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Vector-based SARS-CoV-2 vaccination is associated with improved
T-cell responses in hematological neoplasia
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Key Points

• Vector-based SARS-
CoV-2 vaccines are
advantageous for the
generation of T-cell
responses in patients
with hematological
neoplasia.

• CD4+ and CD8+ T-cell
responses cooccur in
hematological
neoplasms, whereas
IgG titers are CD4+ T
cells associated in
myeloid neoplasia only.
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In order to elucidate mechanisms for severe acute respiratory syndrome coronavirus

2 vaccination success in hematological neoplasia, we, herein, provide a

comprehensive characterization of the spike-specific T-cell and serological immunity

induced in 130 patients in comparison with 91 healthy controls. We studied 121

distinct T-cell subpopulations and the vaccination schemes as putative response

predictors. In patients with lymphoid malignancies an insufficient immunoglobulin G

(IgG) response was accompanied by a healthy CD4+ T-cell function. Compared with

controls, a spike-specific CD4+ response was detectable in fewer patients with myeloid

neoplasia whereas the seroconversion rate was normal. Vaccination-induced CD4+

responses were associated to CD8+ and IgG responses. Vector-based AZD1222 vaccine

induced more frequently detectable specific CD4+ responses in study participants

across all cohorts (96%; 27 of 28), whereas fully messenger RNA-based vaccination

schemes resulted in measurable CD4+ cells in only 102 of 168 participants (61%;

P < .0001). A similar benefit of vector-based vaccination was observed for the

induction of spike-specific CD8+ T cells. Multivariable models confirmed vaccination

schemes that incorporated at least 1 vector-based vaccination as key feature to mount

both a spike-specific CD4+ response (odds ratio, 10.67) and CD8+ response (odds ratio,

6.56). Multivariable analyses identified a specific CD4+ response but not the vector-

based immunization as beneficial for a strong, specific IgG titer. Our study reveals

factors associated with a T-cell response in patients with hematological neoplasia and

might pave the way toward tailored vaccination schemes for vaccinees with these

diseases. The study was registered at the German Clinical Trials Register as

#DRKS00027372.
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Introduction

On 11 March 2020 the World Health Organization declared the
novel severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) outbreak a pandemic. Ever since, 2 major factors modified
the individual risk of this disease and its general impact on health
care systems: the advent of efficacious vaccines1-8 and the
occurrence of novel virus variants.9,10 Both factors are inter-
connected by the ability of the host to mount a protective response
against the circulating variants of the virus. Driven by the utmost
importance of SARS-CoV-2, the characterization of infection11 and
vaccine immunity12-14 recently attracted great interest. Animal
models and correlative data suggest that antibodies might protect
from reinfection with the same virus variant, whereas the quantity
and activity of CD8+ T cells and CD4+ T cells determine the
severity of the disease.9,11,15-24 Compared with protection by
neutralizing antibodies, T-cell–mediated protection is considered less
susceptible to immune evasion by novel virus variants.9,16,19,25-27 This
has already been known for SARS-CoV-128,29 and is of particular
importance for patients with hematological malignancies who are
often unable to mount an antibody response.30-33 Although, more
information on serological responses and their kinetics has been
published, detailed analyses of CD8+ T-cell and CD4+ T-cell
responses are scarce.34

Patients with myeloid and lymphoid neoplasms are more likely to
experience a severe course of COVID-19 disease.34-40 Moreover,
there are reports that vaccination might be less efficacious in these
patient populations.31-33,36,41-55 Similar to the general population,
research among individuals with hematological malignancies has
focused on kinetics and predictors of antibody responses, whereas
less information on T-cell responses is available. We56 and
others57,58 have recently described that patients with hematologi-
cal malignancies can mount T-cell responses after vaccination
while lacking a simultaneous antibody response. This finding casts
doubts on the assumption that seroconversion alone sufficiently
mirrors the success of a vaccination. It also corroborates the
hypothesis that mechanisms of protection might differ between
patients with hematological malignancies and the general
population.

The messenger RNA (mRNA) vaccines tozinameran (BNT162b2,
Pfizer-BioNTech) and elasomeran (mRNA-1273, Moderna) as well
as the adenoviral vector vaccine AZD1222 (ChAdOx1 nCoV-19,
AstraZeneca)2,6,7 are most widely used in Western Europe and
North America. Combinations of mRNA- and vector-based vac-
cines (heterologous schemes) reportedly more efficiently induce
T-cell responses59-64 in healthy vaccinees than either principle.

In the future, vaccination strategies may be tailored based on the
needs of particular patient groups. A better understanding of the
adaptive immune responses to vaccination in patients is therefore
urgently needed. Using extensive immune monitoring data from the
prospective, multicentric ImV-HOng (OSHO#98) study, we,
herein, comprehensively compare the immune system of patients
with lymphoid and myeloid neoplasms who are SARS-CoV-2–
vaccinated with that of healthy vaccinated controls. In-depth
immunophenotyping data, demographics, clinical data, and the
type of vaccine were fitted in multivariable regression models to
study their association with vaccination-induced humoral and
3404 ENGELMANN et al
cellular immune responses. T-cell responses were assessed using
a SARS-CoV-2 spike peptide mix to elicit polyfunctional CD8+

T cells and CD4+ T cells, which are considered key mediators of a
successful T-cell response.65-67

Methods

Study cohort

ImV-HOng (OSHO#98, registered at the Paul-Ehrlich Institute
[NIS-584] and the German Clinical Trials Register
[DRKS00027372]) is a longitudinal, prospective, multicenter,
noninterventional study to compare spike protein–specific humoral
and T-cell responses between controls and patients with hemato-
logical neoplasms and solid tumors.56 The study was approved by
the ethical review boards of all participating centers. All participants
provided written informed consent.

