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Regulatory T cells (Tregs) characterized by cell surface expression of CD4+, CD25+, CD127low, and
high expression of intracellular FOXP3+ compromise 1% to 2% of total lymphocytes.1 Tregs can
suppress exuberant immune responses as observed in coronavirus disease 2019 (COVID-19) asso-
ciated acute respiratory distress syndrome (ARDS),2 and clear residual inflammatory cells in the lung.3,4

Lyu et al demonstrated that multiple injections of allogeneic Treg cells derived from umbilical cord blood
(UCB) can decrease CD8+ pathogenic T cells in vivo leading to resolution of pulmonary inflammation.5

Gladstone et al reported that multiple infusions of allogeneic UCB Tregs at a fixed dose of 100 million
cells6 was associated with clinical improvement which correlated with decrease in inflammatory burden
in 2 patients with COVID-19 ARDS who had multiorgan failure requiring vasopressors and
hemodialysis.7

Based on these data, we performed a phase 1, randomized, multicenter, double-blinded, placebo-
controlled clinical trial (www.clinicaltrials.gov #NCT04468971) in patients with COVID-19 ARDS to
examine the safety and early efficacy of CK0802, an off-the-shelf, cryopreserved, allogeneic UCB Treg
cell product that does not require human leukocyte antigen matching. Eligibility criteria included
diagnosis of SARS-CoV-2 infection, moderate-to-severe ARDS,8 intubated <120 hours, age ≥18
years, and ability to obtain informed consent. Patients were randomized in a 1:1:1 ratio to placebo, 100
million Tregs (CK0802-100), or 300 million Tregs (CK0802-300) per infusion on day 0 (ie, day of first
infusion), day 3(±1), and day 7(±1), constrained to 15 patients in each arm (total n = 45). The trial was
approved by the institutional review board and conducted in accordance with the Declaration of
Helsinki.

The CK0802 product was generated from 8 manufacturing campaigns (average 4429 × 106 Treg cells
per run [range, 1137-11 349 ×106]), which were subsequently cryopreserved. All products met the
release criteria of CD4+CD25+>60% and CD4-CD8+<10%. The placebo consisted of an excipient, a
DMSO-containing solution. Blinded, thawed product bags were hung by qualified hospital staff and
administered intravenously by gravity for 15 to 20 minutes.
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Table 1. Summary of baseline characteristics, overall, and by treatment arm of the safety population

Variable Overall (N = 45) Placebo (N = 15) CK0802-100 (N = 15) CK0802-300 (N = 15)

Age (y), median (min-max) 60 (21-85) 63 (21-77) 64 (29-85) 55 (27-71)

Age (y), n (%)

<60 24 (53.3) 8 (53.3) 7 (46.7) 9 (60.0)

≥60 21 (46.7) 7 (46.7) 8 (53.3) 6 (40.0)

Sex, n (%)

Female 18 (40.0) 7 (46.7) 5 (33.3) 6 (40.0)

Male 27 (60.0) 8 (53.3) 10 (66.7) 9 (60.0)

Race, n (%)

Black 10 (22.2) 4 (26.7) 4 (26.7) 2 (13.3)

Hispanic 8 (17.8) 4 (26.7) 3 (20.0) 1 (6.7)

Other 5 (11.1) 2 (13.3) 0 (0.0) 3 (20.0)

White 22 (48.9) 5 (33.3) 8 (53.3) 9 (60.0)

Hemodialysis, n (%)

Yes 4 (8.9) 2 (13.3) 1 (6.7) 1 (6.7)

Vasopressor, n (%)

Yes 27 (60.0) 7 (46.7) 12 (80.0) 8 (53.3)

Full anticoagulation, n (%)

Yes 22 (48.9) 8 (53.3) 6 (40) 8 (53.3)

Time from diagnosis to intubation, d, median (range) 7 (0-18) 8 (0-16) 5 (0-15) 6 (0-18)

Time from intubation to first infusion, h, median
(range)

72 (0-144) 72 (0-120) 48 (24-144) 72 (24-120)

Body mass index, median, (min-max) 30 (20-74) 30 (22-42) 28 (21-51) 34 (20-74)

PaO2:FiO2 ratio, median, (min-max) 142 (66-248) 174 (90-230) 142 (66-248) 114 (77-200)

Comorbidities, n (%)

Hypertension 25 (56.8) 11 (73.3) 6 (42.9) 8 (53.3)

Coronary artery disease 13 (28.9) 4 (26.7) 6 (40.0) 3 (20.0)

Diabetes 13 (28.9) 4 (26.7) 5 (33.3) 4 (26.7)

Chronic kidney disease 4 (8.9) 1 (6.7) 1 (6.7) 2 (13.3)

GERD 12 (26.7) 2 (13.3) 6 (40.0) 4 (26.7)

Hyperlipidemia 10 (22.2) 3 (20.0) 4 (26.7) 3 (20.0)

