue of
Somatic Mutations in Cancer, Cancer Gene Census, MSK’s
Oncology Knowledge Base, and Clinvar7,9,18 (supplemental
Methods). Logistic regression adjusted for age, sex, and race
Table 1. Demographic and treatment characteristics of survivors of child

Cases (n = 100)

Surviors of childhood

cancer (n = 100)

Age, y

Mean (SD) 21.4 (7.2)

Median (range) 19 (13-49)

Sex

Female 50 (50.0%)

Race

White 84 (84.0%)

Black or African American 6 (6.0%)

Asian 8 (8.0%)

Other 1 (1.0%)

Unknown/missing 1 (1.0%)

Primary cancer diagnosis, no (%)

Sarcoma 51 (51.0%)

Neuroblastoma 16 (16.0%)

Lymphoma 12 (12.0%)

CNS tumor 8 (8.0%)

Retinoblastoma 4 (4.0%)

Germ cell tumor 3 (3.0%)

Wilms tumor 2 (2.0%)

Thyroid carcinoma 1 (1.0%)

Other* 3 (3.0%)

Chemotherapy, no (%) 93 (93.0%)

Anthracyclines 80 (80.0%)

Alkylating agents 79 (79.0%)

Platinum agents 45 (45.0%)

Etoposide 62 (62.0%)

External beam radiotherapy, no (%) 65 (65.0%)

Radioactive iodine, no. (%) 6 (6.0%)

Autologous stem cell transplant, no (%) 11 (11.0%)

Median time since the completion of therapy, y 9.7 (0.5-39)

One participant was exposed to total body irradiation before autologous stem cell transplant.
CNS, central nervous system.
*Other tumors include adrenocortical carcinoma, chordoma, and atypical teratoid rhabdoid tum
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was used to test for an association between CH and the case-
control status. Firth logistic regression was used to test for an
association between CH subgroups and case-control status
because of the sparse data.

Samples were analyzed from 100 survivors of childhood cancer
(median age, 19 years; range, 13-49 years), 71 controls with
untreated newly diagnosed cancer (median age, 25 years; range,
8-48 years), and 68 healthy controls (median age, 23 years; range,
15-51 years). Table 1 shows the participant demographics. As
expected, the most commonly mutated genes were in the DTA
(DNMT3A, TET2, and ASXL1) and DDR (PPM1D, TP53,
and CHEK2) classes (supplemental Figure 1). The frequency of
CH was higher in survivors of childhood cancer than in controls
across the various age groups (Figure 1A), with CH detected in
hood cancer and of controls

Comparison cohort (n = 139)

Treatment-naive controls

with solid tumors (n = 71)

Controls without

cancer (n = 68)

24.8 (8.9) 24.7 (7.4)

25 (8-48) 23 (15-51)

39 (54.9%) 42 (61.8%)

46 (64.8%) 43 (63.2%)

6 (8.5%) 15 (22.1%)

9 (12.7%) 3 (4.4%)

5 (7.0%) 2 (2.9%)

5 (7.0%) 5 (7.4%)

— —

— —

— —

— —

— —

— —

— —

— —

or.
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Figure 1. Summary of CH findings in survivors of

childhood, adolescent, and young adult cancer (cases),

compared with controls. (A) CH frequency in survivors vs

controls as a function of age; (B) prevalence of CH-positive

samples in survivors vs treatment-naive controls with solid

tumors; (C) odds ratio of CH on comparing cases with controls

for overall CH, CH with a maximum VAF of >2%, and CH with a

maximum VAF of ≤ 2%; (D) proportion of samples with DTA vs

DDR in cases compared with controls. All analyses were

adjusted for age, sex, and race. Fitted curves were generated

using a generalized additive model. *P < .05; **P < .01;

***P < .001. D
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37.0% of survivors, compared with 20.1% of controls (Figure 1B;
OR, 3.5; 95% CI, 1.8-7.1; P = .0004). We observed a trend
toward a stronger association for CH mutations with VAF >2%
(OR, 12.6; 95% CI, 2.1-74.4; P = .005) compared with VAF ≤2%
(OR, 2.8; 95% CI, 1.4-5.5; P = .003; Figure 1C). Sensitivity ana-
lyses excluding patients with a history of SMN yielded similar
results (supplemental Figure 2). The enrichment of CH in survivors
was observed relative to both healthy controls (OR, 2.5; 95% CI,
1.1-5.6; P = .02) and treatment-naive controls with solid tumors
(OR, 5.5; 95% CI, 2.2-15.4; P = .0005), suggesting that the
enrichment of CH in survivors was driven by selection resulting
from prior exposure to cancer therapy (supplemental Figure 3).

Next, we explored CH mutational features between cases and
controls. Although survivors had a higher proportion of both DDR
and DTA mutations when compared with those in controls
(Figure 1D; supplemental Figure 4), the enrichment of DDR
mutations was more than that of DTA (OR, 7.1; 95% CI, 2.7-18.6;
P = .00002 for DDR; OR, 2.4; 95% CI, 1.2-5.1; P = .02 for DTA).
This is consistent with previous studies showing that exposure to
cancer-directed therapy is positively associated with DDR and, to a
lesser extent, DTA mutations.9,19 Among individuals with CH, there
was no significant difference in the VAF or the number of CH
mutations between cases and controls (supplemental Figure 5).
Given that the enrichment of CH among survivors appeared to be
driven by prior therapeutic exposure, we examined the relationship
between CH and the time since the completion of therapy. Even
among individuals who were at least 5 years from end-of-therapy, a
4104 RESEARCH LETTER
higher frequency of CH was observed compared with that among
controls (OR, 2.9; 95% CI, 1.4-6.2; P = .005), suggesting that
the impact of oncologic therapy on CH persisted over time
(supplemental Figure 6).

Here, we show that survivors of childhood cancer have a markedly
higher frequency of CH than age-matched controls. Although expo-
sure to oncologic therapy has been shown to result in a selective
advantage of CH mutant clones among patients with ongoing ther-
apy,9 much of the work on CH in the survivorship setting has been
limited to survivors of cancers during adulthood.20,21 Conflicting data
exist regarding the prevalence of CH among survivors of childhood
cancer.22-24 Here, we observed a substantially higher frequency of
CH in slightly older survivors of childhood cancer (median age, 19
years; range, 13-49 years) than that of controls, which persisted
among individuals for whom many years had passed since the
completion of therapy. This suggests that the impact of oncologic
therapy on CH expansion is long-lasting, with the expanded clone
persisting for many years after therapeutic exposure.

CH is a prominent risk factor for early onset CVD and hematologic
cancers, with emerging data linking it to the risk of nonhematologic
cancers. The strong enrichment of CH in survivors of childhood
cancer suggests that CH may, in part, drive the long-term high-
burden of premature multimorbidity, particularly CVD and SMN, in
survivors of childhood cancer.25 These data justify the need for a
longitudinal assessment of CH in more diverse cohorts of survivors,
including those who do not routinely return for survivorship care,
and may provide a rationale for the use of CH to inform treatment
8 AUGUST 2023 • VOLUME 7, NUMBER 15
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modification strategies and risk-based screening. Such efforts will
clarify the extent to which CH enrichment may contribute to the
mechanistic underpinnings of various late effects and inform the
provision of care to survivors of childhood cancer as they age.
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