We present an analysis of 228 participants from whom we
received peripheral blood at Special Hematology Laboratory
(Rostock University Medical Center) to evaluate the T-cell
responses 120 days after the first SARS-CoV-2 vaccination.
Patients who received their last disease-specific treatment within
6 months before first vaccination were considered to be under
current cancer treatment. Additional details on sample eligibility
and timing are provided in the supplemental Methods.

Detection of SARS-CoV-2–specific T cells

SARS-CoV-2–specific T cells were detected using intracellular
cytokine staining after stimulation with peptides covering the full-
length, wild-type spike protein of SARS-CoV-2 (SARS-CoV-2
Prot_S Complete, order number 130-127-953; Miltenyi Biotec,
Bergisch Gladbach, Germany) as previously published
(supplemental Table 1).56 In short, after adding brefeldin A, hepa-
rinized whole blood was either left unstimulated (negative control),
stimulated with Staphylococcus enterotoxin B (SEB; positive
control), or with the spike peptide mix for 4 hours at 37◦C. After
incubation, bulk lysis and surface and intracellular staining were
performed per EuroFlow guidelines.68 The panel composition is
given in supplemental Table 1. Samples were measured on BD
FACS Lyric or Miltenyi MACS Quant 10 flow cytometers, which
were aligned in accordance with EuroFlow standards and sub-
jected to biannual EuroFlow quality control ring trials.69,70 Primary
flow cytometry data were analyzed using Infinicyt (version 2.0.4b;
Cytognos SL, Salamanca, Spain). Normalized proportions of SEB-
activated and spike-specific T cells (expressed as percentages of
the samples’ total CD4+ T cells and CD8+ T cells, respectively)
were obtained by subtracting the respective frequencies of the
negative control in the same sample from the raw frequencies.
Fourteen unvaccinated and self-reportedly noninfected control
participants were used to calculate the limit of detection (LOD)
as the mean + 2 standard deviations. Samples >LOD (0.00459%
for CD4+TNFα+IFNγ+IL-2+ T cells and 0.00287% for CD8+

TNFα+IFNγ+IL-2+ T cells) were considered positive. We report on
triple cytokine-positive, polyfunctional CD4+ cells and CD8+ cells
(for gating refer to supplemental Figure 1; examples shown in
supplemental Figure 2). The absolute numbers of spike-specific
and SEB-responsive T cells per μL blood were calculated back
from the numbers of T cells measured using immune monitoring
tube 1.
25 JULY 2023 • VOLUME 7, NUMBER 14
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Immune monitoring

The immune monitoring panel comprised 3 eight-color tubes
(supplemental Table 1) stained in accordance with the EuroFlow
guidelines68 and acquired on a MACSQuant 10. In total, 121 distinct
cell populations were identified using standardized gates and Infinicyt
software (detailed in supplemental Figures 3-5). Numbers of cells per
μL blood were derived from relative measurements of cell populations
(of total leukocytes) via flow cytometry, and the total white blood count
was determined with a Sysmex XP-300 cell counter (Sysmex Europe
GmbH, Norderstedt, Germany).

SARS-CoV-2–specific IgG

SARS-CoV-2–specific immunoglobulin G (IgG) was measured
using an enzyme-linked immunosorbent assay, as previously
described56 (Roche Elecsys Anti–SARS-CoV-2 S assay, Roche
Diagnostics International Ltd, Rotkreuz, Switzerland). The test
detects antibodies to the receptor binding domain of the spike
protein. The assay is calibrated so that 1 U/mL directly equals 1
binding antibody unit per mL (standardized according to World
Health Organization).56 Titers ≥0.8 U/mL were considered positive.

Statistics

Statistical analyses were performed using R (version 4.2.1).71

Response levels below the LOD were set to the respective LOD
if not stated otherwise. Kruskal-Wallis followed by Dunn tests were
used to detect differences in central tendency. Welch one-way
analysis of variance with subsequent Games-Howell tests were
used to detect differences in means. If not stated otherwise,
medians were reported for metric data. Count data were compared
using Fisher exact test. Robust tree-based feature selection with
Monte-Carlo methods was performed using the R package rmcfs
(version 1.3.5) with standard cut-offs.72 Subsequent
Table 1. Demographic and clinical data for controls as well as patients

Variable

Healthy controls,

n = 91*

Lymphoid n

n =

Age (y) 52 (38; 62) 66 (48

Sex

Female 54 (59%) 17 (40

Male 37 (41%) 25 (60

WBC 6.10 (5.30; 7.75) 5.40 (4.1

SARS-CoV-2 vaccination scheme

Vector based 13 (14%) 4 (9.5

2× mRNA-based 62 (68%) 37 (88

Only one‡ 16 (18%) 1 (2.4

Prior SARS-CoV-2 infection

Yes 3 (3.3%) 1 (2.4

No 88 (97%) 41 (98

Current cancer treatment

Yes 0 (0%) 21 (50

No 91 (100%) 21 (50

WBC, white blood cell count.
*Median (Q1 and Q3); n (%).
†Kruskal-Wallis rank sum test; Fisher exact test.
‡Summarizes in-label Ad26.COV2.S (Janssen) and off-label single-shot immunization using eith
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multiparametric logistic regression models were generated using
the R package logistf (version 1.24.1) including all parameters
selected by rmcfs in the full cohort or the 3 subcohorts.

