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HDAC1 regulates the chromatin landscape to control transcriptional
dependencies in chronic lymphocytic leukemia
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Key Points

• HDAC1 is recruited at
SEs to transcriptionally
activate driver genes in
CLL. In the absence of
SEs, HDAC1 silences
gene expression.

• The transcriptional
activator and repressor
functions of HDACs
cooperate to establish
transcriptional
dependencies in CLL.
da_adv-2022-007998-m
ain.p
Chronic lymphocytic leukemia (CLL) is a quiescent B-cell malignancy that depends on

transcriptional dysregulation for survival. The histone deacetylases are transcriptional

regulators whose role within the regulatory chromatin and consequence on the CLL

transcriptome is poorly characterized. Here, we profiled and integrated the genome-wide

occupancy of HDAC1, BRD4, H3K27Ac, and H3K9Ac signals with chromatin accessibility,

Pol2 occupancy, and target expression signatures in CLL cells. We identified that when

HDAC1 was recruited within super-enhancers (SEs) marked by acetylated H3K27 and BRD4,

it functioned as a transcriptional activator that drove the de novo expression of select genes

to facilitate survival and progression in CLL. Targeting HDACs reduced BRD4 and Pol2

engagement to downregulate the transcript and proteins levels of specific oncogenic driver

genes in CLL such as BLK, a key mediator of the B-cell receptor pathway, core transcription

factors such as PAX5 and IKZF3, and the antiapoptotic gene, BCL2. Concurrently, HDAC1,

when recruited in the absence of SEs, repressed target gene expression. HDAC inhibition

reversed silencing of a defined set of protein-coding and noncoding RNA genes. We focused

on a specific set of microRNA genes and showed that their upregulation was inversely

correlated with the expression of CLL-specific survival, transcription factor, and signaling

genes. Our findings identify that the transcriptional activator and repressor functions of

HDACs cooperate within the same tumor to establish the transcriptional dependencies

essential for survival in CLL.
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Introduction

Patients with chronic lymphocytic leukemia (CLL) express a common transcriptional signature exem-
plified by high de novo expression of the B-cell receptor (BCR) pathway kinases, BTK and BLK,1,2 the
antiapoptotic protein, BCL2,3 the chemokine receptor CXCR4 that drives T-cell defects,4 and silencing
of microRNA such as miR15a-16.5,6 The importance of these proteins for CLL survival was validated in
ber 2022; prepublished online on Blood
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clinical trials where BTK and BCL2 inhibitors produced durable
responses in chemo-naïve and relapsed patients to become the
standard of care in CLL.7-11 Despite the dependence of CLL on a
deregulated transcriptome for survival, the regulatory mechanisms
that establish these cancer-specific transcriptional dependencies
are poorly elucidated.

The histone deacetylases HDAC1 and HDAC2 form the catalytic
core of numerous regulatory complexes.12,13 In CLL, high HDAC
activity is linked to inferior survival.14 We demonstrated that
HDAC1 and HDAC2 drive the silencing of several microRNA
genes (miRs) (miR-210, miR15-a, miR16, and miR-29), resulting in
the reciprocal overexpression of CLL survival genes.1,13 Paradoxi-
cally, high levels of HDAC1 become bound at super-enhancers
(SEs) in proliferating solid tumor cell lines to facilitate transcrip-
tion.15,16 SEs are regulatory elements marked by acetylated his-
tones (H3K27Ac) that promote oncogenic transcription to which
cancer cells become addicted.17 HDAC inhibition in these lines
disrupted enhancer activity to decrease enhancer-driven tran-
scription.15,16 However, the recruitment of HDACs to SEs and the
dependence of SE-driven oncogenic transcription on HDACs in
quiescent tumors such as CLL is unknown.

To understand the role of HDACs in regulating the CLL tran-
scriptome, we conducted chromatin immunoprecipitation (ChIP) and
integrated the genome-wide recruitment of HDAC1, with BRD4,
H3K27Ac, H3K9Ac, chromatin accessibility signatures, Pol2 occu-
pancy, and target expression signatures. HDAC1 was recruited to a
small number of enhancers that overlap with BRD4 and are linked to
the overexpression of a select set of genes important to survival,
BCR signaling, and immune dysfunction. HDAC inhibition at these
loci decreased BRD4 loads at enhancers and reduced RNA Pol2
occupancy to selectively halt the expression of B-cell–specific
transcription factors, immune regulators, survival, and signaling
proteins, thereby establishing that HDAC1 functioned as a tran-
scriptional activator of driver genes in CLL. Concurrently, HDAC1
was also widely recruited to target genes without BRD4 or enhancer
marks. HDAC inhibition largely induced expression at these loci.
Within this group, we focused on a select group of microRNAs that
became upregulated to reciprocally target the expression of critical
B-cell drivers, such as IKZF3, BCL2, BTK, and SYK. Thus, we
demonstrate that HDAC inhibition abolishes both the transcriptional
activator and repressor functions of the HDACs to disrupt tran-
scriptional dependencies in CLL tumor cells.

