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TAK-981, a SUMOylation inhibitor, suppresses AML growth
immune-independently
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Key Points

• High SUMOylation is a
clinically relevant
vulnerability in AML,
associated with higher
European
LeukemiaNet 2017
risk, poorer survival,
and AML-specific
mutations.

• TAK-981, a new
SUMOylation inhibitor,
shows nanomolar and
immune-independent
anti-AML activity,
exhibiting synergy with
other AML drugs.
56-
Acute myeloid leukemia (AML) generally has an unsatisfactory prognosis despite the recent

introduction of new regimens, including targeted agents and antibodies. To find a new

druggable pathway, we performed integrated bioinformatic pathway screening on large

OHSU and MILE AML databases, discovered the SUMOylation pathway, and validated it

independently with an external data set (totaling 2959 AML and 642 normal sample data).

The clinical relevance of SUMOylation in AML was supported by its core gene expression

which is correlated with patient survival, European LeukemiaNet 2017 risk classification,

and AML-relevant mutations. TAK-981, a first-in-class SUMOylation inhibitor currently

under clinical trials for solid tumors, showed antileukemic effects with apoptosis induction,

cell-cycle arrest, and induction of differentiation marker expression in leukemic cells. It

exhibited potent nanomolar activity, often stronger than that of cytarabine, which is part of

the standard of care. TAK-981’s utility was further demonstrated in in vivo mouse and

human leukemia models as well as patient-derived primary AML cells. Our results also

indicate direct and cancer cell-inherent anti-AML effects by TAK-981, different from the

type 1 interferon and immune-dependent mechanism in a previous solid tumor study.

Overall, we provide a proof-of-concept for SUMOylation as a new targetable pathway in

AML and propose TAK-981 as a promising direct anti-AML agent. Our data should prompt

studies on optimal combination strategies and transitions to clinical trials in AML.
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Introduction

Acute myeloid leukemia (AML) is a heterogeneous disease characterized by an accumulation of immature
progenitor cells with arrested differentiation leading to suppression of hematopoiesis.1 Current standard of
care treatments include combination chemotherapy with cytotoxic drugs, usage of hypomethylating agents,
and/or hematopoietic stem cell transplantation.2 Recent improvement in our understanding of AML path-
ogenesis has led to the introduction of several novel targeted agents since 2017.3 Nevertheless, long-term
survival is still suboptimal without allogeneic hematopoietic stem cell transplantation,4 and thus, more efforts
should be done to unravel novel prognostic, predictive, and targetable molecular abnormalities. However,
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lack of prevailing driver genomic mutations and available unique
markers for AML has made it quite difficult. In this context, investi-
gations into postgenomic pathways relevant to AML pathogenesis
and approaches to their targeting have been desired.

SUMOylation is a posttranslational modification involved in the
conjugation of small ubiquitin-like modifiers (SUMOs) to substrate
proteins.5 SUMO-activating enzyme E1 (SAE1 and SAE2 encoded
by SAE1 and UBA2, respectively), an E2 (ubiquitin-conjugating
enzyme 9 (UBC9) encoded by UBE2I), and a limited set of E3
ligases participate in this process.5,6 SUMOylation seems to be
important in the nuclear functions of proliferating or developing cells
by regulating the mitotic cell cycle and DNA damage response.7-9

Specific pathways affected by SUMOylation in cancer may
include p5310,11 and cMYC,12,13 but more studies are needed to
resolve some of the controversies.14,15 In addition, innate immunity
is mostly suppressed by SUMOylation, the inhibition of which,
therefore, might have implications for cancer therapy.5,16 As for
AML, only a few studies on the roles of SUMOylation have been
published.17-19 Therefore, concrete evidence of the therapeutic
utility of SUMOylation or of specific inhibitors of SUMOylation in
AML has been lacking. TAK-981 is an inhibitor of the SUMO-acti-
vating enzyme (SAE) that forms a SUMO-TAK-981 adduct.20 As the
first-in-class SAE inhibitor targeting cancers, it is currently in clinical
trials for solid tumors or lymphomas (#NCT03648372,
#NCT04074330, and #NCT04381650). In blood cancer, it has
been known to shift the T-cell balance toward healthy immune cell
subsets in chronic lymphocytic leukemia.21 To our knowledge, TAK-
981 has not been studied for AML or evaluated in AML clinical trials.

For solid tumors, large-scale bioinformatic analysis has been suc-
cessfully performed comparing normal and cancer samples, thanks
to The Cancer Genome Atlas (TCGA) data. TCGA also contains
data on AML (TCGA-LAML22 data set), but it lacks the data for
noncancer controls, limiting its application in the AML field. As of
now, 3 large-scale gene expression databases contain both AML
and normal data: (1) MILE study stage I data,23 (2) OHSU data from
the Beat AML 1.0 program,24 and (3) the Gene Expression Omnibus
(GEO) compilation.25 Therefore, analysis of these large databases
(totaling 2959 AML and 642 normal samples) might yield new and
useful information on targets for patients with broader AML.

Here, accessing large gene expression databases for AML, we
evaluated the clinical relevance of the SUMOylation pathway and
investigated the antileukemic effects of its inhibition by TAK-981.

Methods

More detailed information is in supplemental Methods.

Bioinformatic analysis

Details are provided in supplemental Data.