Results

Clinical data

We studied 91 healthy control participants, 42 patients with
lymphoid, and 88 patients with myeloid malignancies (Table 1;
detailed in supplemental Table 2). The healthy control group was
younger and comprised more women than the patient groups.
Moreover, patients with myeloid neoplasms were significantly more
often actively treated than patients with lymphoid neoplasms. We
found no significant differences in terms of prior infections, vacci-
nation type, or white blood count.

Details on disease status and detection of spike-specific IgG
before vaccination are provided in the supplemental Results.

SARS-CoV-2 specific CD8
+
T-cell, CD4

+
T-cell, and

IgG responses in patient cohorts and healthy controls

We compared SARS-CoV-2 spike-specific CD4+ T-cell, CD8+

T-cell, and IgG responses between controls and both patient
cohorts (Table 2) and additionally subdivided patients who were
actively treated and those who were (at least currently) untreated
(supplemental Table 3).

Compared with healthy controls, fewer patients with lymphoid
malignancies demonstrated a seroconversion after vaccination
(99% vs 78%; P < .001). The reduced ability to generate SARS-
CoV-2–specific IgG was similarly reflected by the antibody titers of
responders: we measured median antibody titers of 222 U/mL in
patients with lymphoid malignancies but sevenfold higher titers in
with lymphoid and myeloid neoplasms

eoplasms,

42*

Myeloid neoplasms,

n = 88* P value†

; 74) 62 (52; 67) < .001

.033

%) 37 (42%)

%) 51 (58%)

0; 6.77) 6.00 (4.27; 8.38) .2

.07

%) 11 (12%)

%) 69 (78%)

%) 8 (9.1%)

.7

%) 5 (5.7%)

%) 83 (94%)

.04 (lymphoid vs myeloid)

%) 60 (68%)

%) 28 (32%)

er mRNA vaccine.
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Table 2. Comprehensive comparative analysis of vaccination responses in patients and healthy controls

Variable N

Healthy control,

n = 91

Lymphoid neoplasms,

n = 42

P value healthy vs

lymphoid neoplasms*

Myeloid neoplasms,

n = 88

P value healthy vs

myeloid neoplasms*

Spike-specific IgG detectable
(n [%] of participants†)

219 90 (99%) 32 (78%) < .001 86 (99%) 1

Spike-specific IgG levels (U/mL)‡ 208 1554 (433; 3079) 222 (92; 2115) .02 942 (144; 2384) .11

Spike-specific CD4+ T cells
detectable (n [%] of participants†)

221 67 (74%) 30 (71%) .8 47 (53%) .005

Spike-specific CD4+ T cells
(cells per μL blood)‡

144 0.166 (0.093; 0.251) 0.165 (0.061; 0.248) .7 0.111 (0.075; 0.238) .7

Spike-specific CD4+ T-cells
(% of CD4+ T-cells)‡

144 0.012 (0.008; 0.02) 0.024 (0.007; 0.035) .12 0.018 (0.010; 0.027) .26

Activated CD4+ T cells by SEB
detectable (n [%] of participants†)

221 81 (89%) 41 (97.6%) .2 80 (91%) .8

Activated CD4+ T cells by SEB
(cells per μL blood)‡

202 9.9 (3.9; 17.3) 6.9 (4.3; 14.7) .6 5.7 (2; 9.8) .009

Activated CD4+ T cells by SEB
(% of CD4+)‡

202 0.82 (0.47; 1.25) 1.71 (0.77; 2.81) < .001 0.55 (0.34; 1.20) .24

Spike-specific CD8+ T-cells
detectable (n [%] of particpants†)

221 38 (42%) 13 (31%) .3 25 (28%) .08

Spike-specific CD8+ T cells
(cells per μL blood)‡

76 0.038 (0.022; 0.085) 0.035 (0.015; 0.057) .5 0.050 (0.019; 0.168) .5

Spike-specific CD8+ T cells
(% of CD8+)‡

76 0.008 (0.005; 0.017) 0.009 (0.004; 0.012) .9 0.014 (0.005; 0.027) .4

Activated CD8+ T cells by SEB
detectable (n [%] of participants†)

221 82 (90.1%) 41 (97.6%) .2 82 (93.2%) .6

Activated CD8+ T cells by SEB
(cells per μL blood)‡

205 4 (1.9; 7.4) 4.4 (2.7; 8.9) .5 3 (0.9; 7.3) .2

Activated CD8+ T cells by SEB
(% of CD8+)‡

205 0.86 (0.36; 1.50) 1.15 (0.59; 2.01) .14 0.76 (0.26; 1.65) .6

Significant (<0.05) P values are highlighted in bold.
*P values calculated using Dunn post hoc test (continuous data) or Fisher exact test (categorical data).
†Numbers and percentages of participants who show a response in spike-specific IgG, CD4+ T cells, and CD8+ T cells as well as in SEB-activated CD4+ T cells and CD8+ T cells are

tabulated by patient and control groups.
‡Spike-specific IgG levels are provided in U/mL, spike-specific and SEB-activated CD4+ T cells and CD8+ T cells, respectively, are provided as percentage of the respective T-cell

subpopulations and as counts of polyfunctional T cells per μL blood (medians, Q1 and Q3). These data were calculated based upon all participants with detectable IgG, polyfunctional CD4+ T
cells, and CD8+ T cells, respectively.
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healthy controls (1554 U/mL; P = .02). The reduced seroconver-
sion rate as well as reduced antibody titers affected predominantly
those patients with lymphoid neoplasms under active treatment.
Patients with myeloid malignancies showed the same high sero-
conversion rate as the control cohort and a nonsignificant trend
toward lower IgG antibody titers.

