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High BM plasma S100A8/A9 is associated with a perturbed
microenvironment and poor prognosis in myelodysplastic
syndromes
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Myelodysplastic syndromes (MDS) represent a heterogeneous group of malignant hematopoietic stem
cell (HSC) disorders.1-3 Recent advances in the immunome of the bone marrow (BM) microenviron-
ment identified aberrant immune activation and proinflammatory signaling as vital drivers in MDS
pathogenesis.4-6 Among these complex networks, the S100A8/A9-toll–like receptor axis is a critical
MDS phenotypes definer.7

The inflammatory proteins S100A8 and S100A9 often exist as a heterodimer under physiological
conditions.8 In MDS, S100A8/A9 is synthesized and secreted by, among others, myeloid-derived
suppressor cells (MDSCs), which play a central role in pathogenesis.9 The ligation of S100A8/A9 to
TLR4 leads to NF-κB-mediated transcription and subsequent production of proinflammatory cytokines,
and the induction of NLRP3 inflammasome,5,10 which consequently drives pyroptosis of HSCs and an
inflammatory milieu in the BM.11,12 Although S100A8/A9 serves as biomarkers in various diseases,13-15

its clinical implication in MDS is not fully deciphered.16

To investigate the clinical and microenvironmental relevance of S100A8/A9 in patients with MDS, we
recruited 215 patients with MDS at the National Taiwan University Hospital and quantified BM plasma
S100A8/A9 dimer levels by enzyme-linked immunosorbent assay (supplemental Method). Genomic
DNA and mRNA were extracted from BM mononuclear cells and sequenced as previously
described.17,18 Methods for bioinformatic and statistical analysis are detailed in supplemental Methods.
Patient characteristics are summarized in supplemental Table 1. The median age of the patients was
67.5 years. Over a median follow-up duration of 39.7 months, 64 patients (29.8%) progressed to acute
myeloid leukemia (AML), and 93 patients succumbed to the disease. The National Taiwan University
Hospital Research Ethics Committee approved the study (#201709072RINC). Informed consent was
obtained in accordance with the Helsinki Declaration.

Correlation analysis revealed that the BM plasma S100A8/A9 protein levels significantly correlated with the
mRNA expression in whole BM cell RNA sequencing (r2 = 0.32 and r2 = 0.31, respectively; supplemental
Figure 1). We then explored the distribution of S100A8/A9 levels (supplemental Figure 2A) across disease
subgroups. Patients with MDS/AML (MDS with 10%-19% blasts in the BM or peripheral blood) and
concurrently mutated TP53 had higher S100A8/A9 levels than others (supplemental Figure 2B). Mean-
while, there was no difference in S100A8/A9 levels among patients in the International Prognostic Scoring
System (IPSS) or the Revised IPSS (IPSS-R)3 subgroups (supplemental Figure 2C-F).
0 January 2023; prepublished online on
23; final version published online 2 June
s.2022008958.

een deposited in the Gene Expression
223305).

ponding authors, Chien-Chin Lin (lincc@
.edu.tw).

The full-text version of this article contains a data supplement.

© 2023 by The American Society of Hematology. Licensed under Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0),
permitting only noncommercial, nonderivative use with attribution. All other rights
reserved.

13 JUNE 2023 • VOLUME 7, NUMBER 11

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
https://doi.org/10.1182/bloodadvances.2022008958
mailto:lincc@ntu.edu.tw
mailto:lincc@ntu.edu.tw
mailto:hftien@ntu.edu.tw
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
https://crossmark.crossref.org/dialog/?doi=10.1182/bloodadvances.2022008958&domain=pdf&date_stamp=2023-06-02


0
2000

4000
6000

8000

S100A8/A9 (ng/ml)

Va
ria

nt
 a

lle
le 

fre
qu

en
cy

 (%
)

10000

12000

14000

10

20

r2 = 0.42
P = .003

30

40

50

A
ASXL1
STAG2
RUNX1
EZH2
ZRSR2
SETBP1
SRSF2
TET2
NRAS
BCOR
CBL
ETV6
JAK2
KRAS
CALR
U2AF1
KIT
IDH2
PTPN11
CUX1
PHF6
GATA2
STAG1
IDH1
BCORL1
NOTCH1
MPL
KDM6A
IKZF1
ABL1
GNAS
CEBPA
WT1
MLL
TP53
DNMT3A
SF3B1

Cluster Cluster 2Cluster 1
Pearson

correlation
coefficient

0.40
0.38
0.27
0.27
0.24
0.23
0.19
0.17
0.15
0.14
0.13
0.12
0.12
0.12
0.07
0.06
0.05
0.03
0.03
0.00
-0.01
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.05
-0.07
-0.09
-0.10
-0.12
-0.18