Cells - reagents, antibodies for flow cytometry, and

cell viability with cell counting kit-8 (CCK-8) assay

Details are provided in supplemental Data.

Primary AML cells from patients

The information of the samples, including mutation status, is listed
in supplemental Table 7.
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Flow cytometry, Apoptosis analysis, and Cell-cycle

analysis

Details are provided in supplemental Data.

Quantitative reverse transcription polymerase chain

reaction validation, Western blotting

The efficiencies of the primers used are listed in supplemental
Table 8.

Animal experiments

Details are provided in supplemental Data.

Statistical analysis

The Wilcoxon rank-sum test, one-way analysis of variance, Student
t test, and Jonckheere-Terpstra test were used when necessary.
Details are provided in supplemental Data.

All animal experiments were performed in accordance with a pro-
tocol approved by the Institutional Animal Care and Use Commit-
tee of The Catholic University of Korea (CUMC-2020-0318-01).
Bone marrow (BM) samples from patients with AML were collected
during routine diagnostic procedures after informed consent was
obtained in accordance with Institutional Review Board regulations
of The Catholic University of Korea (KC20SISI0957) and the
Declaration of Helsinki.
Results

Bioinformatic screening identifies SUMOylation

pathway as AML-specific target

First, we performed an integrated analysis on large-scale data-
bases (MILE study stage I and OHSU Beat AML 1.0 program)
(Figure 1A). Selection of significant pathways in the 2 gene set
enrichment analysis results (AML vs normal) (supplemental
Table 1) followed by their clustering based on common leading-
edge genes and protein-protein interactions yielded 4 distinct
pathway clusters: (1) translation/ribosomal RNA/mitochondria,
(2) histone-related, (3) SUMOylation, and (4) regulation of
messenger RNA (mRNA) (Figure 1B). Interestingly, inhibitors
targeting the first cluster, such as ribosome biogenesis inhibitors
or tetracyclines, had shown both in vitro and in vivo antileukemic
activities and were entered into clinical development.27-29 These
facts show that our bioinformatic results may have real relevance
for targeting AML. Of the 3 remaining clusters, we focused on
SUMOylation cluster because it had not been explored much for
AML, and the other 2 were either difficult to establish the causality
(Histone-related) or too nonspecific (Regulation of mRNA). Most
of the individual genes comprising the SUMOylation pathway
were found to be upregulated in AML samples from both the MILE
and OHSU databases (SUMO1 and UBA2 in Figure 1C; all the
others in supplemental Figure 1A). We further validated the
results using another large independent data set from the GEO
collection of 2213 AML and 548 normal samples.25 Consistently,
we found that 11 of 17 genes related to SUMOylation were found
to be significantly upregulated in AML samples (SUMO1 and
UBA2 in Figure 1D; all the others in supplemental Figure 1B). In
particular, we observed higher protein levels of E1 (SAE1 and
11 JULY 2023 • VOLUME 7, NUMBER 13
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Figure 1. Bioinformatic screening to find AML-specific

pathways. (A) Overall strategy for database screening. (B)

Graphical illustration of 4 pathway clusters upregulated in

AML BM samples from panel A, using GSCluster26 R

package. The number of connected gene sets in each cluster

is indicated. (C) Comparison of UBA2 and SUMO1 gene

expression between healthy and AML BM samples in OHSU

and MILE databases. (D) Comparison of UBA2 and SUMO1
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by Roushangar and Mias.25 (E) Representative western blot
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SAE2), targets for TAK-981, and E2 (UBC9) in cells from patient
with AML than those in healthy control or patients with remission
after therapy (Figure 1E). We believe these provide further
11 JULY 2023 • VOLUME 7, NUMBER 13
support for the involvement of SUMOylation at the protein level.
The results also suggest that the upregulated SUMOylation
pathway in AML may be a target for therapeutic intervention.
TAK-981, A SUMOYLATION INHIBITOR, SUPPRESSES AML 3157
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SUMOylation pathway is associated with adverse risk

features and poor survival in AML

We then explored the clinical relevance of SUMOylation. First, higher
expression of most of the important genes in the SUMOylation
pathway from the OHSU database (SUMO1 and UBA2 in Figure 2A;
all the others in supplemental Figure 2A) was significantly associated
with shorter survival. Some of those negative correlations (for SAE1,
BMI1, and PHC2) were validated with the TCGA database
(supplemental Figure 2A), and all the results, along with those without
correlations, are shown in supplemental Table 2. Second, the
ELN2017 risk analysis on the 4 groups (healthy, favorable, interme-
diate, and adverse in OHSU database) demonstrated that most of the
core genes in the SUMOylation pathway expressed at higher levels in
the high-risk groups (P < .05) (SUMO1, UBA2, and SAE1 in
Figure 2B; all the others in supplemental Figure 2B). Post hoc anal-
ysis showed that the difference concerning the SUMOylation pathway
between the healthy and adverse risk groups was significant (except
for UBE2I gene). This trend was also confirmed from the 3 patient risk
groups (favorable, intermediate, and adverse) in the TCGA database
for several genes, including BMI1, CBX2, and core genes such as
SAE1 and UBA2, and the results are shown in supplemental Table 3
along with the results for all the other genes without such confirma-
tion.30 As the above results are for individual gene levels, we further
explored the pathway-specific relationship between SUMOylation and
overall survival/ELN2017, by performing similar analyses with gene set
variation analysis (GSVA) pathway scores.31 Consistent with the
results from individual genes, higher scores of SUMOylation pathways
were found to be significantly related with a poorer prognosis in both
the survival analysis and the ELN2017 risk analysis (supplemental
Table 4). These relationships remained valid after adjusting for char-
acteristics of patients with high-risk AML that might have confounding
effects, as evidenced by multivariate analysis (supplemental Table 5).