SARS-CoV-2–specific polyfunctional CD4+ T cells were detect-
able in a lower proportion of patients with myeloid neoplasms
(53%) than in the control cohort (74%, P = .005), whereas no
significant difference could be observed between controls and
patients with lymphoid malignancies. Responding controls and
patients did not differ in the numbers of spike-specific CD4+ T
cells: we detected at median 0.166, 0.165, and 0.111 polyfunc-
tional CD4+ T cells per μL. This pattern suggests that a particular
subgroup of patients with myeloid neoplasms was unable to mount
a polyfunctional spike-specific CD4+ T-cell response, whereas the
remaining patients with myeloid neoplasms and the patients with
lymphoid neoplasms showed CD4+ T-cell activation at the control
level. Considering similar CD4+ T-cell response rates in patients
receiving treatment and those who were not (supplemental
Table 3), active treatment apparently does not explain subgroups
with different vaccination results in myeloid malignancies.
3406 ENGELMANN et al
Fewer CD4+ T cells were activated upon T-cell receptor (TCR)-
mediated, antigen-unspecific stimulation in patients with myeloid
neoplasms compared with healthy participants (5.7 vs 9.9 poly-
functional CD4+ T cells per μL), whereas the percentages of
responding CD4+ T cells were comparable (0.55% vs 0.82%). In
contrast, we observed an increased percentage of CD4+ T cells
activated by SEB in patients with lymphoid neoplasms as
compared with healthy controls (1.71% vs 0.82%). This suggests
that the CD4+ T cells in patients with lymphoid neoplasms are
easier to activate, and this effect might compensate for the lower
numbers of CD4+ T cells. The effect might be particularly relevant
when patients are being actively treated (supplemental Table 3).

The proportion of participants with detectable SARS-CoV-2–spe-
cific polyfunctional CD8+ T cells and the numbers of these cells did
not differ between controls and both patient cohorts. Moreover,
CD8+ T cells from both patient groups could be as readily acti-
vated by SEB as those from control participants. Patients with
lymphoid malignancies actively undergoing treatment might even
possess an increased response to SEB (supplemental Table 3).

In summary, patients with lymphoid malignancies mounted an
insufficient IgG response accompanied by a normal or even
improved CD4+ T-cell function against SARS-CoV-2. Patients with
25 JULY 2023 • VOLUME 7, NUMBER 14
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myeloid neoplasia had normal spike-specific IgG levels, but a major
subpopulation of these individuals presented with a defective
CD4+ T-cell response. Spike-specific CD8+ T-cell immune
responses were preserved in both patient groups.

In-depth immune phenotyping in patient cohorts and

healthy controls

Having demonstrated differences in CD4+ T-cell and IgG response
rates toward vaccination between patients with myeloid malig-
nancies and those with lymphoid malignancies, we searched for
mechanistic explanations and, therefore, characterized the
composition of the immune system in the cohorts.

In contrast to the largely unaffected myeloid lineage, we observed a
significant lymphopenia in both patients with myeloid malignancies
and those with lymphoid malignancies (Table 3; supplemental
Figure 6). T cells, B cells, and natural killer (NK)-cells were all
significantly reduced in both patient cohorts compared with in
healthy controls, with greater numerical reductions observed for
patients with lymphoid neoplasia.

We found a reduction in the number of CD4+ T cells in both patient
cohorts. Within the CD4+ T-cell compartment, all maturation steps,
except the effector memory CD4+ T cells in lymphoid neoplasia were
significantly reduced. Naive CD4+ T cells were diminished the most:
patients with lymphoid neoplasms exhibited only a quarter of the
number of naive CD4+ T cells compared with that in the healthy
controls (100 vs 398 cells per μL). Similarly, the controls had twice as
many naive CD4+ T cells than patients with myeloid neoplasms (398
vs 194 cells per μL). A significant overall reduction of CD8+ T cells
Table 3. Differences in major leukocyte subsets per μL blood between p

Population

Healthy control*

(n = 87)

Lymphoid neoplasms*

(n = 41)

Myeloid cells 3424 (2737; 4775) 3461 (2680; 4286)

Neutrophils 2789 (2215; 3947) 2771 (2167; 3707)

Eosinophils 83 (46; 151) 72 (35; 102)

Monocyten 412 (323; 612) 417 (343; 538)

Lymphocytes 2529 (2073; 3189) 1556 (1150; 2536)

B cells 304 (206; 462) 160 (47; 542)

T cells 1937 (1513; 2390) 1220 (752; 1675)

CD4+ T cells 939 (643; 1293) 421 (258; 694)

Naive CD4+ T cells 398 (232; 641) 100 (36; 194)

CM CD4+ T cells 330 (218; 491) 184 (115; 306)

EM CD4+ T cells 89 (58; 144) 77 (40; 116)

TE CD4+ T cells 7 (3; 20) 2 (2; 10)

CD8+ T cells 444 (277; 581) 380 (258; 532)

Naive CD8+ T cells 106 (49; 164) 35 (18; 111)

CM CD8+ T cells 43 (23; 68) 31 (17; 59)

EM CD8+ T cells 89 (47; 173) 95 (61; 150)

TE CD8+ T cells 132 (50; 203) 116 (72; 212)

NK cells 293 (182; 425) 209 (103; 292)

CM, central memory cells (CD45RA−CCR7+); EM, effector memory cells (CD45RA−CCR7−);
Significant (<0.05) P values are highlighted in bold.
*Median (Q1 and Q3); n (%); T-cell maturation parameters (CCR7, CD45RA) could not be ass

because of technical reasons.
†P values calculated using Dunn post hoc test.
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was demonstrated in patients with myeloid neoplasms, whereas
patients with lymphoid neoplasms presented nearly normal CD8+

T-cell numbers. Nevertheless, naive CD8+ T cells were reduced in
both patient cohorts when compared with the control population.

