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TO THE EDITOR:

BH3 profiling identifies BCL-2 dependence in adult patients with
early T-cell progenitor acute lymphoblastic leukemia
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In a previous study by our group, we reported that pediatric early T-cell precursor acute lymphoblastic
leukemia (ETP-ALL) is BCL-2 dependent, whereas pediatric T-cell acute lymphoblastic leukemia
(T-ALL) is BCL-XL dependent.1 However, the therapeutic success of adult ALL is different from that of
pediatric ALL and is less understood. Thus, this study aimed to identify antiapoptotic BCL-2 family
protein dependencies and sensitivities to BH3 mimetics in adult ETP-ALL and T-ALL lymphoblasts. By
performing direct mitochondrial permeabilization and cell death assays, we validated BH3 profiling as a
predictor of BCL-2 dependence in adult ETP-ALL and BCL-2/BCL-XL codependence in adults with
T-ALL. Furthermore, we revealed the substantial on-target cytotoxicity of venetoclax and navitoclax,
suggesting that this combination of BH3 mimetics is potentially efficacious in adults with T-ALL.

T-ALL results from malignant transformation of immature T-cells, accounting for 10% to 15% of
childhood and 20% to 25% of adult ALL cases.2 Long-term survival rates for standard risk childhood
T-ALL have shown striking improvements to 80% to 90%, yet response outcomes in adults remain
much lower (40%), possibly due to high induction therapy–related toxicities.3 In general, the causes for
poor response in adult T-ALL are incompletely understood.

Among ALL, the high-risk ETP-ALL subtype originating from clonal expansion of recently immigrated
thymocytes has a significantly worse outcome in adults.4 ETP-ALL retains multipotent differentiation
capacities and resemblance to hematopoietic stem cells or myeloid progenitor cells. Targeted next-
generation sequencing5 showed that adult ETP-ALL presents similar mutation profiles as its pediatric
equivalent.6 Furthermore, similar to pediatric ETP-ALL, adult ETP-ALL has inferior outcomes to
chemotherapy than non-ETP-ALL.6 However, the implementation of allogenic transplant after achieving
the first complete response with standard chemotherapy regimens improved the overall prognosis of
patients with ETP-ALL, similar to the rest of the high-risk patients in the T-ALL cohort.6 Nevertheless, the
5-year overall survival rate of adults with ETP-ALL is only 49%.6 These outcomes highlight the unmet
need for new therapeutic approaches for adult ETP-ALL.

BH3 mimetics, small molecule antagonists of BCL-2 family proteins, have recently shown clinical
success in various hematologic malignancies, including chronic lymphocytic leukemia (CLL),7,8 acute
myeloid leukemia (AML),9 and ALL.10,11 Studies from our group1,12-15 and several others16-18 have
shown that BH3 profiling can predict the functional dependency of tumor cells on BCL-2. In turn, BCL-
2 dependence identified using BH3 profiling directed clinical success of the U.S. Food and Drug
Administration-approved venetoclax (BCL-2 inhibitor) in CLL19 and AML.13,14 In practice, BH3 profiling
involves exposing the mitochondria to synthetic BH3 peptides and subsequently measuring the ensuing
mitochondrial outer membrane permeabilization.20 When selective peptides are used, eg, BAD,
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heightened mitochondrial sensitivity indicates greater dependence
on an individual anti-apoptotic protein, eg, BCL-2 and BCL-XL.21

To determine the anti-apoptotic dependencies of adult ETP-ALL,
we performed BH3 profiling on 15 primary adult ETP-ALL sam-
ples obtained at diagnosis (Figure 1A; supplemental Table). We
exploited the different binding affinities of BAD and HRK BH3
peptides to distinguish between BCL-2 dependence (high BAD,
low/no HRK priming) and BCL-XL dependence (equal BAD and
HRK priming) (Figure 1B). All samples showed robust mitochon-
drial depolarization in response to the BAD peptide compared with
the HRK and DMSO control, suggesting a primary dependence on
BCL-2 (Figure 1C). Despite the heterogeneity among samples, the
mean BAD-induced cytochrome c release was significantly higher
than that of the HRK peptide, further confirming BCL-2 depen-
dence in ETP-ALL (P < .0001, Figure 1D). Notably, blasts from only
patient A showed higher priming above the threshold by HRK
(>20%), whereas the remaining 14 patients crossed the priming
threshold only in response to the BAD peptide (Spearman r = 0.71,
P < .01; Figure 1E). Furthermore, BAD and BAD-HRK showed a
statistically significant association, suggesting that mitochondrial
depolarization caused by the BAD peptide in ETP-ALL samples
was driven by BCL-2 (Spearman r = 0.54, P < .05; Figure 1E) and
not BCL-XL.

