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Sickle cell anemia (SCA) affects ~100 000 people in the United States, primarily African Americans.1

The life expectancy for individuals with SCA is lower than that of African Americans without SCA (54
years vs 76 years, respectively).1 Around the third decade of their lives, patients develop long-term
complications, which result in a lower quality, adjusted life expectancy.1 Chronic kidney disease
(CKD) is one of the most common complications, affecting ~28% to 68% of patients and is associated
with ~16% to 18% early mortality.2,3

The mechanism of CKD is multifactorial and includes hemolysis, inflammation, and iron overload leading
to glomerular, tubular, and endothelial injury. Identification of the early stages of CKD in SCA can lead to
the initiation of early treatment. High glomerular filtration rates (GFRs) and reduced urine concentrating
ability are common in SCA and significantly impact CKD detection. Thus, novel biomarkers of
early-stage CKD are highly desired. Recently, positive correlations between kidney injury molecule 1
(KIM-1) and N-acetyl-b-D-glucosaminidase (NAG) with persistent albuminuria was demonstrated in a
longitudinal study of 303 patients with SCA.4,5

We identified urinary biomarkers of CKD, which reflect basic pathophysiological mechanisms of SCA,
including iron homeostasis (ceruloplasmin [CP])6 and inflammation (orosomucoid [ORM]).7 However,
the accuracy of each biomarker was not enough to be used individually.

In this study, we tested the hypothesis that the combination of biomarkers for basic pathological
mechanisms of SCA improves the accuracy of early detection of CKD.

We re-evaluated results for 45 patients with SCA from the University of Illinois Chicago. The protocol
was approved by the institutional review board, and individuals provided written informed consent.

General and renal function characteristics of patients are shown in Table 1. An estimated GFR (eGFR)
was calculated using the creatinine (Cr)–based equation without race adjustment.8 CKD was defined in
accordance with the National Kidney Foundation Kidney Disease Outcomes Quality Initiatives guide-
lines: stage 0 (without CKD if eGFR >90 mL/min per 1.73 m2 and albuminuria <30 mg/g Cr) and stage
1 (eGFR >90 mL/min per 1.73 m2 and albuminuria ≥30 mg/g Cr).

Random urine samples were collected during a clinic visit when patients were in a steady state. Urine
levels of CP,6 hemoglobin (Hb),4 and ORM7 were measured using an enzyme-linked immunosorbent
assay and normalization of urinary Cr levels.

Differences in the accuracy of biomarker combinations were compared with the simple model (Hb) and
the complete model, with 3 biomarkers. We used Hb as a reference single biomarker model because it
was strongly associated with CKD in a longitudinal study of 356 patients.9 We used patients with stage
1 CKD as the at-risk group, and without CKD (stage 0) as the reference group. A 2-sided P < .05 was
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Table 1. General and renal function characteristics of patients with

SCA

Variable Without CKD With CKD P

No. of patients 23 22

Female/male 9/14 13/9 .238

Mean age (SD), y 33.7 (2.3) 37.6 (2.0) .137

Mean eGFR (SD), mL/min per 1.73 m2 118.7 (4.0) 119.7 (2.7) .617

Mean urinary albumin/Cr (SD), mg/g 14.2 (1.6) 271.0 (68.2) <.001

No. of patients with hyperfiltration 4 3 1.000

Hyperfiltration was defined as eGFR >130 mL/min per 1.73 m2 for women and
>140 mL/min per 1.73 m2 for men.
Fisher exact test and Kruskal-Wallis rank test were used to determine statistical

significance for categorical and continuous variables, respectively.
SD, standard deviation.
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considered significant. Statistical analysis was done using Stata
version 15 (StataCorp, College Station, TX).

Our first analysis of receiver operating characteristic curve evaluated
cutoffs that differentiate patients with stage 1 of CKD from those
without CKD for the individual biomarker (Hb, CP, and ORM). All
biomarkers showed low Youden indexes (YIs, ≤75%) that limited
their usage as single biomarkers (Table 2; models A, 1, and 2). The
combination of 3 biomarkers significantly improved the YI (Table 2)
from 69.6% (model A) to 78.1% (model B) and increased the area
under the curve (AUC) from 0.858 to 0.948 (P = .018). It also
increased the positive predictive value (PPV) from 69.5% to 79.2%
but slightly reduced the NPV from 100% to 96.3%. Then, the
combination of 2 biomarkers were compared for models A and B.
The combinations of Hb + CP (model 3) and CP + ORM (model 5)
did not improve the YI but demonstrated trends for the improvement
of AUC (0.923 [model 3] and 0.927 [model 5]) compared with
model A (0.858). In contrast, the Hb + ORM combination (model 4)
improved YI (77.9%) and AUC (0.919). Thus, all combinations of the
2 biomarkers slightly improved the accuracy of the stage 1 detec-
tion. The lack of statistical significance for the 2-biomarker models
might be because of the small sample size.