A systematic comparison of both patient cohorts with the normal
control group and between each other (supplemental Figure 6)
revealed that both patient cohorts presented similar reductions of
many different T-cell subpopulations. In lymphoid, compared with
myeloid malignancies, fewer T cells, naive regulatory T cells, and
naive CD4+ T cells were detected. Patients with lymphoid neo-
plasms presented not only fewer CD4+ T cells expressing inhibitory
molecules TIM373 and LAG3,74 but also fewer CD4+ T cells
expressing the activating NKG2D molecule.75

A complete list of all 121 investigated parameters, including
descriptive statistics, is provided in supplemental File 2.

Taken together, the immune system of patients with lymphoid or
myeloid malignancies resembled each other with an overall lym-
phopenia and a pronounced reduction in naive CD4+ T cells, which
might reflect a contraction of the reservoir of CD4+ T cells that are
able to respond to vaccination. Both patient cohorts differed
between each other in the numbers of naive CD4+ T cells and
regulatory T cells as well as in the expression of inhibitory and
activating receptors on CD4+ T cells.

Parameters associated with spike-specific CD4+

T-cells, CD8+ T-cell, and IgG responses

We investigated whether immunophenotypic or demographic
parameters or the type of vaccination were significantly associated
atients with hematological neoplasia and healthy controls

P value healthy vs

lymphoid neoplasms†

Myeloid neoplasms*

(n = 86)

P value healthy vs

myeloid neoplasms†

.7 4056 (2429; 6338) .5

.8 3190 (1868; 5324) .6

.2 68 (35; 165) .4

1 404 (295; 633) .9

< .001 2031 (1462; 2864) .002

.03 251 (122; 384) .03

< .001 1520 (993; 2150) .002

< .001 577 (355; 928) < .001

< .001 194 (88; 389) < .001

.001 224 (141; 346) .001

.06 55 (34; 88) .002

.02 3 (2; 11) .009

.4 284 (178; 443) .001

.002 53 (23; 103) .002

.2 28 (15; 55) .01

.7 57 (33; 118) .02

.6 100 (33; 168) .1

.003 231 (122; 355) .04

TE, terminal effector cells (CD45RA+CCR7−).

essed in 1 healthy control, 3 patients with lymphoid, and 1 patient with myeloid neoplasia
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Figure 1. Parameters associated with vaccination responses. Univariate analyses of (A) vaccination response parameters, (B) clinicodemographic features, and (C) immune

signatures in study participants based on CD4+ T-cell, CD8+ T-cell, and IgG responses. (left) Groups of study participants with detectable spike-specific CD4+ response

(n = 144) compared with those without detectable CD4+ response (n = 77). Analogously, (middle) comparison of participants with spike-specific CD8+ response (n = 76) with

CD8+ nonresponders (n = 145); (right) participants with specific IgG levels above median (n = 109) vs participants with lower spike-specific IgG (n = 110). Each line represents a

vaccination response parameter, clinicodemographic feature, or specific population from in-depth immunophenotyping (expressed as cells per μL). Green cells denote higher age,

higher IgG titers, higher percentages of women, and of recipients of heterologous vaccination schemes, as well as higher cell numbers per μL blood for all other features in CD4+,
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with detectable polyfunctional spike-specific CD4+ T cells and
CD8+ T cells or with above-median spike-specific IgG titers
(Figure 1; detailed in supplemental File 2).
3408 ENGELMANN et al
Participants with detectable spike-specific CD4+ T cells (CD4pos)
were more frequently vaccinated with at least 1 dose of vector-
based AZD1222 vaccine when compared with nonresponders
25 JULY 2023 • VOLUME 7, NUMBER 14



Table 4. Demographic, clinical, and vaccination response data for

participants grouped based on the vaccination scheme

Variable

Vector

based,

n = 28*

Only 1†,

n = 25*

2× mRNA-

based,

n = 168*

P
value‡

Age (y) 53 (45; 60) 55 (48; 61) 60 (47; 69) .05

Sex .2

Female 13 (46%) 8 (32%) 87 (52%)

Male 15 (54%) 17 (68%) 81 (48%)

WBC 5.5 (4.5; 6.1) 5.7 (4.7; 7.1) 6.3 (4.8; 8.2) .1

Study cohort .07

Healthy control 13 (46%) 16 (64%) 62 (37%)

Lymphoid neoplasms 4 (14%) 1 (4%) 37 (22%)

Myeloid neoplasms 11 (39%) 8 (32%) 69 (41%)

Prior SARS-CoV-2 infection < .001

Yes 0 (0%) 7 (28%) 2 (1.2%)

No 28 (100%) 18 (72%) 166 (98.8%)

Current cancer treatment .4

Yes 11 (39%) 6 (24%) 64 (38%)

No 17 (61%) 19 (76%) 104 (62%)

Spike-specific IgG detectable
(n [%] of participants)

26 (93%) 23 (96%) 159 (95%) .9

Spike-specific CD4+ T cells
detectable (n [%]
of participants)

27 (96%) 15 (60%) 102 (61%) .001

Spike-specific CD8+ T cells
detectable (n (%)
of participants)