Having observed the primary dependence of adult ETP-ALL on
BCL-2, we next hypothesized that ETP-ALL tumors are sensitive to
BH3 mimetics, particularly BCL-2 inhibitors. We measured the
direct mitochondrial sensitivity to BH3 mimetics venetoclax
(selectively antagonizes BCL-2) and navitoclax (antagonizes BCL-2
and BCL-XL). Both drugs showed increased cytochrome c release
compared with DMSO, and venetoclax was a better inducer of
mitochondrial priming than navitoclax, which can be explained by
the higher binding affinity of venetoclax (Ki < 0.010 nM)22 over
navitoclax (Ki = 0.044 nM)22 for BCL-2 (P < .05; Figure 1F-G). In 4
samples, we also measured the mitochondrial sensitivity to a
selective BCL-XL antagonist (A-1331852). None of the samples
induced a mitochondrial priming response to A-1331852
(Figure 1F-G). We further found that BH3 profiling using the BAD
peptide predicted on-target cellular sensitivity to BH3 mimetics, as
shown by the significant correlation between cytochrome c release
induced by the BH3 peptide and cytochrome c release caused by
venetoclax and navitoclax (supplemental Figure 1A). To validate
whether the mitochondrial sensitivity to venetoclax predicted by
BH3 profiling results in the apoptosis of ETP-ALL cells, we per-
formed cell death assays using venetoclax, navitoclax, and A-
1331852. Although the responses were heterogeneous, all sam-
ples tested were sensitive to both venetoclax and navitoclax,
emphasizing that BCL-2 dependence sensitizes adult ETP-ALL
blasts to apoptosis (Figure 1H).
Figure 1. Adult ETP-ALL has increased dependency on BCL-2 rather than BCL-X

c release was measured by gating on blasts. (B) Binding affinities of BH3 peptides (BAD a

proteins BCL-2 and BCL-XL. (C/D) FACS-based BH3 profiles for BAD (BCL-2 and BCL-X

(ANOVA) for % cytochrome c release between BAD vs DMSO and BAD vs HRK. (E) Spe

BAD-HRK. Data is normalized to DMSO. (F-G) FACS-based BH3 profiles for venetoclax, navi

venetoclax vs DMSO, navitoclax vs DMSO, and venetoclax vs navitoclax. (H) Cell death ass

A-1331852 for 8 hours. Data are plotted as the percentage of live cells compared with the DM

*** P < .001; **** P < .0001. UN, untreated; ns, no significance. (C,F) The dotted line repre
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Having shown the selective apoptotic dependence of adult ETP-
ALL on BCL-2, we next evaluated whether adult T-ALL shows
selective survival dependency on specific members of BCL-2 family
proteins. We performed BH3 profiling of 22 primary adult T-ALL
samples collected at diagnosis (Figure 1A; supplemental Table). In
contrast to adult ETP-ALL, 18 out of 22 samples showed mito-
chondrial depolarization in response to both BAD and HRK pep-
tides compared with DMSO (P < .0001; Figure 2A-B). Notably, the
mean of BAD- and HRK-induced cytochrome c release was
significantly higher than that of DMSO, indicating codependence
on both BCL-2 and BCL-XL (P < .0001; Figure 2A-B). The BAD-
induced mitochondrial sensitivity of T-ALL tumors was relatively
higher than that of HRK (P < .0001), indicating greater sensitivity to
BCL-2 inhibition. We found a modest association between BAD
and HRK (Spearman r = 0.47; P < .05) and a moderate associa-
tion between BAD and BAD-HRK (Spearman r = 0.62; P < .01),
further indicating a primary dependence on BCL-2 and co-
dependence on BCL-XL (Figure 2C). We verified our findings by
measuring the direct mitochondrial priming sensitivity to venetoclax,
navitoclax, and A-1331852. Venetoclax (P < .0001) and navitoclax
(P < .0001) caused superior cytochrome c release compared with
DMSO (Figures 2D-E). Similar to ETP-ALL, venetoclax elicited
slightly higher priming across samples than navitoclax (P < .01;
Figure 2D-E). Importantly, A-1331852 induced significant mito-
chondrial outer membrane permeabilization in T-ALL patient sam-
ples (P < .01) compared with DMSO. However, it did not
outperform navitoclax (P = .13; Figure 2D-E), as we predicted from
BH3 profiling using direct peptide sensitivity responses. To further
test this, we compared mitochondrial priming induced by the BAD
peptide to cytochrome c release induced by the corresponding
BH3 mimetic, venetoclax, and the HRK peptide, compared with
A-1331852. We observed a significant correlation between BAD
and venetoclax (Spearman r = 0.66; P < .001) and between BAD
and navitoclax (r = 0.72; P < .001), indicating that cytochrome c
release caused by BH3 peptides is comparable to direct mito-
chondrial permeabilization caused by BH3 mimetics (supplemental
Figure 1B).