Methods

Primary samples

Peripheral blood samples from patients with CLL were collected
under an institutional review board–approved protocol at the Ohio
State University. The study was performed according to the
Declaration of Helsinki. CLL cells with >90% CD5/CD19 positivity
or those enriched for CD19/CD5 using the Easy Sep Human B cell
Enrichment Kit (StemCell Technologies Inc, Cat # 17963) (anti-
bodies: BV421 mouse anti-human CD5, #562646 and HIB19
APC mouse anti-human CD19, #555415, both from BD Phar-
mingen) were used. Gender, age of diagnosis, and relevant
genetic/immunophenotypic features of each sample are included in
supplemental Table 1. Normal B-cell samples were purified from
discarded material from healthy adults through the Red Cross.
2898 LAI et al
Peripheral blood mononuclear cells were purified using a Ficoll
density gradient, and B cells were enriched using the Easy Sep
Human B cell Enrichment Kit (StemCell Technologies Inc, Cat #
17963) according to the manufacturer’s instructions.

Cell culture and drug treatment

RPMI-1640 medium supplemented with 100U/mL penicillin,
100μg/mL streptomycin, and 10% fetal bovine serum was used for
CLL cell cultures. Cells resuspended in 10% fetal bovine serum
RPMI-1640 media were exposed to dimethyl sulfoxide (DMSO) or
0.4 μM Abexinostat (Selleckchem, Houston, TX) and used for
downstream analysis.

ChIP and assay for transposase-accessible chromatin

seq

Cells were treated with vehicle (DMSO) or with abexinostat (0.4
μM) for 6 hours before being harvested, fixed with 1% formalde-
hyde for 15 minutes, and quenched with 0.125 M glycine. Chro-
matin (15 μg) was immunoprecipitated per sample using antibodies
against HDAC1 (Active Motif # 40967), BRD4 (Active Motif #
91301, 4 μL), H3K9Ac (Active Motif # 39917), H3K27Ac (Active
Motif # 39133), and RNA Pol II (Active Motif # 91151)
(supplemental Table 14) (Key resources). DNA was purified, and
Illumina sequencing libraries were prepared as described.18

For ATAC seq, 105 cells were incubated in the transposase reac-
tion mix (12.5 μL 2 × TD buffer, 2 μL transposase (Illumina), and
10.5 μL nuclease-free water) for 30 minutes at 37◦C. After DNA
purification with the MinElute kit, 1 μL of the eluted DNA was used
to prepare libraries using custom Nextera primers as described.

RNA seq

RNA was isolated with Qiagen RNeasy columns according to the
manufacturer’s protocol and 1000 ng of RNA were used to pre-
pare a sequencing library for each sample using a Stranded RNA-
seq kit with Ribo-Erase (KAPA Biosystems) (supplemental
Table 14) (Key resources). Libraries were sequenced on a
HiSeq4000, generating 100-bp reads.

Immunoblots

Freshly isolated cells from patients with CLL treated with abex-
inostat or DMSO were collected and analyzed by sodium dodecyl
sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Blots
were probed with primary antibodies described in supplemental
Table 14 (Key resources) and Alexa Flour TRDye800 or Alexa-
Flour 700 conjugated secondary antibodies (Thermo Fisher Sci-
entific, Waltham, MA), and then visualized using the LI-COR
Odyssey CLx imaging system.

Real-time polymerase chain reaction (RT-PCR)

CLL cells were treated with DMSO or abexinostat ibrutinib for 24
hours before RNA purification via the RNeasy isolation kit (Qiagen,
Hilden, Germany). Lysates were analyzed for mRNA expression via
RT-PCR for each transcript described in the Gene expression
section of Key Resources, supplemental Table 14 (Key resources).

Pharmacodynamic animal studies

C57BL/6 mice were engrafted with spleen lymphocytes derived
from an Eμ-TCL1 (TCL1) transgenic mouse. Mice were observed
27 JUNE 2023 • VOLUME 7, NUMBER 12
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for leukemia development (defined as ≥10% CD5+/CD19+ cells in
the leukocyte population) and were randomly assigned to control
(50 mmol/L sodium lactate [pH 4.2]) or abexinostat (50 mg/kg for
3 days of each week via tail vein injection) groups and euthanized
at 2 weeks for RNA seq and small RNA seq (n = 3).

Statistical analysis

All analyses were performed using SAS/STAT software, version
9.2 (SAS Institute, Inc, Cary, NC). Spearman correlation coefficient
between miRNA and mRNA data and their statistical significance
was calculated by applying the R stats (v3.6.3) and ggpubr (v0.2)
packages. Student t test was used to analyze the difference and
calculate the P value of transcripts in normal B cells vs CLL cells
and CLL cells vs abexinostat-treated cells.