Third, we tested if particular gene mutations are related to core
SUMOylation gene expression. Among the 4 gene mutations
(FLT3-ITD, NPM1, TP53, and RUNX1) that had enough patients (n
> 5) for both mutated and wild-type groups, 3 mutations (NPM1,
TP53, and RUNX1) exhibited consistent patterns between prog-
nosis and core SUMOylation gene expression (SUMO1 and
UBE2I in Figure 2C; all the others in supplemental Figure 2C).
Specifically, patients with the NPM1 mutation associated with
better prognosis had lower SUMOylation gene expression,
whereas those with the TP53 and RUNX1 mutations associated
with poor prognosis had higher SUMOylation gene expression.
These results suggest that activation of the SUMOylation pathway
is associated with adverse risk features and poorer survival.

TAK-981, a new SUMOylation inhibitor, exhibits

potent antileukemic effects in vitro

In our quest for an inhibitor of SUMOylation, we found TAK-981,
which was developed very recently as a first-in-class inhibitor of
Figure 2. Clinical relevance of SUMOylation pathway in AML. (A) Kaplan-Meier curve

OHSU, according to the gene expression levels of UBA2 or SUMO1. The division of the high

Comparison of UBA2, SUMO1, and SAE1 gene expression across healthy and ELN2017 r

were performed with the two-stage linear step-up procedure, and the significance is indicat

Comparison of UBE2I and SUMO1 gene expression between mutated and wild-type of NPM

test. For panels B-C, *P < .05, **P < .01, ***P < .001, ****P < .0001. Adv, adverse; Fav, favora
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SAE step20 and is currently under clinical trial for various solid
tumors. As its effects against AML are still unknown, we evaluated
them in vitro.

Surprisingly, TAK-981 showed greater or similar potency
compared with cytarabine (Ara-C), a standard drug used in clinics,
against 4 AML cell lines (Figure 3A). Notably, the 50% inhibitory
concentration (IC50) values for TAK-981, all within a 2-digit nano-
molar range, were somewhat uniform across the cell lines. By
contrast, those for cytarabine differed markedly (>1 μM for KG-1
and THP-1; 2-digit nM range for U937). In comparison, tetracy-
cline, targeting the “translation/ribosomal RNA/mitochondria”
identified above, exhibited only several-hundred-μM potency
(supplemental Figure 3A).

Next, we tested TAK-981 for any synergistic or dose reduction
effect when used with cytarabine in the 4 cell lines (Figure 3B-C).
In addition, TAK-981’s synergy with 2 new targeted-therapy drugs,
venetoclax and quizartinib, along with a demethylating drug, aza-
citidine, was tested for the MOLM-14 cell line having the FLT3-ITD
mutation, which is associated with poor prognosis (Figure 3D-E).
Synergy, as judged by the CompuSyn scores,32 varied substantially
across cell lines, with U937 and MOLM-14 exhibiting significant
synergy, whereas KG-1 and THP-1 showing little synergy in the
combination with cytarabine. For MOLM-14, TAK-981 exhibited
significant synergy with azacitidine, some synergy at higher drug
concentrations with venetoclax, but no synergy with quizartinib. In
addition, TAK-981 showed similar and lower potency in compari-
son with venetoclax, a BCL2 inhibitor, and quizartinib, an FLT3
inhibitor, respectively (Figure 3D; supplemental Figure 3B).
Although we used only concentration values around IC50 for each
drug, significant synergy might be observed with different con-
centration combinations. We also assessed the dosage reduction
effects of TAK-981 (Table 1). Notably, even when there was no
apparent synergy, the dose reduction indices of the drugs com-
bined with TAK-981 were above 1 for all of the drug cell line set-
tings, indicating significant dosage reduction effects. This could be
exploited to lower the toxicity of such drugs when combined with
TAK-981. Overall, TAK-981’s combination with conventional or
targeted drugs holds promise for improved therapeutics.

TAK-981 induces apoptosis, cell-cycle arrest, and/or

differentiation marker expression in AML cell lines

To study how TAK-981 exhibits antileukemic effects, we investi-
gated cellular events upon drug treatment. As expected, TAK-981
reduced SUMOylation for some of the proteins, if not all, from the
cell extracts (24- or 48-hour treatment) (Figure 4A; supplemental
Figure 4). Because SUMOylation plays a critical role in transcrip-
tion regulation, we next analyzed gene expression profile changes
by TAK-981 treatment (16 hours) using gene set enrichment
analysis (GSE173116:33 THP-1 cells) (Figure 4B). The upregu-
lated pathways included those for cell death and cell-cycle arrest,
such as the p53 pathway and apoptosis. Experimentally, the mRNA
s with 95% confidence intervals (dotted lines) for overall survival of patients with AML in