Because we observed robust mitochondrial depolarization in
response to both BAD and HRK peptides, we hypothesized that
T-ALL tumors would show enhanced cytotoxic response to BH3
mimetics drugs targeting BCL-2 and BCL-XL. Next, we performed
cell death assays using annexin V on T-ALL primary tumors treated
with venetoclax, navitoclax, and A-1331852. Despite heterogene-
ity, we observed sensitivity to venetoclax, and more than half of the
samples showed higher cell death in response to navitoclax and/or
A-1331852, reiterating that therapeutic antagonism in T-ALL tar-
gets both BCL-2 and BCL-XL proteins (Figure 2F; supplemental
Figure 1C).
L for survival. (A) Experimental schematic of the baseline BH3 profiling. Cytochrome

nd HRK) and BH3 mimetics (venetoclax, navitoclax, and A-1331852) for antiapoptotic

L dependence) and HRK (BCL-XL dependence). One-way analysis of variance

arman correlation between % cytochrome c release for BAD vs HRK and BAD vs

toclax, and A-1331852. One-way ANOVA analysis for % cytochrome c release between

ays using annexin V in adult ETP-ALL samples treated with venetoclax, navitoclax, or

SO controls. Note: gating of adult ETP-ALL primary blast samples. * P < .05; ** P < .01;

sents the threshold for significant priming determined using DMSO ± 3xSD.
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To further evaluate the mechanistic function, we performed west-
ern blotting and co-immunoprecipitation studies to assess protein
expression and binding between pro- and antiapoptotic BCL-2
family proteins in 7 samples. Using PBMCs as a control, both
ETP-ALL and T-ALL samples showed BIM:BCL-2 binding. How-
ever, BIM:BCL-XL binding was observed only in T-ALL tumors,
suggesting that BIM was primarily sequestered by BCL-2 in ETP-
ALL and co-sequestered by BCL-2 and BCL-XL in T-ALL
(supplemental Figure 2A). Comparison of baseline BCL-2 family
protein expression of BCL-2 revealed that patients with ETP-ALL
had higher BCL-2/BCL-XL ratios than T-ALL (supplemental
Figure 2B). ETP-ALL had lower levels of MCL-1 and p53 pro-
teins than T-ALL (supplemental Figure 2B).

We next investigated whether there were age-dependent differ-
ences in mitochondrial priming between adult and pediatric ALL.1

We found that the mean of BAD-induced mitochondrial priming
in pediatric T-ALL was higher than that in adult T-ALL counterparts
(60.5%1 vs 55.5%; supplemental Figure 3A). The same was true
for pediatric ETP-ALL vs adult ETP-ALL (71.4%1 vs 63.5%;
supplemental Figure 3A). Collectively, ETP-ALL was more sensitive
to BAD-induced mitochondrial depolarization than T-ALL (68.3%
vs 57.5%; P < .01; Figure 2G; supplemental Figure 3B).1 Notably,
we carried out a multicenter study providing us with a unique
opportunity to evaluate the sensitivity of BH3 mimetics in adult
patients with different demographics, with representation from both
Western and Asian populations (supplemental Table). Irrespective
of demographics, adult patients with ETP-ALL and T-ALL from both
regions showed increased mitochondrial sensitivity to the BAD
peptide compared with DMSO (supplemental Figure 3C). Further
investigation extends beyond the scope of this study but suggests
that vulnerabilities to BCL-2 family proteins may be conserved
across different ethnicities.