Results

The composition of the HDAC1-containing

chromatin in CLL

Because we previously showed that HDAC1 formed a complex
with HDAC2 at gene targets in CLL,1,13 we selected HDAC1 (as a
representative HDAC found within transcriptional complexes) for
further investigation. We quantitated the expression of HDAC1 and
BRD4 (Figure 1A-B) and showed that HDAC1 and BRD4 were
overexpressed in CLL cells (patient characteristics listed in
supplemental Table 1) compared with CD19+ B cells from healthy
subjects. Next, we conducted ChIP linked to deep sequencing to
generate the recruitment profiles of HDAC1, BRD4, H3K27Ac,
and H3K9Ac across the CLL genome of CLL B cells from 3
patients (CLL251275, CLL251776, and CLL251228) and inte-
grated it with functional measures of transcription such as chro-
matin accessibility signatures, RNA Pol2 recruitment, and gene
expression profiles across all HDAC1-bound gene targets. Clus-
tering of the recruitment patterns for the above proteins identified 3
dominant regulatory signatures. Cluster I consisted of extensive
and high levels of HDAC1 at loci that also displayed high levels of
H3K27Ac and BRD4. These loci contrarily retained high levels of
Figure 1. The functional chromatin landscape of CLL as defined by HDAC1 recruit

CLL 1-8 = CLL251228, CLL250401, CLL251776, CLL250063, CLL250112, CLL250383

Cell lysates were sequentially probed for HDAC1, BRD4, and GAPDH on the same immunob

CLL250401(U, 11q-/13q-/17p-), CLL251776(Un, 11q-/13q-/17p-), CLL250063(Un, 13q-

CLL250746(Un, NK), CLL251124(U, 13q-), CLL250776, CLL251275(U, 11q-/13q-), CLL

NK), CLL251456(M, NK)) and healthy CD19+ B-cell samples (n = 8). Expression of HDAC

loading control) and the statistical significance derived using Student two-tailed t tests; *P

order for the genome-wide combined occupancy signals of HDAC1 with BRD4, H3K9Ac

corecruited with H3K9Ac, ATAC, and RNA Pol2 (cluster II), and HDAC alone (cluster III) c

CLL251275). (D) Venn diagram showing the intersection of HDAC1 with BRD4, H3K9Ac

(HDAC-BRD4-H3K9Ac-H3K27Ac-ATAC-RNA Pol2) comprises 4799 (in red) peaks with

TSS of 5122 total genes, of which 4192 were PCG and 123 were microRNA genes, clu

HDAC1-H3K9Ac-ATAC- Pol2 tag densities close to the TSS of total 5676 genes, of which

Pol2) comprises 4626 peaks (in purple) with discrete HDAC1 tag densities with low or no H

927 were PCG and 49 were microRNA genes. (E) Transcriptional output of genes within the

with 2724 high expressors, 1625 medium expressors, and 773 low expressors. Cluster II ac

expressors, and 1090 low expressors. Cluster III accounted for 6% of the CLL transcripto

addition, there were 646 high expressors, 1270 medium expressors, and 3277 low expres

variance was used to compare values between high, medium, and low expressers in cluster

11q-, del11q, 13q-, del13q; 17p-, del17p; GAPDH, glyceraldehyde-3-phosphate dehydrog
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acetylated H3K9, a HDAC deacetylation target, highly accessible
chromatin, and robust RNA Pol2 recruitment (Figure 1C). A Venn
diagram common to all 3 primary CLL samples that intersected the
recruitment of HDAC1 with BRD4, H3K9Ac, H3K27Ac, and RNA
Pol2 identified 4799 peaks close to the transcriptional start sites
(TSS) of 4192 protein-coding genes (PCG) and 123 microRNA
genes (Figure 1D-E; supplemental Table 2). Cluster II consisted of
HDAC1 bound at target loci in the absence of BRD4 and
H3K27Ac. They displayed H3K9Ac marks, fewer hyperaccessible
chromatin loci, and lower RNA Pol2 recruitment (Figure 1C) at
5909 peaks near the TSS of 4934 PCG and 164 microRNA genes
(Figure 1D-E; supplemental Table 2). Cluster III comprised HDAC1
bound at targets in the absence of BRD4 or H3K27Ac, with little or
no H3K9Ac, and without discernable open chromatin signatures or
RNA Pol2 (Figure 1C) associated at 4626 peaks near the TSS of
927 PCG and 49 microRNA genes (Figure 1D-E; supplemental
Table 2).

When we related the HDAC1-containing chromatin composition
to transcriptional output, we found that cluster I accounted for
25% of the CLL transcriptome, of which the largest fraction
represented highly expressed transcripts (63%-2724) and 37%
showed moderate (1625) or low expression (773) (Figure 1E).
Cluster II accounted for 29% of the CLL transcriptome, of which
42% (2166) of transcripts had robust and 58% had moderate
(2421) or low expression (1090) (Figure 1E). Cluster III accoun-
ted for 6% of the CLL transcriptome, of which 16% (154) of
transcripts had robust and 84% had moderate (373) or low
expression (550) (Figure 1E). In addition, transcripts not associ-
ated with any of these regulatory marks were also expressed
(646 with high, 1270 with moderate, and 3277 with low levels of
expression).