- and low-expression groups was determined by the best risk separation approach. (B)

isk groups. P values are from Jonckheere-Terpstra test. Subsequent post hoc analyses

ed for each comparison. The number of participants is indicated for each group. (C)

1, TP53, and RUNX1 genes in OHSU database. P values are from Wilcoxon rank-sum

ble; HR(high), hazard ratio of high expression group; Int, intermediate; ns, not significant.
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Table 1. Dose reduction index of cytarabine or other drugs when

combined with TAK-981 in AML cell lines

Cell line Combination drug

Dose reduction index at

fraction affected (Fa) = 0.9

U937 Cytarabine 12.03

THP-1 Cytarabine 1.25

KG-1 Cytarabine 2.61

MOLM-14 Cytarabine 2.94

MOLM-14 Azacitidine 4.87

MOLM-14 Quizartinib 8.64

MOLM-14 Venetoclax 4.98

Fa = 0.9 refers to the point where the inhibition effect is 90%, that is, when 90% of the
cells are dead. The number 0.9 was chosen, because for cancer therapies, high effect levels
are thought to be more therapeutically relevant than low effect levels.32
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expression of genes for apoptosis (DDIT3) and cell-cycle arrest
(P21 and TP53), known to be downregulated by SUMOylation in
AML cells,11,19,34 were significantly higher in TAK-981-treated
THP-1 cells (48 hours) than in those from the control or cytar-
abine–treated group (Figure 4C). We also found that there was a
trend that SUMO core pathway is downregulated in TAK-981–
treated THP-1 cells (supplemental Figure 5), although TAK-981’s
posttranslational effect on SUMO may not necessarily involve the
expression of SUMO core genes. Further analysis in several other
AML cell lines with western blot (p21, caspase 3, and cytochrome
C) (Figure 4D), flow cytometry for apoptosis (Figure 4E), and DNA
content analysis (Figure 4F) showed that apoptosis and cell-cycle
arrest were generally observed for the TAK-981–treated AML cells
(48 hours), with only minor variations. For example, G2/M phase
arrest was observed for U937, THP-1, and KG-1 cells, whereas
G0/G1 arrest was observed in MOLM-14 cells. Meanwhile, there is
heterogeneity in terms of p53 mutations among the cell lines used
in this study (supplemental Table 6). As p21 can be regulated
either by p53 dependently or independently, we tested if the
induction of p21 by TAK-981 is also reflected in the p53. TAK-981
treatment did not change the levels of either p53 or MDM2
(supplemental Figure 6), suggesting that the TAK-981–induced
p21 change may not be related to p53. Possible mechanistic
disconnection between p53 and p21 upon TAK-981 treatment
could be an interesting topic for future research.

TAK-981 treatment (48 hours) also affected the differentiation of
leukemic cells dose-dependently, as shown by the increase in the
differentiation markers for U937 (CD15),34-36 THP-1 (CD14), and
MOLM-14 (CD11B) cells (Figure 4G). Moreover, TAK-981 sup-
pressed the expression of CD39 (48 hours) (Figure 4H), which is
known to be involved in AML chemoresistance,37 in both chemo-
sensitive (U937) and chemoresistant cells (KG-1, THP-1, and
MOLM-14). These data suggest that TAK-981 exhibits antileu-
kemic effects by inducing apoptosis, cell-cycle arrest, differentia-
tion, or lower chemoresistance.
Figure 3. TAK-981’s potency and its synergy with cytarabine for AML cells. (A) Dos

values right beside each curve represent IC50 values. (B) Synergy between TAK-981 and c

panel B by CompuSyn software. (D) Synergy between TAK-981 and several drugs for MO

CompuSyn software. For panels B and D, different concentration ranges were used for each

the dotted line at 1.0 indicate synergy. For panels A, B, and D, cell viability was measured by

Ven, venetoclax.

11 JULY 2023 • VOLUME 7, NUMBER 13
TAK-981 potency in primary AML cells ex vivo

The effects of TAK-981 were also evaluated ex vivo in primary AML
cells from patient B (n = 13). TAK-981 exhibited higher inhibition of
primary cell proliferation at equimolar concentrations than did
cytarabine, which did not appreciably inhibit the cells at up to
~50 μM concentrations (Figure 5A). Interestingly, the inhibitory
potencies of both compounds for the primary cells were much
lower than those for the AML cell lines. In addition, the SUMOy-
lation status of primary AML cells from patients was lower than that
in the cell lines (supplemental Figure 7). The possible reasons for
these differences between cell lines and primary cells are
addressed in the discussion section.

Still, there was significant synergy between the 2 drugs against the
primary cells (Figure 5B), indicating the possible clinical utility of
TAK-981. Consistently with the AML cell line results, TAK-981
induced apoptosis in the primary AML cells, and this result sug-
gests its direct effect on cancer cells independent of antitumor
immunity (Figure 5C).