20 (71%) 8 (32%) 48 (29%) < .001

Vaccination success is expressed as percentage of study participants with detectable
spike-specific IgG, CD4+, and CD8+ responses, respectively. WBC, white blood cell count.
Significant (<0.05) P values are highlighted in bold.
*Median (Q1 and Q3); n (%).
†Summarizes in-label Ad26.COV2.S (Janssen) and off-label single-shot immunization

using either mRNA vaccine.
‡Kruskal-Wallis rank sum test; Fisher exact test.
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(27 of 144 vs 1 of 77; P < .001). CD4pos individuals at median had
higher spike-specific IgG titers (1500 vs 176 U/mL; P < .001)
and more spike-specific CD8+ T cells (0.019 vs 0.016 cells per μL;
P = .007). These CD4+ T-cell responders also showed a stronger
activation upon antigen-unspecific, TCR-dependent stimulation
using SEB (CD4+ T cells: 8.0 vs 4.0 cells per μL and CD8+ T cells:
4.3 vs 1.9 cells per μL). CD4pos participants were younger than
nonresponders (55 vs 62 years; all P < .001) and had significantly
more frequent CD4−CD8− double-negative T cells76 lacking both
CD45RA and CCR7 and an increased frequency of HLA-DR+

among those cells.

A vector-based vaccine was more frequently used in participants
with detectable spike-specific CD8+ T cells (CD8pos, 20 of 76)
compared with nonresponders (8 of 145; P < .001). CD8pos par-
ticipants had higher IgG titers (1621 vs 623 U/mL; P < .001). As
expected from the data mentioned above, we detected more spike-
specific CD4+ T cells in CD8pos individuals (median: 0.16 vs 0.07
cells per μL; P < .001). SEB stimulation induced a stronger CD4+

T-cell response in CD8pos individuals (median 8.3 vs 5.5 cells per
μL, P = .006), whereas the CD8+ T-cell response to SEB was
comparable (medians 3.2 vs 4.3 cells per μL; P = .1). Furthermore,
25 JULY 2023 • VOLUME 7, NUMBER 14
we found a significantly higher number of CD4+ T cells and
naive CD4+ T cells (median, 357 vs 208 cells per μL; P = .006)
in CD8pos individuals. Moreover, the numbers of PD-
1+CD56dimCD8+ T cells and CD56dimCD8+ NK cells were
significantly lower in the CD8pos group, whereas the number of
CD56bright NK cells was elevated (supplemental File 2).

Given the remarkable benefit for the vector-based AZD1222 to
induce spike-specific T-cell vaccination responses, we specifically
compared study participants by vaccination scheme (Table 4).
Vaccinees who received schemes that included vector-based
AZD1222 were marginally younger than the remaining partici-
pants but exhibited no other clinical or demographic features
suggestive of a higher likelihood for a successful immunization.
When analyzed based on the participant cohort, AZD1222
induced a detectable, specific CD4+ T-cell response in 100% (13
of 13) of healthy controls, 100% (4 of 4) of patients with lymphoid
neoplasms, and 90% (10 of 11) of patients with myeloid neo-
plasms, whereas fully mRNA-based vaccination schemes resulted
in measurable CD4+ T-cell responses in 73% (45 of 62; P = .03),
68% (25 of 37; P = .3), and 46% (32 of 69; P = .008), of the
participant cohorts, respectively. Similarly, vector-based prime-
boost vaccination also more frequently induced spike-specific
CD8+ T-cell responses in controls (vector, 11 of 13 [85%] vs
mRNA, 21 of 62 [34%]; P = .001), lymphoid malignancies (vector
2 of 4 [50%] vs mRNA, 11 of 37 [30%]; P = .6), and myeloid
malignancies (vector, 7 of 11 [64%] vs mRNA, 16 of 69 [23%];
P = .01). However, quantitatively, spike-specific T cells per μL
blood in responders did not differ significantly between mRNA-
based vaccination schemes and AZD1222 immunization.

Finally, we compared participants with (IgG+) and without spike-
specific IgG titers above the overall median titer 120 days after
vaccination. Individuals who were IgG+ were younger (median: 54
vs 63.5 years; P < .001) and more often female (65 of 109 vs 42 of
110; P = .002). Spike-specific CD4+ T cells were roughly twice as
frequent in IgG+ compared with IgG− patients and controls
(medians: 0.13 vs 0.07 cells per μL blood; P < .001). A stronger
IgG response was associated with higher B-cell counts (median:
318 vs 196 cells per μL). Total lymphocyte and T-cell numbers
followed this pattern, as did the numbers of various T-cell and NK-
cell subpopulations (supplemental File 2). Of note, the numbers of
naive CD4+ T cells were also increased in individuals who were
IgG+ compared with those who were IgG− (median 334 vs 186
cells per μL; P < .001).

In general, strong vaccination responses of CD8+ T cells, CD4+

T cells, and IgG cooccur when all participants are analyzed
together and when the quantitative strength of the responses (ie,
titers and cell counts) are considered. Furthermore, a responsive
immune system can be characterized by sufficient numbers of
naive T cells77 and the responsiveness of T cells after a TCR-
mediated, antigen-independent stimulation. Importantly, spike-
specific T-cell responses were detected in a higher fraction of
study participants when vector-based vaccinations were used.