The HDAC1-containing regulatory chromatin marks

transcriptionally active or inactive genes in CLL

We quantitated transcriptionally active enhancers by determining
the enrichment of H3K27Ac across the CLL genome, and identi-
fied 11 745 (CLL251228), 13 762 (CLL251766), and 14 293
ment. (A) Comparison of HDAC1 and BRD4 levels in whole cell lysates of CLL (n = 8;

, CLL250384, CLL250746) and independent healthy CD19+ selected B cells (n = 4).

lot. (B) Quantitation of HDAC1 and BRD4 in CLL (n = 16, CLL251228(U, 11q-/13q-),

), CLL250112(Un, NK), CLL250383(Un, 11q-), CLL250384(U, 11q-),

250028 (M, 11q-/13q-), CLL250109(M, 13q-), CLL250146(M, 13q-), CLL250943(U,

1 and BRD4 in healthy B cells and CLL cells were normalized to GAPDH (used as a

< .5, ***P < .001, Graph pad software. (C) ChIP-seq densities ranked in decreasing

, H3K27Ac, open ATAC signatures, and RNA Pol2 engagement (cluster I), HDAC1

entered ±5 kb of the TSS window in 3 CLL samples (CLL251288, CLL251766, and

, H3K27Ac, and RNA Pol2 recruitment common to 3 primary CLL samples; cluster I

robust HDAC-BRD4-H3K9Ac-H3K27Ac-ATAC-RNA Pol2 tag densities close to the

ster II (HDAC1-H3K9Ac-Pol2) comprises 5909 peaks (in blue) peaks with robust

4934 were PCG and 164 microRNA genes, and cluster III (HDAC-low/no H3K9Ac-no

3K9Ac and minimal Pol2 tag densities close to the TSS of 1077 total genes, of which

HDAC1-containing chromatin. Cluster I accounted for 25% of the CLL transcriptome

counted for 29% of the CLL transcriptome with 2165 high expressors, 2421 medium

me with 154 high expressors, 373 medium expressors, and 550 low expressors. In

sors not marked by any of the regulatory chromatin modifiers in our study. Analysis of

s I to III and in the group with none of the marks evaluated in our study; ****P < .0001.

enase; M, IgVH mutated; NK, normal karyotype; U, IgVH unmutated; Un, unknown.
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(CLL251275) peaks in 3 CLL samples. We then found that
BRD4 overlapped H3K27Ac marks at 9213 (CLL251228), 7973
(CLL251776), and 4814 (CLL251275) peaks, indicating that
95%, 96%, and 91% of BRD4 was contained within H3K27Ac-
marked enhancer regions (supplemental Figure 1). As described
27 JUNE 2023 • VOLUME 7, NUMBER 12
before,17,18 a small number of H3K27Ac enhancers, approximately
3% - 382 (CLL251228), 312 (CLL251776), and 245 (CLL251275)
out of a total of 11 745 (CLL251228), 13 762 (CLL251766), and
14 293 (CLL251275), carried broader and higher BRD4 loads and
were defined as SE.17,18
HDACs DRIVE TRANSCRIPTIONAL DYSREGULATION IN CLL 2901
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expression. (A) mRNA expression levels of the genes whose regulatory chromatin-binding tracks were shown in Figure 2D and supplemental Figure 3; cluster I ([i-viii]-PAX5,

IKZF3, BLK, BCL2, ROR1, SYK, miR-155, CD27), cluster II ([ix-x] ID1, miR-210HG), and cluster III [(xi-xiv]-miR-182 to 183 -96 cluster andmiR9-3) in 33 CLL samples compared

with 11 to 15 heathy B-cell samples except ID1 (CLL = 10, B cells = 7). *, **, ***, ****P < .5, .01, .001, .0001, Student t test, Graph pad software. (B) Protein expression

levels of genes evaluated in panel A in 8 CLL samples compared with healthy B cells. (C) Sequence tag intensities obtained after ChIP analysis of HDAC1, BRD4, H3K9Ac,

H3K27Ac, ATAC-seq profiles, and RNA Pol2 were visualized on a genome browser and overlaid at selected genes showing the corecruitment of HDAC with H3K9Ac showing

open chromatin signatures (ATAC) and some RNA Pol2 recruitment in cluster II (HDAC1 + H3K0Ac + Pol2), ID1, mir-210HG). The x-axis of each track shows genomic position,

and the y-axis shows the intensity of the ChIP signal (rpm/bp). (D) Sequence tag intensities obtained after ChIP analysis of HDAC1, BRD4, H3K9Ac, H3K27Ac, ATAC-seq

profiles, and RNA Pol2 densities were visualized on a genome browser and show the recruitment HDAC1 with low H3K9Ac, no open chromatin signatures (ATAC) and minimal

RNA Pol2 recruitment at selected genes in cluster III (HDAC1 low/no H3K9Ac), (miR-182-183-96, miR9-3). The x-axis of each track shows genomic position, and the
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Surprisingly, most of the BRD4 dense SEs also recruited extensive
and dense loads of HDAC1 with an 88% (335/382-CLL251228),
91% (284/312-CLL251776), and 88% (215/245-CLL251275)
overlap between HDAC1 and BRD4 to SEs (Figure 2A- in red;
supplemental Table 3) in the 3 CLL samples evaluated. Rank
ordering of super-enhancers with dense HDAC1 and BRD4 loads
identified a common set of enhancers shared by all 3 CLL samples
(supplemental Table 4) and included genes critical to the pathology
of CLL such as those that favored immune dysfunction (CXCR4 and
IL4R), survival proteins such as BCL2, core transcription factors in
CLL such as PAX5 and IKZF3, and B-cell signaling pathway kinases
such as BLK among the top enhancers (Figure 2B).