TAK-981’s antileukemic effects in both syngeneic

AML mouse and human xenograft models

To assess TAK-981’s anti-AML activity in an immune-competent
environment, we used the mouse syngeneic AML model using the
C1498 cell line. For the mice injected with C1498/luciferase/CD90.1
cells through tail veins, TAK-981 significantly reduced the leukemic
burden on day 19 relative to the control group, as judged by the
bioluminescence (supplemental Figure 8A-B). Flow cytometric anal-
ysis of leukemic cells from BM and blood (from 3 euthanized animals
from each group on day 19) showed much fewer leukemic cells in the
TAK-981 group (supplemental Figure 8C-D), consistent with the
above imaging data on day 19. Significantly prolonged survival was
also observed in the TAK-981 group relative to the controls
(supplemental Figure 8E). These data in the syngeneic, immune-
competent cancer model confirm TAK-981’s in vivo anti-AML activity.

To confirm the human relevance of the antileukemic activity of TAK-
981 and to evaluate the influence of antitumor immunity on its
anti-AML effect, we injected human AML cell MOLM-14/luciferase/
green fluorescent protein (0.5 × 106) into nonirradiated, immune-
deficient NOD/SCID/IL-2rγnull (NSG) mice (no T cells and defec-
tive dendritic cells). Both the bioimaging data (Figure 6A-B) and
the flow cytometric results on the blood and BM cells (Figure 6C-
D) confirmed the lower leukemic burden in the TAK-981 group.
Western blot with sorted leukemic cells showed a decreased level
of SUMOylated proteins in the TAK-981 group, thereby confirming
its in vivo deSUMOylation activity (Figure 6E). Significantly pro-
longed survival was also observed in the TAK-981 group relative to
the control (Figure 6F). Therefore, the data confirm TAK-981’s anti-
human AML activity in vivo. Importantly, these data show that TAK-
981’s in vivo activity is independent of antitumor immunity, as it is
lacking in the NSG mouse model.
e-response curves of TAK-981 and cytarabine for 4 AML cell lines. The concentration

ytarabine for 4 AML cell lines. (C) Combination index plots computed from the data in

LM-14 cell line. (E) Combination index plots computed from the data in panel D by

drug, and the error bars indicate standard deviation. For panels C and E, values below

CCK-8 assay. Aza, azacitidine; Fa, fractions affected; Qui, quizartinib; TAK, TAK-981;

TAK-981, A SUMOYLATION INHIBITOR, SUPPRESSES AML 3161



A

TAK-981 (nM) 60

�-actin

0 700

U937
THP-1

S
U

M
O

-2
/3

/4
 c

on
ju

ga
tio

n

Free SUMO-2/3/4 23

56

130

35

40 0 200

MOLM-14

KG-1

B

NAME OF PATHWAY

TNF alpha signaling via NF-�B

Interferon alpha response

Interferon gamma response

Inflammatory response

IL6/JAK/STAT3 signaling

TGF beta signaling

P53 pathway

KRAS signaling up

IL2/STAT5 signaling

Notch signaling

Apoptosis

Hypoxia

P-
value

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.040

0.014

0.011

FDR

0.000

0.000

0.000

0.000

0.000

0.001

0.002

0.016

0.017

0.028

0.052

0.049

NES

1.981

1.843

1.721

1.698

1.692

1.567

1.450

1.437

1.399

1.349

1.346

1.589 HALLMARK_Apoptosis

TAK-981 Control

0.0

0.2

0.4

En
ric

hm
en

t s
co

re
(E

S)

–0.2

0.0

0.2
0.4

En
ric

hm
en

t s
co

re
(E

S)

–0.2

TAK-981 Control

HALLMARK_P53 Pathway

TAK-981 (nM) 300 60

U937

p21

Cytochrome C

�-actin

Caspase-3
(cleaved)

350 70

THP-1

100 20

KG-1

200 40

MOLM-14
D

0.0

0.5

1.0

1.5

2.0

Re
lat

ive
 ra

tio

TAK-981 (nM)

350 70 Ara-C

P21

**
**

TAK-981 (nM)

350 70 Ara-C

Re
lat

ive
 ra

tio

2

4
3

0
1

5

TP53

**
**

***

Re
lat

ive
 ra

tio

2

4
**

*

****

3

0

1

TAK-981 (nM)

350 70 Ara-C

DDIT3
C

F

Sub G1 G0/G1 S G2/M

0

20

40

50

U937

Pe
rc

en
ta

ge
of

 c
ell

s (
%

)

10

30
****

****
****

***** Control

20 nM

40 nM

Sub G1 G0/G1 S G2/M

0

20

40

60

THP-1

Pe
rc

en
ta

ge
of

 c
ell

s (
%

)

***

**** **** ****

***

****

Control

35 nM

70 nM

Sub G1 G0/G1 S G2/M

0

20

40

60

KG-1

Pe
rc

en
ta

ge
of

 c
ell

s (
%

)

****

Control

10 nM

20 nM

Sub G1 G0/G1 S G2/M

Pe
rc

en
ta

ge
of

 c
ell

s (
%

)