Multivariable response models

Lastly, we identified parameters that were independently associ-
ated with SARS-CoV-2–specific CD4+ and CD8+ T-cell and IgG
vaccination responses using multivariable logistic regression
models. We included parameters identified as important using a
VECTOR-BASED VACCINATION AND T-CELL RESPONSE 3409
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Monte Carlo–based feature selection approach (supplemental
Figure 7) along with parameters significantly associated with the
response in univariable analyses: age, sex, and the vaccination
type. Owing to published evidence on the significance of the cur-
rent treatment status,33,78 the initial models were also fitted to
include this parameter.

The generic model identified vaccination with at least 1 vector-
based vaccine dose (odds ratio [OR], 10.7), the CD8+ antigen-
unspecific T-cell responsiveness (OR, 1.05), and spike-specific
IgG titers (OR, 1.2) as significantly associated with a spike-
specific CD4+ T-cell response (Figure 2). Patients with myeloid
neoplasms were significantly less likely to mount a detectable
CD4+ T-cell response (OR, 0.3). Exclusively for healthy controls,
the model retained a positive association with IgG titers (OR, 2.76)
and with unspecific CD8+ T-cell responsiveness (OR, 1.39). With
lower participant numbers, the models for each subgroup sepa-
rately did not identify any other parameter as being significantly
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associated with CD4+ T-cell response. However, the chance of
developing a spike-specific CD4+ T-cell response was numerically
higher when at least 1 vector-base vaccine dose was given to
control participants (OR, 3.72) and patients with myeloid neo-
plasms (OR, 4.65).

Similarly, the CD8+ T-cell response was also significantly associ-
ated with a vaccination scheme that included at least 1 vector-
based dose as compared with 2 doses of a mRNA-based vac-
cine (OR, 6.56). Furthermore, the numbers of spike-specific CD4+

T cells were associated with a CD8+ T-cell response. The
subgroup-specific models underlined the statistically significant
beneficial effect of using at least 1 vector-based vaccine for the
control group (OR, 4.56) and patients with myeloid neoplasms
(OR, 12.71). In contrast to our observations for the CD4+ T-cell
response, for patients with myeloid neoplasms, ongoing therapy,
when being vaccinated, lowered the chance of developing a
measurable CD8+ T-cell response.
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The serological response was negatively affected by older age,
being male, currently receiving therapy, and by having received only
a single immunization. In contrast, having measurable spike-specific
CD4+ T cells was positively associated with an IgG response. Of
note, the numbers of B cells were not associated with an IgG
response in the multivariable models.

In summary, the multivariable models confirmed a strong interde-
pendence of spike-specific CD8+ T-cell, CD4+ T-cell, and IgG
responses to vaccination across the study cohorts of patients and
controls. Of particular interest was the observation of a higher
likelihood of mounting spike-specific CD8+ and CD4+ T-cell
responses upon vector-based vaccination. None of the immuno-
phenotypic parameters showed an association to the cellular or
humoral vaccination immunity independent of the respective other
spike-specific immune response outcomes and the vaccination
scheme.

Discussion

In order to elucidate immunological mechanisms for vaccination
success and failure, we, herein, provide a comprehensive charac-
terization of the specific CD8+ T-cell, CD4+ T-cell, and serological
immunity induced by SARS-CoV-2 vaccination in 130 patients with
hematological malignancies and 91 healthy controls. To the best of
our knowledge, our study is the first to measure polyfunctional
spike-specific T-cell responses using a dedicated assay in a large
cohort of patients with lymphoid or myeloid neoplasms.

The flow cytometry assay used in this study allows the separate
analysis of spike-specific CD8+ T-cell and CD4+ T-cell responses,
unlike, for example, the enzyme-linked immunospot assay used by
others.44,58,79 Taking advantage of this technical feature, we could
demonstrate (Table 2) that the reduced T-cell response in myeloid
malignancies affects CD4+ T cells only, whereas the CD8+ T-cell
response can be detected with the same frequency and strength as
those in controls and patients with lymphoid malignancies. The
reduction in CD4+ T-cell responsiveness appears to be restricted to
a distinct subgroup of patients with myeloid malignancies, because
the counts of SARS-CoV-2–specific CD4+ T cells in responders
equal the counts in healthy controls. T-cell responses without
seroconversion were detectable in a sizable fraction of patients with
lymphoid malignancies.56 That dissociation of humoral and cellular
vaccination immunity in hematological malignancies has very recently
also been described by other groups.44,58,79,80

To explain the differences in responses between myeloid and
lymphoid neoplasia, we hypothesized that certain myeloid neo-
plasms and their treatment might specifically impair the CD4+ T-
cell compartment, whereas the treatment of lymphoid malignancies
might interfere with a B cell–mediated vaccination response. We
sought to elucidate mechanistic links between vaccination success
and disease categories using in-depth immunophenotyping of 121
distinct cell populations. However, these investigations mainly
revealed similarities between both patient groups: lymphopenia
affecting T, B, and NK cells as well as a profound reduction of the
naive compartment in CD8+ T cells and CD4+ T cells. We identi-
fied only a few, relatively small CD4+ T-cell populations that were
increased in myeloid neoplasm in comparison with lymphoid neo-
plasms. Thus, immunophenotyping did not offer a clear explanation
for the impaired CD4+ T-cell immunity co-occurring with preserved
25 JULY 2023 • VOLUME 7, NUMBER 14
CD8+ T-cell responses in a fraction of patients with myeloid
malignancies.