COPD/asthma 6 (13.3) 3 (20.0) 1 (6.7) 2 (13.3)

WHO ordinal score median, (min-max) 7 (6-8) 7 (6-8) 7 (6-8) 7 (6-8)

SOFA score median, (min-max) 9 (6-16) 8 (6-16) 10 (6-15) 8 (6-14)

Mean arterial pressure, (mmHg) median,
(min-max)

74 (14-107) 74 (14-89) 74 (56-103) 72 (20-107)

Glasgow coma score, median, (min-max) 5 (3-10) 7 (3-10) 6 (3-10) 3 (3-10)

Measures of inflammation

CRP, mg/L, median, (min-max), missing 84.1 (14.7-317.8), 2 88.5 (27-317.8), 1 58.5 (14.7-212.0), 1 105.5 (23.9-313.0), 0

Ferritin, ng/mL, median, (min-max), missing 692 (42-21068), 6 767 (216-21068), 1 572 (42-2220), 4 626 (179-21021), 1

D-dimer, mg/L, median, (min-max), missing 2.2 (0.32-30), 3 1.7 (0.53-20.82), 1 2.78 (0.32-30), 2 2.3 (0.42-19.44), 0

Procalcitonin, ng/mL, median, (min-max), missing 0.26 (0.05-38.22), 7 0.57 (0.15-34.97), 3 0.2 (0.1-1.90) 0.22 (0.05-38.22), 1

IL-6, pg/mL, median, (min-max), missing 43.9 (2.7-3409), 12 70.3 (8.5-669), 3 38.2 (2.7-992), 4 427.32 (4.3-3409), 5

Immunogenicity

HLA antibodies-type 1, positive, n (%), missing 16 (39), 4 6 (40), 0 5 (38.4), 2 5 (38.4), 2

HLA antibodies-type 2, positive, n (%), missing 21 (51.2), 4 8 (53.3), 0 7 (46.7), 2 6 (40), 2
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Table 1 (continued)

Variable Overall (N = 45) Placebo (N = 15) CK0802-100 (N = 15) CK0802-300 (N = 15)

COVID treatments (before first infusion)

Dexamethasone, n (%) 42 (93.3) 15 (100) 14 (93.3) 13 (86.7)

Dexamethasone duration, d, median, (min-max),
missing

4.5, (0-16), 2 5, (1-16), 0 4.5, (1-14), 1 4 (0-14), 10

Dexamethasone duration > 5 d before first
infusion, n (%)

16 (35.6) 6 (40) 6 (40) 4 (26.7)

Remdesivir, n (%) 40 (88.9) 14 (93.3) 12 (80) 14 (93.3)

Remdesivir duration, d, median, (min-max), missing 4 (0-15), 5 4 (0-15), 1 4.5 (1-14), 3 4.5 (1-15), 1

Remdesivir duration >5 d before first infusion, n
(%), missing

13 (32.5), 5 4 (28.6), 1 4 (33.3), 3 5 (35.7), 1

Dexamethasone and remdesivir, n (%) 38 (84.4) 14 (93.3%) 12 (80) 12 (80)

Convalescent plasma, n (%) 4 (8.9) 2 (13.3) 0 2 (13.3)

Tocilizumab, n (%) 7 (15.6) 1 (6.7) 2 (13.3) 4 (26.7)
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Based on the request of the US FDA during IND filing, we included
an efficacy end point in the study. Thus, the 2 coprimary outcomes
were: (1) TOX: grade ≥3 regimen-related NCI-CTCAE V4.0 toxicity
within 48 hours of infusion; and (2) S28: patient alive and not
intubated 28 days after the first infusion.

We recruited 45 critically ill patients during the peak of the
pandemic (September 2020 to April 2021), with the majority on
vasopressors, and previously treated with remdesivir and/or corti-
costeroids.9 Patients in the CK0802-300 arm had higher baseline
serum IL-6, CRP, and body mass index, and lower PaO2:FiO2 and
Glasgow Coma scores (Table 1).

None of the patients in any arm had a grade ≥3 toxicity related to
the investigational agent. Assuming beta(.4, .6) before Pr(toxicity)
in each arm, the mean posterior probability (95% posterior credible
interval [CI]) of toxicity was 2.5% (95% posterior CI, 0.0-13.5). No
increase in infection rates was reported in CK0802 recipients
compared with placebo. The absence of dose-limiting toxicities
associated with 85 allogeneic Treg cell infusions in a very ill pop-
ulation suggests an acceptable safety profile.