0

20

40

50
MOLM-14

10

30

* Control

20 nM

40 nM

E

PI

Annexin V

U937

100 101 102 103 104
100

101

102

103

104
0 nM

Q1 Q2

Q3Q4

0.78 1.09

098.1

100 101 102 103
100

101

102

103

104

104

30 nM

Q1 Q2

Q3Q4

0.77 3.18

2.1793.9

100 101 102 103 104
100

101

102

103

104
60 nM

Q1 Q2

Q3Q4

4.52 8.53

3.7683.2

100 101 102 103 104
100

101

102

103

104

THP-1

0 nM

Q1 Q2

Q3Q4

0.37 0.99

0.7797.9

100 101 102 103 104
100

101

102

103

104
35 nM

Q1 Q2

Q3Q4

1.15 2.69

4.3291.8

100 101 102 103 104
100

101

102

103

104
70 nM

Q1 Q2

Q3Q4

0.93 6.90

5.4786.7

100 101 102 103 104
100

101

102

103

104

MOLM-14

0 nM

Q1 Q2

Q3Q4

0.08 0.85

0.4498.6

100 101 102 103 104
100

101

102

103

104
20 nM

Q1 Q2

Q3Q4

0.31 1.07

0.6398.0

100 101 102 103 104
100

101

102

103

104
40 nM

Q1 Q2

Q3Q4

0.48 1.75

1.1496.9

100 101 102 103 104
100

101

102

103

104

KG-1

0 nM

Q1 Q2

Q3Q4

0.20 0.90

0.4898.4

100 101 102 103 104
100

101

102

103

104
10 nM

Q1 Q2

Q3Q4

0.26 1.47

1.4996.8

100 101 102 103 104
100

101

102

103

104
20 nM

Q1 Q2

Q3Q4

0.80 7.67

12.379.3

Ap
op

to
tic

 c
ell

s (
%

)

2

4

6

8

10

0

TAK-981 (nM)

350 70

****

****

Ap
op

to
tic

 c
ell

s (
%

)

TAK-981 (nM)

300 60

0

5

10

15

20

**

*

Ap
op

to
tic

 c
ell

s(
%

)

2

4

3

0

1

TAK-981 (nM)

200 40

****

*

****

****

TAK-981 (nM)

100 20

Ap
op

to
tic

 c
ell

s (
%

)

5

10

15

20

25

0

(D
DI

T3
 / 

AC
TB

)

(P
21

 / 
AC

TB
)

(T
P5

3 
/ A

CT
B)

Figure 4. Apoptosis, cell-cycle arrest, and differentiation induced by TAK-981 in AML cells. (A) Effect of TAK-981 on protein SUMOylation in AML cells after 24- (U937,

THP-1) or 48-hour (MOLM-14, KG-1) treatment. Western blot analysis was performed with the antibody for SUMO-2/3/4. (B) Top 12 pathways with P < .05 from GSEA analysis
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Figure 4 (continued) of TAK-981–treated THP-1 cells from GSE173116 data set with the Hallmark gene set (left). The pathways are in the order of the normalization of the

enrichment score (NES). Enrichment score plots for genes belonging to p53 and apoptosis pathways from the GSEA analysis (right). (C) Relative mRNA expression of DDIT3,

P21, and TP53 in TAK-981 (indicated concentrations) and cytarabine (1 μM) in THP-1 cells after 48-hour treatment, as measured by quantitative reverse transcription

polymerase chain reaction. (D) Western blot for p21, cleaved caspase-3, and cytochrome C expression in AML cells after 48-hour treatment with TAK-981. (E) Apoptosis

analysis for TAK-981–treated AML cells (48 hours) by flow cytometry with Annexin V/propidium iodide (PI) kit. Apoptotic cells (%) (right) is the sum of the early (Q3) and late (Q2)

apoptosis percentages. (F) Cell-cycle analysis for TAK-981–treated AML cells after 48 hours by flow cytometry. Each phase of cell cycle was analyzed with cell-cycle platform in

FlowJo software. Quantitative reverse transcription polymerase chain reaction analysis of differentiation markers and CD39 gene. mRNA expression in 48-hour TAK-981–treated

AML cells for CD15 in U937, CD14 in THP-1, and CD11B in MOLM-14 (G) and CD39 in all cells (H). Two-tailed Student t test was used for panels C, E, G, and H, and one-way

analysis of variance was used for panel F. Data are expressed as mean ± standard deviation (n = 3); *P < .05, **P < .01, ***P < .001, ****P < .0001. For all except panel B, the drug

concentrations were selected so that TAK-981 did not kill all the cells but had detectable effects on cells, based on the results from the initial estimation of IC50 of TAK-981 for

each cell line. The time points are different because the emergence of the particular effects was expressed at different time points according to cell lines. In addition, all experiments

were done with n = 3. For panels C, G, and H, the expression values were normalized against that of β-actin (ACTB). The efficiencies of the primers used are listed in supplemental

Table 8. Ara-C, cytarabine; IL6, interleukin 6; JAK, Janus kinase; NF-κB, nuclear factor kappa B; STAT, signal transducer and activator of transcription; TGF, transforming growth

factor; TNF, tumor necrosis factor.
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Discussion