In order to identify immunophenotypic predictors for the observed
different immune responses by study cohort, we developed multi-
variable models for the prediction of detectable spike-specific
CD8+ T cells and CD4+ T cells as well as above-median IgG
levels. Our analyses revealed that the CD8+ T-cell response
strongly depended on the CD4+ T-cell response reaching statisti-
cal significance in multivariable models of the total study population
and patients with myeloid malignancies and was also evident for
healthy controls and patients with lymphoid malignancies. This
observation suggests that a strong CD8+ T-cell response is sup-
ported by an extensive spike-specific CD4+ T-cell activation
(Figure 2). Moreover, the CD8+ T-cell but not the CD4+ T-cell
response is negatively affected by the current treatment. In line with
our observation, a negative impact of the current treatment on T-
cell responses in general had been demonstrated before.32,79,80 In
our study, we could refine this observation as being only significant
for the CD8+ T-cell response.

Reduced titers of anti-SARS-CoV-2 spike-protein IgG as well as
neutralizing antibodies in patients with hematological neoplasms
has previously been described to be likely mediated by B-cell
depletion or suppression.31,81 This is in line with our multivariable
model showing a strong significant effect of current treatment on
the serological response. In our cohort, the numbers of B cells
showed no independent association with the serological response.
We speculate that in our models the same effect might be
captured by the parameter current treatment, which would lead to
a severe B-cell depletion in many lymphoid malignancies. The
multivariable approach also identified a strong spike-specific CD4+

T-cell response as a beneficial parameter for a strong serological
immunization response for both individuals with myeloid neoplasia
and healthy controls. That interaction was completely lost in
lymphoid malignancies.

Our data endorsed a model with a central role of spike-specific
CD4+ T-cell support for both CD8+ T-cell and IgG immunization
responses. Patients without an operational B-cell compartment,
such as those with treated lymphoid malignancies, cannot mount
an IgG response even in the presence of a strong CD4+ T-cell
activation. They therefore have to rely upon CD8+ T cells for pro-
tection from severe COVID-19.25

For both the CD4+ T-cell and CD8+ T-cell responses, we found a
significant beneficial effect of vector-based vaccination schemes.
The healthy controls, but more importantly the group of patients
with myeloid malignancy, appeared to benefit from such a schedule
in terms of response rates (with low patient numbers receiving
vector-based vaccines, the relationship could not be established
for lymphoid neoplasia). Very recently, it had been shown that in
healthy vaccinees, a heterologous prime-boost immunization
resulted in higher T-cell reactivities as compared with homologous
vaccination using mRNA vaccines only.60,61,63,64 To our knowl-
edge, no such studies had been performed with focus on individ-
uals who are immune compromised. If confirmed in additional
studies, our results suggest revisiting heterologous vaccination
schemes for those vulnerable patient groups.

Published data on T-cell responses to SARS-CoV-2 vaccination in
patients with hematological neoplasms are sparse and sometimes
VECTOR-BASED VACCINATION AND T-CELL RESPONSE 3411
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conflicting.32,44,45,57,58,66,79,80,82-86 The majority of studies used
enzyme-linked immunospot assays to assess T-cell responses and
thus were not able to distinguish between CD4+ T-cell and CD8+

T-cell responses or measure polyfunctional responses. In contrast,
we had established an intracellular cytokine staining assay using
minimal sample manipulation to calculate the exact numbers of
spike-specific CD4+ T cells and CD8+ T cells. We were able to
detect spike protein–specific polyfunctional CD4+ T-cell responses
in 74% of all healthy participants and spike protein–specific poly-
functional CD8+ T-cell responses in 42% of all healthy donors. The
frequencies of spike-specific polyfunctional CD4+ T cells ranged
from 0.00459% (our LOD) to 0.5% among all CD4+ T cells and
from 0.00287% to 0.6% among all CD8+ T cells, and thus match
respective values published, for example by Cohen et al.65 Seminal
work by Sahin et al87 reported CD4+ and CD8+ T-cell responses in
95% and 76%, respectively, of all participants, 7 days after sec-
ondary immunization with tozinameran, with frequencies ranging
from 0.02% to 0.1% and from 0.01% to 1.44% for interferon-γ+

CD4+ and CD8+ T cells, respectively. These studies indicate that
CD8+ T-cell responses are less frequently detectable than CD4+

T-cell responses. Our results are within these published ranges.7

Beside the technically advanced assay used to quantify T-cell
responses, another strength of our study is the large control cohort that
was treated and investigated exactly like the patient cohorts. As amajor
drawback, we acknowledge that our patient cohorts are heteroge-
neous in terms of diseases and treatments. This heterogeneity and the
resulting low number of study participants with particular clin-
icodemographic and disease featuresmost probably explain the lack of
statistical significance of certain associations in our multivariable ana-
lyses. Thus, our cohort is a cross-sectional representation of the
patient’s spectrum that allows the generation of hypotheses for patient
groups but not disease or treatment-specific analyses.

Although there are convincing data to link spike-specific IgG
responses in vaccinees with protection from disease, such corre-
lations between spike-specific CD4+ T-cell and CD8+ T-cell counts
as a quantitative correlate of protection against symptomatic or
severe COVID-19 remain to be established.16,25 In an attempt to
clarify this in the future, we are currently assessing long-term
clinical outcomes in our study participants.

In conclusion, our study untangles the links and differences
between the 3 arms of the adaptive immune system in a large,
healthy control group compared with those in patients with malig-
nancies of the lymphoid and myeloid lineage. These clear
3412 ENGELMANN et al
differences in responses reported herein call for tailored vaccina-
tion plans that might be additionally refined using the monitoring of
polyfunctional T cells. Moreover, we provide preliminary evidence
that the use of vector-based vaccines increases T-cell responses,
which might be important to protect patients who are immune
compromised from severe COVID-19.3,16,25
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