Baseline human leukocyte antigens (HLA) antibodies and day 28
HLA antibody screens using panel reactive antibodies were eval-
uated by flow cytometry using the solid phase assay.10 At baseline,
positive HLA1 and HLA2 antibodies were detected in 16 and
21 patients, respectively. Positive seroconversions were seen in
4 for HLA1 antibodies (placebo = 2; CK0802-100 = 2) and 1 with
HLA2 antibodies in the CK0802 to 300 arm. Seroconversions for
cross-matched donor-specific antibodies were reported in only
3 patients, all of whom had received products derived from the
same donor; on day 28, all patients were alive and 1 was extu-
bated. Therefore, our data support the feasibility of multiple infu-
sions of “off-the-shelf,” non-HLA matched, CB Treg cells without
any significant induction of immunogenicity or impact on clinical
outcome.

Among the 30 patients who received >2 infusions of CK0802, 26
received all products derived from the same donor and 4 received
products derived from >2 donors. HLA chimerism analysis per-
formed on CD3+-sorted cells from peripheral blood on days 3, 7,
11, and 28 did not detect any contribution from donor haplotypes,
regardless of the number or source of infused products. This is not
11 JULY 2023 • VOLUME 7, NUMBER 13
surprising, as Tregs are known to leave the peripheral circulation
and traffic to areas of active inflammation,11 based partly on the
survival signal of surplus IL-2 at the site of tissue destruction, which
is largely the lung in patients with ARDS. Because of COVID
restrictions, we were unable to obtain bronchoalveolar samples to
pursue donor Treg cell detection.

S28 was achieved in 9, 9, and 6 patients in the placebo, CK0802-
100, and CK0803-300 arms, respectively. Bayesian regression
analyses with covariates (age, gender, race, vasopressors,
oxygenation, and duration of intubation) defined before unblinding
demonstrated 89.7% probability of beneficial effect (PBE) for S28
for CK0802-100 vs placebo (95% CI, −0.71 to 3.54), and 28.4%
for CK0802-300 vs placebo (95% CI, −2.7 to 1.5). The magnitude
of PBE that is considered to be meaningfully large is subjective
when a noninformative prior is used, as in this study. In this situa-
tion, a cutoff of 99% is often chosen to indicate a meaningfully
large effect. Our results were lower than this value and should not
be viewed as demonstrating the efficacy of the 100 million cell
dose.

There were 13 deaths: placebo = 4; CK0802-100 = 2; CK0802-
300 = 7. The median follow-up period from the first infusion to the
last follow-up was 45-days (IQR, 23-235). Fitted Bayesian Weibull
regression model for overall survival demonstrated a covariate
adjusted PBE of 98.6% for CK0802-100 vs placebo (Figure 1),
and PBE of 27.9% for CK0802-300 vs placebo. The lower PBE in
the CK0802-300 arm may be attributed to patients having a
number of poor prognostic factors including higher IL-6 levels12

and CRP levels,13 more obesity,14 greater hypoxia,15 and lower
GCS scores16; and longer duration of steroids.17 None of these
factors were incorporated into the preplanned regression models.
Similar discordant findings regarding cell dose have been reported
in other cellular therapy trials.18,19 For example, mesenchymal stem
cell (MSC) therapy trials have suggested a minimal effective dose
range between 100 and 150 million cells, whereas doses of <70
million and doses of >200 million were less or not effective.20 In a
diabetic neuropathy double blind trial, 150 million MSCs, but not
300 million cells, significantly improved estimated glomerular
filtration rate.21 In a hip arthroplasty double blind, placebo-
controlled trial, 150 million, but not 300 million, placenta-derived
MSCs significantly improved gluteus medius strength and
RESEARCH LETTER 3077
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weight.22 The small size of our pilot study makes it impossible to
draw any definitive conclusions with respect to efficacy.

The ability to infuse unmatched allogeneic product cell products
from different donors into the same patient without generating an
overwhelming immune response provides a proof-of-concept to the
“off-the-shelf,” on-demand cell therapy approach. These cells are
ideal from a logistical perspective to treat inflammatory diseases for
the following reasons: feasibility of administering cryopreserved cell
therapy products in the intensive care unit setting, no requirement
for onsite complex reconstitution of cell products, infusion of cell
products from ready to use CryoStore CS50N freezer bags that
can be thawed at the bedside, and the possibility of onsite drug
inventory for immediate access.

Our trial, as well as the recent MSC cell therapy trial,23 set the
stage for potential future studies of cell therapy in the field of
ARDS. With a multiprong mechanism of action including secretion
of the anti-inflammatory cytokine, IL-10, and acting as a cytokine
sink for the proinflammatory cytokine, IL-2, the balance-restorative
intervention of allogeneic, off-the-shelf, Treg cells should not be
affected by different SARS-CoV-2 variants, and therefore could
find wider application for treatment of virus-induced ARDS.24

In conclusion, these results suggest that infusion of multiple doses
of cryopreserved, allogeneic, and non–HLA-matched regulatory T
cells is safe in critically ill patients with COVID-19 associated
ARDS. Given the imbalances at the baseline and the small sample
size, CK0802 at a fixed dose of 100 million cells should be
examined in a larger confirmatory study.
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