SUMOylation has not been much recognized in AML other than in
cases of acute promyelocytic leukemia (APL), a minor (~10%)
subset of AML with the characteristic chromosomal translocation
generating the PML-RARα fusion protein.38 The established therapy
for APL, with all-trans retinoic acid (ATRA) and As2O3, triggers
SUMOylation and subsequent proteasomal degradation of PML-
RARα, thus inducing APL differentiation.39 Activities of ATRA-
induced differentiation on some non-APL AML cell lines in vitro40

led to clinical trials, but yielded overall disappointing outcomes.41

In our results, TAK-981 could enhance the in vitro differentiation
of all AML cells tested. It will be interesting to revisit the issue of the
differentiation of AML cells upon inhibition of SUMOylation in vivo. It
is therefore worth noting that the addition of ATRA to decitabine
improved clinical outcomes for older patients who are difficult to
treat in a phase 2 clinical trial.42 There have also been a few
reports on the SUMOylation of individual proteins involved in AML,
such as iGF1R, sPRDM, and ERG.17,18,43 In addition, a protein
array–based screening on AML cell lines with acquired drug resis-
tance vs parental cell lines identified possible SUMOylation bio-
markers related to drug resistance, which is yet to be validated
in vivo.44 However, considering the inhibition of the initial step of
SUMOylation by TAK-981, it seems unlikely that one particular
protein is responsible for TAK-981’s antileukemic activity. Rather,
11 JULY 2023 • VOLUME 7, NUMBER 13
TAK-981’s activity should be contributed to by several
SUMOylation-dependent processes.45 The differential profiles of
SUMOylation dependency might explain why we observed a large
variability in synergy between TAK-981 and cytarabine across the
different AML cells. Inhibition of SUMOylation in general with
different inhibitors has also been tested. Anacardic acid and/or
2-D08 induce apoptosis of leukemic cells through reactive oxygen
species–mediated deSUMOylation of NOX or DDIT3 regula-
tors.19,46 In addition, anacardic acid and 2-D08 sensitized non-APL
AML cells to ATRA-based differentiation.34 However, there is a
conflicting report according to which anacardic acid and ginkgolic
acid alleviated ATRA-mediated inhibition of leukemic cell prolifera-
tion.47 This shows that SUMOylation inhibition for AML therapy has
not yet been well established and that the existing literature may
need to be considered with some caution. Particularly, most of
these studies have used cell lines in vitro or subcutaneous flank
xenografts of AML cells and inhibitors with rather moderate micro-
molar activities without high specificity for SUMOylation.34,47 In
comparison, we started from the clinical relevance of the SUMOy-
lation pathway and investigated the association of core genes in the
SUMOylation pathways and AML characteristics, rather than
focusing on a single protein. Furthermore, we evaluated a highly
specific SUMOylation inhibitor in multiple AML cell lines, patient-
derived primary cells, and orthotopic leukemia models. Overall,
TAK-981, A SUMOYLATION INHIBITOR, SUPPRESSES AML 3163
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981, cytarabine, or both for 48 hours. Leukemic cells were gated with CD33 and/or CD34 by flow cytometry and viable cells (4′,6-diamidino-2-phenylindole [DAPI]–negative/Annexin

V–negative) were compared between groups. (A) Potency and combination effects of TAK-981 and cytarabine. Viable cells were estimated by flow cytometric analysis of primary

AML cells treated with TAK-981, cytarabine, or both. Error bars are standard errors. (B) Synergistic combination index between TAK-981 and cytarabine from data in panel A. (C)

Leukemic cell gating (left) and representative data of flow cytometry for apoptosis of primary AML cells at different concentrations of TAK-981 with DAPI and Annexin V.
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after starting the study with bioinformatics using gene expression,
we showed that the treatment of TAK-981 decreased SUMOylation
at the protein level with potent antileukemic effects, resulting in
prolonged survival in orthotopic models. Our results should repre-
sent sufficient rationale for testing TAK-981 in AML treatment, as it
is already being done in clinical trials for solid tumors.

TAK-981 is a highly specific inhibitor of SUMOylation having little
effect on ubiquitination or neddylation.20 Still, the mechanism of
anticancer activity of TAK-981 may be multifaceted because of the
broad-reaching roles of SUMOylation in cancer.5,45 Interestingly,
recent data suggest that TAK-981’s activity against solid tumors is
dependent on antitumor immunity, especially through type 1
interferon signaling regulated by SUMOylation.16,33 For an
immune-competent syngeneic flank model, TAK-981’s activity was
abolished when the type 1 interferon receptor was knocked out.33

In addition, in 2 different syngeneic flank models, a survival benefit
was observed for the TAK-981–immune checkpoint inhibitor (ICI)
combination groups but not for the TAK-981 monotherapy groups,
suggesting a cancer cell–extrinsic mechanism of TAK-98133. In our
orthotopic models for AML, a hematologic cancer, we observed
significant inhibition of leukemia growth and survival benefits in
both immune-competent syngeneic mouse transplants and human
xenograft models with immune-deficient mice. It should be noted
that the NSG immune-deficient mice used here lacked T lympho-
cytes and had defective dendritic cells that had proved critical to
antitumor immunity by TAK-981 in the above solid tumor settings.
In addition, we observed potent in vitro inhibitory effects of TAK-
981 as well as the induction of differentiation markers for various
3164 KIM et al
AML cell lines. Direct apoptotic effects of TAK-981 were also
observed ex vivo for primary AML cells from patients. These results
strongly suggest that TAK-981 exhibits cancer cell–inherent anti-
AML activity. The apparent discrepancy with the above study may
be because of the fundamental differences between solid tumors
vs AML cancer or the experimental settings (ie, flank transplant vs
orthotopic [blood] xenograft).