Our previous findings on pediatric T-ALL led to the clinical testing
of venetoclax in combination with hyperCVAD in patients with
relapsed/refractory (R/R) T-ALL.1,19,23 However, whether adult
patients with T-ALL also show a selective pattern of antiapoptotic
dependence related to the differentiation stage of T-cell had not
been previously reported. Although most samples accrued in this
study were from the prevenetoclax era, we obtained clinical
response data on venetoclax-based combinations from 3 patients
with ETP-ALL and 3 patients with T-ALL. Four of the 6 patients
achieved complete response to venetoclax-based therapy regi-
mens as predicted from BH3 profiling, with 1 patient’s status
pending and 1 patient passing from their disease (Figure 2H).
Together, these results suggest that ETP-ALL and T-ALL both
display dependency on BCL-2, which can be targeted therapeuti-
cally. This further emphasizes that combining BH3 mimetics with
standard of care drugs for ALL may meaningfully improve patient
responses. In addition, the results from a recent Phase I study
(#NCT03181126) in R/R B-ALL and T-ALL using a combination of
Figure 2 (continued) venetoclax, navitoclax, or A-1331852 for 8 hours. Refer to suppleme

compared with DMSO controls. Mean ± SD of 3 replicates. (G) Dot plot of BAD peptide re

indicates probable BCL-2 dependence and blue indicates probable BCL-XL dependence

schematic for the prediction of venetoclax and navitoclax efficacy based on BCL-2 and B

normalized to that of DMSO. *P < .05; **P < .01; ***P < .001; ****P < .0001; CR, complete

significance. (A,D) The dotted line represents the threshold for significant priming determi
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venetoclax and navitoclax showed that dual dependence on BCL-2
and BCL-XL is maintained in the relapse settings.10 The reported
overall response rate in R/R ALL within all subgroups was 59.9%
(n = 28/47), with pediatric subgroups showing a higher overall
response rate of 75% (9/12) on combination therapy with ven-
etoclax and navitoclax.10 An independent group also confirmed that
72.7% of patients with T-ALL (n = 8/11) showed predominant
baseline BCL-2 dependency and switched to BCL-XL or BCL-2/
BCL-XL dependence on treatment with BH3 mimetics.10

Because clinical data in adults with ETP-/T-ALL remain pending
regarding whether the combination of venetoclax and navitoclax is
superior to venetoclax alone, our study elaborates on this gap by
elucidating discrete cellular dependencies on BCL-2 and BCL-XL,
particularly in treatment-naïve samples. These details will help in the
selection of BH3 mimetics therapy for adult patients with T-ALL
(Figure 2I). Importantly, BCL-2 dependence is heterogeneous in
terms of hematologic cancer type; CLL is homogeneously BCL-2
dependent,24 AML is co-dependent on BCL-2, and MCL-1,13

BCP-ALL is heterogeneously dependent on BCL-2,17 pediatric
ETP-ALL is selectively BCL-2 dependent,1 and pediatric T-ALL is
selectively BCL-XL dependent.1 Thus, these discrepancies
emphasize the necessity of studying each cancer and age group
independently to truly understand which BH3 mimetics may be
clinically effective. Furthermore, despite the limitations of the small
sample size due to the rarity of adult ALL occurrence and poor cell
viability in some samples (<50% baseline viability), BH3 profiling
distinctly identified BCL-2 and BCL-XL dependencies that corre-
lated with BH3 mimetic sensitivity and clinical response, which is a
major advantage compared with frank cell death or cell viability
measurements requiring longer incubation times. Our study vali-
dated that BH3 profiling will continue to be a valuable functional
tool for personalizing medicine by identifying protein dependencies
and drug vulnerabilities in adult patients with ALL.
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