The main limitation in the determination of early stages of CKD in
patients with SCA is the sole use of microalbuminuria to differen-
tiate between stage 0 and stage 1 because most patients have an
Table 2. Accuracy of using different combinations vs the single biomark

Model (biomarker combination) Sensitivity (n = 22), % (n) Specificity (n = 23)

A (Hb) 100.0 (22) 69.6 (16)

B (Hb + CP + ORM) 95.5 (21) 82.6 (19)

1 (CP) 77.3 (17) 91.3 (21)

2 (ORM) 90.9 (20) 82.6 (19)

3 (Hb + CP) 77.3 (17/22) 91.3 (21/23)

4 (Hb + ORM) 90.9 (20/22) 86.9 (20/23)

5 (CP + ORM) 95.5 (21/22) 78.3 (18/23)

Criteria or cutoffs for each model was model A, ≥0.529 ng/mg; model B, ≥2 markers; model 1
A test for the equality of the AUC compared with the simple and complete models was performed

for each biomarker based on the highest values of YI.
PPV and NPV were calculated in the scenario that the prevalence of patients with stage 1 CK
Bold letters were used to indicate the reference model.
NPV, negative predictive value.
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eGFR >90 mL/min per 1.73 m2 for both stages (Table 1). Transient
albuminuria is common in patients with SCA and does not always
lead to CKD.5,10 The calculation of eGFR based on the CKD
Epidemiology Collaboration Cr-cystatin equation for the cohort
from the University of Illinois Chicago resulted in an estimate of
60.9% of patients without renal disease and 63.2% with stage 1
CKD and hyperfiltration.11 Recalculation of the eGFR without
adjusting for race significantly reduced the number of patients with
hyperfiltration (17.4% of patients without CKD and 13.6% with
stage 1). In our study, patients without renal disease and stage 1
CKD had similar eGFRs (118.7 ± 4.0 mL/min per 1.73 m2 and
119.7 ± 2.7 mL/min per 1.73 m2, respectively; P = .617) (Table 1).
Thus, eGFR calculation did not affect our analysis.

In a multicenter study of 356 patients with SCA, hemoglobinuria
levels were strongly associated with the reduction of eGFR and
progression of albuminuria.4,5,9 The advantage of Hb detection is
the availability of clinical dipstick urinalysis tests for rapid screening
in communities or low-resource settings. In this article, the mea-
surement of hemoglobinuria demonstrates low specificity (69.6%)
and low PPV (69.5) for the detection of stage 1 CKD.

Glomerular filtration barrier provides an electrostatic barrier to the
filtration of negatively charged proteins, and the loss of negative
charge selection is observed before the increase of albumin
secretion.12,13 CP and ORM are more negatively charged proteins
than albumin and might be secreted at early stages of CKD, before
the onset of albuminuria. Urinary CP has been used as a biomarker
of CKD in patients with diabetes.14 In this article, the CP-based
test (Table 2, model 1) has a specificity of 91.3% and a sensi-
tivity of 77.3% (Table 2), similar to the sensitivity (90% to 91%) and
specificity (61% to 66%) in diagnosing diabetic kidney disease.15

High levels of urinary ORM have been detected in diabetic
nephropathy and systemic lupus erythematosus–associated renal
diseases.16,17 Urinary ORM test has high diagnostic efficiency for
the early screening of renal disease in type 2 diabetes with the cutoff
value of 3.69 mg/g (83.3% sensitivity and 90.3% specificity).17 In
our evaluation, the cutoff value and test sensitivity are higher
(Table 2; model 2: 5.75 mg/g cutoff and 90.9% sensitivity) but
specificity is lower (82.6%). The combination of any 2 biomarkers
slightly improves detection of stage 1 CKD, but only the combination
of 3 biomarkers significantly improve YI, AUC, specificity, and PPV.
er of hemoglobinuria for the detection of CKD in patients with SCA

, % (n) PPV, % NPV, % YI, %

AUC

AUC value P P

69.5 100.0 69.6 0.858 Reference 0.018

79.2 96.3 78.1 0.948 0.018 Reference

86.1 85.3 68.6 0.843 0.938 0.011

78.4 92.9 73.5 0.868 0.729 0.039

86.1 85.3 68.3 0.923 0.059 0.245

82.9 93.2 77.9 0.919 0.069 0.272

75.3 96.1 73.8 0.927 0.177 0.214

, ≥1.747 mg/g; model 2, ≥5.750 mg/g; and model 3 to model 5, ≥2 markers.
. Receiving operating characteristic curves were constructed to determine appropriate cutoffs

D is 48.9% (95% confidence interval, 33.7%-64.2%).
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The limitations of this study are the small sample size and the
limited number of biomarkers. In addition, the enzyme-linked
immunosorbent assays used for the determination of levels of CP
and ORM in urine have been validated only in a small cohort. The
development of a simple panel test may facilitate the usage of
multiple biomarkers as a routine test in clinical settings. Markers of
renal glomerular and tubular endothelial injury such as neutrophil
gelatinase–associated lipocalin, nephrin, NAG, and KIM-1 can be
included in larger studies. Future studies will also include direct
measurements of GFR because of the limitations of Cr-based
equations for the calculation of eGFR in patients with SCD.18

Random urine samples may increase the interperson variability of
each biomarker, and the results may need to be confirmed using a
24-hour urine collection or first morning void urine samples.19

The application of multiple biomarkers is valuable in the prediction
of death in cases of heart failure, diabetes mellitus, and atrial
fibrillation.20-22 CKD in patients with SCA is a multifactorial con-
dition and is likely to be the result of different pathological mech-
anisms. The use of multiple biomarkers could facilitate the
development of new treatment strategies and risk stratification.
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