Still, we do not exclude the possibility of anti-AML immunity by
TAK-981 or synergy with ICIs in immune-competent human AML
settings that we did not study. For acute leukemia, immunotherapy
has been advanced and regularly used in clinics for acute
lymphoblastic leukemia, and it has also been rapidly developing for
AML,33,48 as evidenced by the approval of gemtuzumab ozogami-
cin in 2017. At this point, ICI monotherapy for AML has been
proven not to be very satisfactory,49,50 and its combinations with
hypomethylating agents that have their own immune-modulatory
effects51,52 have yielded mixed results.53,54 As for the positive
ones, those from a phase 1b study on the combination of azaciti-
dine and magrolimab in patients ineligible for intensive chemo-
therapy were quite encouraging.53 Notably, this combination was
effective even for therapy-refractory patients with TP53-mutated
AML, though the overall number of patients was small. Larger
human clinical trials with TAK-981-ICI combinations are warranted
to evaluate their real effects in human AML.55

We showed that TAK-981 exhibited stronger or similar potency
than cytarabine in all the AML cell lines tested as well as in patient-
derived primary AML cells. Moreover, TAK-981 exhibited inhibition
11 JULY 2023 • VOLUME 7, NUMBER 13
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Figure 6. TAK-981’s antileukemic effects in human xenograft AML mouse models (immune-compromised mice). (A-E) Human AML mouse model was established by

injecting MOLM-14 cells labeled with luciferase/green fluorescent protein (GFP) (MOLM-14/luciferase/GFP) into NSG mice through tail vein. After confirming leukemia

engraftment by bioluminescence imaging, the mice were divided into 2 groups (10 mice per group) and treatment began on day 5 until day 26: control (no treatment) or TAK-981

(7.5 mg/kg formulated in 20% 2-hydroxypropyl-β-cyclodextrin, IV 3 times a week). Representative mice from each group were subjected to serial bioluminescence images (A) and

intensity quantitation on days 5, 12, and 20 after leukemic cell injection (B). (C-D) Three representative mice per group were euthanized on day 20 to compare the leukemic

burdens between the groups. Cells from the BM and blood were analyzed using flow cytometry. The proportions of GFP+ cells by flow cytometry to identify leukemic cells were

compared between the groups. (E) Western blot was performed with sorted leukemic cells to evaluate SUMOylated proteins in each group. The sample was pooled from

individual animals, representing the average levels (supplemental Methods). (F) The overall survival rate in each group (7 mice per group) was estimated by the Kaplan-Meier

method. The results are expressed as the mean ± standard error of the mean; *P < .05, **P < .01. CTL, control; SSC, side scatter.
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for cytarabine-resistant AML cell lines in vitro (KG-1 and THP-1

cells; our results and other studies by Bossis et al19 and Ma
et al56) as well as in a therapy-resistant in vivo model (MOLM-14
orthotopic xenograft). TAK-981 has also decreased the expression
of CD39, whose expression is mediated by SUMOylation.57 CD39
has been known to be overexpressed in both cytarabine-resistant
AML cells and residual AML cells in patients after chemotherapy.37

Enhancing CD39 expression provoked resistance against
cytarabine, whereas inhibiting it improved the response to
cytarabine in AML cells.37 These results might explain TAK-981’s
strong activity against cells with high IC50 values for cytarabine
(>100 nM), such as KG-1, THP-1, and MOLM-14. Considering
11 JULY 2023 • VOLUME 7, NUMBER 13
the different modes of action between TAK-981 and cytarabine
and the differences in cell lines and primary cells, it will be inter-
esting to see if their potency difference is maintained in real patient
cases. Still, the different mode of action might explain the strong
synergy of TAK-981 with current drugs in several settings shown in
our study.

It is worthwhile to note that the IC50 values of both TAK-981 and
cytarabine for the primary cells were much higher than those for the
AML cell lines. With the lower SUMOylation status of primary AML
cells than that of the cell lines (supplemental Figure 7) being one
explanation, an important consideration is that primary AML cells
TAK-981, A SUMOYLATION INHIBITOR, SUPPRESSES AML 3165
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grow much slower than the established AML cell lines. It is possible
that the high IC50 value of TAK-981 in primary AML cells may
be because of the lower frequency of cell division. This is clearly
the case with cytarabine that it almost completely lost its activity for
the primary AML cells, even though it is a standard of care drug.
Therefore, the absolute value of the IC50 may not be directly
translated into high in vivo toxicity. We believe the much slower
proliferation of the primary AML cells should be considered seri-
ously, and, therefore, a correlation analysis between SUMOylation
extent and cytotoxicity across primary AML cells and cell lines
might not be conclusive.

Overall, the current study provides strong evidence for SUMOyla-
tion as a new targetable pathway for AML, based on integrated
bioinformatic screening and validations with in vitro, ex vivo, and
in vivo preclinical AML models. For toxicity, the longer survival of
TAK-981–treated mice indicates a favorable therapeutic index.
Consistent with this, a previous study with TAK-981 showed a good
toxicity property up to 40 mg/kg in mice.33 In addition, healthy
patients or patients with remission after therapy had lower SAE1/
SAE2, the target of TAK-981, than patients with active AML
(Figure 1E), suggesting possible selectivity of the drug. These
favorable efficacy and toxicity data should prompt further studies for
its optimal combination and transitions to clinical trials with AML.
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