In parallel, HDAC1 overlapped BRD4 at approximately 55% (3423
of 4775 [72%, CLL251228], 4096 of 7970 [51%, CLL251776],
2902 LAI et al
and 4110 of 9772 [42%, CLL251275]) of typical enhancers (TEs)
(Figure 2A - in black; supplemental Table 3). The B-cell signaling
kinases, BTK, SYK, ROR1 and oncogenic or immune targets such
as miR-155 and CD27 were among the top CLL-relevant genes
that bound HDAC1 to TEs in all 3 samples (Figure 2B). Compre-
hensive functional annotation of the top genes in cluster I (that
represented HDAC1-dense loci bound to BRD4-containing TEs
and SEs) identified B-cell activation, lymphocyte activation, and
several immune pathways among the top biological processes
(Figure 2C).

The binding profiles of select genes from cluster I bearing high
loads of HDAC1 across BRD4-dense SEs (Figure 2Di-vi) or across
TEs (supplemental Figure 2Ai-v) are shown. These genes were
expressed at levels equal to or higher than those found in healthy
27 JUNE 2023 • VOLUME 7, NUMBER 12
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CD19+ B cells as assayed by real-time gene expression assays
(Figure 3Ai-viii and supplemental Figure 2B) and at the protein level
by immunoblots (Figure 3B). These findings elucidate the compo-
sition of the regulatory chromatin at SEs beyond BRD4 to identify
that HDAC1 is a key component bound within SEs and TEs that
close a key set of robustly expressed target genes critical to the
pathobiology of CLL.

HDAC1 was also widely recruited at loci in the absence of BRD4 or
H3K27Ac. Cluster II showed that the recruitment of HDAC1 to
these loci was linked to lower open chromatin signatures and little
recruitment of RNA Pol2 compared with the genes from cluster I,
despite the presence of H3K9Ac as shown for 2 representative
genes,miR-210HG and ID1 (Figure 3C). Expression analysis by RT-
PCR showed that both miR-210 and ID1 were expressed at lower
27 JUNE 2023 • VOLUME 7, NUMBER 12
levels in CLL cells compared with CD19+ normal B cells
(Figure 3Aix-x). Finally, HDAC1 was also recruited to genes without
BRD4 or H3K27Ac (cluster III), which displayed low or no H3K9Ac,
closed chromatin signatures, and an absence of Pol2 recruitment.
The binding profiles of the miR-182 cluster (miR-182, mir-183, and
miR-96) and miR9-3 from cluster III (Figure 3D) are shown.
Expression analysis by RT-PCR showed that miR-182, miR-183,
miR-96, and miR-9-3 were expressed at significantly lower levels
in CLL cells compared with healthy B cells (Figure 3Axi-xiv).

Consequences of HDAC inhibition on the regulatory

epigenome in CLL

High levels of HDAC at key loci across the genome may uncover
a selective transcriptional vulnerability that can be exploited.
HDACs DRIVE TRANSCRIPTIONAL DYSREGULATION IN CLL 2903
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To identify genes directly regulated by HDACs, we conducted RNA
seq in 10 CLL samples exposed to 0.4 μM abexinostat, an HDAC
inhibitor that targets HDAC1 with greater potency than other
HDACs,19 for 24 hours. Overall, a small set of transcripts (421 and
758 - cluster I, 151 and 1264 - cluster II and 33 and 475 - cluster
III) became downregulated and upregulated (twofold or more with
10% false discovery rate [FDR]) after HDAC inhibition (Figure 4A;
supplemental Table 5). Specifically, high expressors bound by
HDAC1 within SEs or TEs from cluster I became downregulated,
whereas high expressors from cluster II or III were unchanged
(Figure 4A). In parallel, intermediate expressors from cluster II and
III and all low expressors from cluster I to III became upregulated
after HDAC inhibition (Figure 4A). Finally, all genes that lacked the
marks evaluated in this study remained unchanged after HDAC
inhibition (Figure 4A).

To relate changes in target gene expression with changes in
the regulatory epigenome, we exposed the same CLL samples to
2904 LAI et al
0.4 μM abexinostat for 6 hours before conducting ChIP-seq for
HDAC1, BRD4, H3K9Ac, H3K27Ac, and RNAPol2 along with
open chromatin profiling. HDAC inhibition did not decrease the
levels of HDAC1 protein for up to 24 hours of exposure to abex-
inostat (Figure 4B), but decreased HDAC1 occupancy within 6
hours compared with the levels at pretreatment (set at 0) at all
genes that were downregulated regardless of their level of
expression at baseline. A decrease in HDAC1 was paralleled by
decreases in H3K9Ac occupancy, moderate decreases in BRD4,
and loss of Pol2 occupancy, whereas H3K27Ac decreased mini-
mally at downregulated genes.

HDAC1 occupancy decreased to a lesser extent at genes that
were upregulated. This resulted in increased H3K27Ac but not
H3K9Ac occupancy at all upregulated genes. BRD4 levels were
modestly increased or maintained at upregulated genes, and Pol2
demonstrated a clear increase in occupancy at all genes that were
upregulated after HDAC inhibition (Figure 4C).
27 JUNE 2023 • VOLUME 7, NUMBER 12
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Genes bound by HDAC1 at SEs undergo extensive

transcriptional changes in CLL driver genes with

variable disruption of SEs after HDAC inhibition

Next, we focused on PCG near loci with dense HDAC1 and BRD4
loads to SEs in cluster I. HDAC inhibition resulted in the differential
expression of a small set of genes (621), of which 329 (54%)
decreased and 292 (47%) genes increased expression. Signifi-
cantly, the genes downregulated after HDAC inhibition included
key driver genes and CLL core transcription factors such as BCL2,
IKZF3, PAX5, and BLK, as well as genes bearing HDAC at TEs
such as ROR1, SYK, miR-155, CD27, and BTK (Figure 5A). We
show that the decrease in occupancy of HDAC1, BRD4, H3K9Ac,
and Pol2 at selected genes is accompanied by variable decreases
in enhancer occupancy (H3K27Ac) but no reduction in chromatin
accessibility (Figure 5Bi-vi and supplemental Figure 3i-v).

We also show a significant reduction in RNA Pol2 occupancy at
the proximal promoter compared with the gene body for several
driver genes, including BCL2, BLK, PAX5, IKZF3, miR155, and
ROR1 but not BTK or SYK (Figure 6Ai-viii). Correspondingly, real-
time expression assays confirmed the declines in the expression of
BCL2, BLK, PAX5, IKZF3, BTK, miR155, ROR, SYK, CD27
(Figure 6Bi-ix), IL4R, and CXCR4 (supplemental Figure 4A) in all
10 CLL samples exposed to 0.4 μM abexinostat for 24 hours. Loss
in transcript levels was mirrored by decreases in the levels of the
cognate proteins when measured after exposure to 0.4 μM abex-
inostat for 24 hours, where proteins such as PAX5, BTK, and
IKZF3 were exquisitely sensitive to HDAC inhibition and showed
the steepest declines in protein levels (Figure 6C and supplemental
Figure 4B), and others such as BCL2 and SYK showed variable
decreases at 24 hours.

Taken together, our results show that cluster I harbored multiple
CLL-specific driver genes that were expressed at high levels, and
HDAC inhibition decreased BRD4 loads at enhancers without
completely disrupting SEs to trigger a decrease in RNA Pol2
recruitment at target genes and downregulate oncogenic and
survival-promoting driver genes.

HDAC inhibition at genes bound by HDAC without

associated SEs induces silenced genes

HDAC inhibition at PCG that recruited HDAC1 cobound with
acetylated H3K9Ac and RNA Pol2 (cluster II) or bound alone
(cluster III) resulted in the differential expression of 919
(126 decreased and 793 [86%] increased expression) and 438
(30 decreased and 438 [93%] increased expression) genes with a
greater than twofold differential expression with a 10% FDR in
cluster II (supplemental Figure 5A; supplemental Table 8) and
cluster III (supplemental Figure 5B; supplemental Table 9).
Figure 5. HDAC inhibition causes dynamic changes in the occupancy of HDAC1,

cluster I. (A) Gene expression heat map obtained after total RNA seq of 10 CLL sample

untreated controls. 621 differentially expressed PCG that showed an absolute fold chang

increased expression. Key CLL driver genes, such as IKZF3, CD27, SYK, BTK, mir-155, IKZ

browser tracks showing the change in HDAC1 (red), BRD4 (turquoise), H3K9Ac (green),

CLL sample out of 3 at baseline and after exposure to 0.4 μM abexinostat for 6 hours, HD

and ATAC seq peaks (orange) are shown for select genes such as CXCR4, IL4R, BCL2

y-axis shows the intensity of the ChIP signal (rpm/bp).
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Although the major consequence of HDAC inhibition was to
reverse expression silencing, functional analysis did not identify a
key role in the pathobiology of CLL for most of the upregulated
PCG in Cluster II or III, making us focus on the microRNA genes in
these clusters.

Expression analysis of the microRNA genes altered in response to
HDAC inhibition from clusters I to III identified 48 microRNA that
were differentially expressed in all 10 CLL samples with a twofold
increase (45 microRNAs) or decrease (3 microRNAs) at 10% FDR
(Figure 7A; supplemental Tables 10,11). Of these, miR-1248 from
cluster I, 6 from cluster II (miR-210, miR-95, miR-92b, miR-320d,
miR-320d, miR-1224, and miR-1296), and 10 from cluster III (miR-
182 cluster, miR-9, miR-1303, miR-126, miR-194, miR-449a,
miR449c, and miR-566) represented the top microRNA genes.
The miR-182 cluster, consisting ofmiR-182, miR-183, andmiR-96,
showed the highest induction (60-fold), whereas miR9-3, miR-210,
and the others were induced fourfold or less.

Decreases in HDAC1 occupancy after HDAC inhibition were
mirrored by increases in H3K9Ac, open ATAC signatures, and
RNA Pol2 engagement (based on genome occupancy peaks as
well as increases in RNA Pol2 engagement at the TSS for both
miR-210HG and the miR-182 cluster (Figure 7B-C), shown as
representative microRNA genes from cluster II and III. These
changes were reflected in the upregulation of miR-210, miR-182,
miR-183, and miR-96 in CLL samples exposed to abexinostat for
24 hours (Figure 7D). We have previously extensively established
the importance of HDAC-driven silencing of miR-210 in facilitating
overexpression of BTK in CLL.1 In this work, we evaluated the
role of the miR-182 cluster (as the top miRNA cluster induced by
>60-fold after HDACi) by cosequencing microRNA and mRNA
within the same CLL samples, which identifies inverse relationships
between functionally related miRNA-mRNA pairs to establish
potential miRNA-target gene interactions.20 Bioinformatic analysis
across 12 miRNA target-prediction programs identified that all 3
microRNAs, miR-182, miR-183, and miR-9-3, had binding sites on
PAX5, IKZF3, BTK, and SYK (supplemental Table 13). Anti-
correlation analysis of miRNA and mRNA profiles in 10 CLL sam-
ples exposed to abexinostat showed that induction of each of
these miRNA was inversely correlated with declines in IKZF3 and
BTK with high significance (rho > −0.55, P < .05), whereas miR-
182 and miR-183 were anticorrelated with BCL2 and SYK (rho
> −0.45, P < .05) (Figure 7E). As a control, we also evaluated the
relationship of these miRs with PAX5, BLK, and ROR1, and found
that they were not significant (rho – P > .05) (supplemental
Figure 6). These results indicate that HDAC inhibition targeted
the CLL driver genes IKZF3 and BCL2 by directly disrupting their
transcription as well as via microRNA-driven targeting mechanisms,
whereas other driver genes such as BTK (miR-210 and miR-182-
H3K9Ac, BRD4, and RNA Pol2 engagement to downregulate driver genes in

s treated with the HDAC inhibitor abexinostat (0.4 μM, 24 hours) compared with

e of 2 or more at 10% FDR, of which 329 (54%) decreased and 292 (47%) genes

F1, BLK, PAX5, and ROR1, were among the downregulated transcripts. (B) Genome

H3K27Ac (olive), RNA Pol II (violet), ATAC seq peaks (brown) in a representative

AC1 (yellow), BRD4 (blue), H3K9Ac (mint), H3K27Ac (green), RNA Pol II (mauve),

, IKZF3, PAX5, and BLK. The x-axis of each track shows genomic position, and the
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183-96 cluster) and SYK (mir-183 and miR-96) downregulated
expression most likely owing to posttranscriptional targeting by
multiple microRNAs. Finally, to determine whether our findings in
primary tumor cells were validated in vivo, we used a Eμ-TCL1–
driven mouse model of CLL where mice bearing >10% CD19+/
Cd5+ leukemia cells by flow cytometric analysis were randomized
to vehicle or abexinostat administered thrice weekly for 2 weeks.
Small RNA seq analysis conducted on CLL cells from mice spleens
(n = 3) demonstrated that the miR-182 cluster (miR-183, miR-182,
and miR-96) was the top cluster induced after HDAC inhibition
(supplemental Figure 7A; supplemental Table 12). Induction of the
miR182 cluster was anticorrelated with reduced expression of
several CLL driver genes such as Pax5, IKZF3, BTK, and BLK
(supplemental Figure 7B; supplemental Table 7).

Discussion

The regulatory chromatin forms a functional code that controls
gene expression. Our results identify that HDAC1 is ubiquitously
found across the genome in 1 of 2 configurations: (1) recruited
within H3K27Ac marked enhancers or (2) without enhancers in
association with or without H3K4Ac. These 2 regulatory chromatin
configurations enable HDAC1 to perform diametrically opposing
functions as either a transcriptional activator or a repressor.

Previous studies identified BRD4 at SEs, which was thought to be
sufficient for driving oncogenic RNA.19,20 A recent study identified
HDAC1 at SEs in solid tumor lines where it facilitated transcrip-
tion.15,16 Our study interrogated multiple layers of the regulatory
chromatin to identify that HDAC1 was strongly recruited to BRD4-
dense enhancers marked by H4K27Ac (SEs and TE) in CLL. We
had previously shown that the BRD4 recruitment at enhancers was
aberrant and specific to CLL and not found in healthy CD19 B
cells,18 it follows that the HDAC1 fingerprint was also specific to
CLL cells because 95% to 99% of analyzed enhancers corecruited
HDAC1 and BRD4. In this configuration, HDAC1 functioned as a
transcriptional activator for a select set of driver genes critical to
survival in CLL because HDAC1 inhibition effectively abolished
their expression. In addition, HDAC1 inhibition also decreased the
expression of 2 oncogenic microRNAs, miR-155 and miR-21. miR-
155 affects BCR signaling21 and both miR-155 and miR-2122

were shown to be associated with adverse outcomes in CLL by
us and others.18,21,23 These findings establish that HDAC1 facili-
tates the expression of driver genes in CLL because HDAC inhi-
bition was as effective as BRD4 inhibition18 in downregulating a
common set of driver genes.18

Our results also identify that in the absence of BRD4 or SEs,
HDAC1 functions as a rheostat that regulates gene expression.
Cluster II exhibited some levels of Pol2 occupancy, which allowed
these transcripts to become expressed at moderate levels,
whereas cluster III did not recruit Pol2, leading to the silencing of
Figure 6. Inhibition of RNA Pol2 engagement, transcript, and protein expression

on RNA Pol II occupancy at promoters. RNA Pol II ChIP-seq gene profiles showing changes

of the PP centered around the TSS to +3 to +6 KB of the GB at BCL2, BLK, PAX5, IKZF3

before (blue) and after exposure to 0.4 μM abexinostat for 24 hours (red). (B) Validation of

levels of selected genes from cluster I ([i-ix]-BCL2, BLK, PAX5, IKZF3, BTK, miR-155, ROR

24 hours. *, **, ***, **** P < .5, .01, .001, .0001, Student t test, Graph pad software. (C) C

exposure to 0.4 μM, abexinostat for 24 hours. GB, gene body; PP, proximal promoter.
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most genes in this cluster. HDAC inhibition upregulated 86% to
93% of the genes in cluster II and III. Of these, the PCG upregu-
lated did not appear to affect the biology of CLL, whereas the
microRNA genes such as the miR-182 cluster appeared to have
significant roles in the biology of CLL as they appeared to target
several driver genes in CLL such as BTK, IKZF3, BCL2, and SYK.
Although we focused on HDAC1 in this work, HDAC inhibition was
achieved using a pan-HDAC inhibitor, making it likely that other
HDACs also play a role in regulating these transcripts. Further
investigation into the components and transcriptional factors would
be required to understand the mechanisms that allow HDAC1 to
function as a transcriptional activator at SEs and as a repressor in
its absence.

In conclusion, our study identifies how tumor cells establish tran-
scriptional dysregulation by orchestrating the regulatory chromatin
code. It also uncovers additional mechanisms that drive transcrip-
tional dysregulation where HDAC functions as a transcriptional
coactivator with BRD4 to activate oncogenic circuits, but as a
repressor, silences microRNA genes to facilitate the robust expres-
sion of driver genes in CLL. Furthermore, in addition to protein-coding
and microRNA genes, multiple other noncoding RNAs were differ-
entially regulated, whose function is yet to be studied in CLL.

Finally, although HDAC inhibition effectively targets B-cell malig-
nancies such as CLL, mantle cell lymphoma, and subsets of lym-
phomas24,25 in vitro, HDAC inhibitor monotherapy is toxic in CLL
but is approved for T-cell lymphomas and myeloma.26,27 Similarly,
BRD4 inhibitors elicited adverse events in early clinical trials.28

Development of novel dual BRD4-HDAC1 inhibitors29 that syner-
gize whereas minimizing toxicities would pave the way for epige-
netic therapy in B-cell malignancies.
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Figure 7. HDAC inhibition increases Pol2 engagement and reverses silencing of a

with the expression of key driver genes in CLL. (A) Volcano plots showing the differe

before and after exposure to 0.4 μM, abexinostat for 24 hours. Of a total of 10 microRNA

(miR-1248 in pink) belonged to cluster I, 5 (miR-210, miR-95, miR92b, miR-320d,miR-129

gene (miR-1303) from cluster III was downregulated (adjust P < .05 and log2 ratio < −1).

H3K9Ac (green), H3K27Ac (olive), RNA Pol II (violet), and ATAC seq peaks (brown) in a rep

for 6 hours, HDAC1 (yellow), BRD4 (mint), H3K9Ac (light blue), H3K27Ac (light green), R

183 to 96 shown as a representative genes from cluster II that bound HDAC1 with H3K9

The x-axis of each track shows genomic position, and the y-axis shows the intensity of the

promoters. Gene plots showing changes in log2 read counts per million (log2 CPM) for RNA

KB of the GB at the miR-210 and miR-182 to 183 to 96 cluster before (blue) and after e

from cluster II and miR-182 to 183 and 96 from cluster III in 10 CLL samples exposed to

induced (miR-182, miR-183, and miR-96) in both primary CLL samples and CLL bearing

driver genes relevant to CLL (IKZF3, BTK, BCL2, and SYK). We show the Pearson scatt

and IKZF3 (P = .001 for miR-182, 0.004 for miR-183 and 0.004 for miR-96), BTK (P = .00

0.048 for miR-183 and 0.06 for miR-96), and SYK (P = .013 for miR-182, 0.019 for miR

PP, proximal promoter.
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