% Total

100%
35%
37%
16%
16%
10%
20%
24%
8%
14%
8%
6%
2%

2%
12%
2%
6%
2%
2%
2%
2%
0%
0%
0%
0%
0%
0%
0%
0%
0%
0%
0%
0%
6%
4%
4%

2%

Mutation
Number

51
18
19
8
8
5
10
12
4
7
4
3
1
1
1
6
1
3
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
3
2
2

STAG2

Cluster

STAG2
RUNX1
EZH2
ZRSR2
SETBP1
SRSF2
TET2
NRAS
BCOR
CBL
ETV6
JAK2
KRAS
CALR
U2AF1
KIT
IDH2
PTPN11
CUX1
PHF6
GATA2
STAG1
IDH1
BCORL1
NOTCH1
MPL
KDM6A
IKZF1
ABL1
GNAS
CEBPA
WT1
MLL
TP53
DNMT3A
SF3B1

C

S1
00

A8
/A

9 
(n

g/
m

L)

0

5000

10000

15000

20000 0.058

Clus
ter

 1

Clus
ter

 2

D

EZH2
ZRSR2
STAG2
RUNX1
ASXL1
U2AF1
BCORL
PHF6
BCOR
SETBP
KDM6A
PTPN11
NRAS
ETV6
MPL
GNAS
IDH2
KIT
JAK2
SF3B1
ABL1
CUX1
STAG1
DNMT3
CEBPA
GATA2
MLL
CBL
WT1
KRAS
TET2
SRSF2
TP53
IKZF1
CALR
IDH1
NOTCH

E
Z

H
2

Z
R

S
R

2
S

TA
G

2

R
U

N
X1

A
S

X
L1

U
2A

F1
B

C
O

R
L

P
H

F6
B

C
O

R
S

E
TB

P
1

K
D

M
6A

P
TP

N
11

N
R

A
S

E
TV

6
M

P
L

G
N

A
S

ID
H

2
K

IT
JA

K
2

S
F3

B
1

A
B

L1
C

U
X1

S
TA

G
1

D
N

M
T3

C
E

B
PA

G
AT

A
2

M
LL

C
B

L
W

T1
K

R
A

S
TE

T2
S

R
S

F2
TP

53
IK

Z
F1

C
A

LR
ID

H
1

N
O

TC
H

1

P
earson correlation coefficient

0

B
Le

uk
em

ia-
fre

e 
su

rv
iva

l

Time from diagnosis (months)

0.00

0.25

0.50

0.75

1.00

0 40

Higher S100A8/A9, n = 23

Lower S100A8/A9, n = 192

80 120 160

P < .001

Ov
er

all
 su

rv
iva

l

Time from diagnosis (months)

0.00

0.25

0.50

0.75

1.00

0 40

Higher S100A8/A9, n = 23

Lower S100A8/A9, n = 192

80 120 160

P < .001

E

ICC higher-risk

Ov
er

all
 su

rv
iva

l

Time from diagnosis (months)

0.00

0.25

0.50

0.75

1.00

0 25

Higher S100A8/A9, n = 15

Lower S100A8/A9, n = 105

50 75 100

P = .029Ov
er

all
 su

rv
iva

l

Time from diagnosis (months)

0.00

0.25

0.50

0.75

1.00

0 40

Higher S100A8/A9, n = 8

Lower S100A8/A9, n = 87

ICC lower-risk

80 120 160

P < .001

F

Higher S100A8/A9, n = 10

IPSS-R higher-risk

Ov
er

all
 su

rv
iva

l

Time from diagnosis (months)

0.00

0.25

0.50

0.75

1.00

0

Lower S100A8/A9, n = 79

50 100 150

P = .08

Higher S100A8/A9, n = 11

IPSS-R lower-risk

Ov
er

all
 su

rv
iva

l

Time from diagnosis (months)

0.00

0.25

0.50

0.75

1.00

0 40

Lower S100A8/A9, n = 111

80 120 160

P < .001

G

Ar
ea

 u
nd

er
 c

ur
ve

Months (LFS)

0.5

0.7

0.9

10 20

IPSS-R + S100A8/A9

IPSS-R

30 40

Ar
ea

 u
nd

er
 c

ur
ve

Months (OS)

0.5

0.7

0.9

10 20

IPSS-R + S100A8/A9

IPSS-R

30 40

H

Higher S100A8/A9, n = 10

ASXL1 mutated

Ov
er

all
 su

rv
iva

l

Time from diagnosis (months)

0.00

0.25

0.50

0.75

1.00

0

Lower S100A8/A9, n = 41

25 50 75 100

P = .009

Higher S100A8/A9, n = 13

ASXL1 unmutated

Ov
er

all
 su

rv
iva

l

Time from diagnosis (months)

0.00

0.25

0.50

0.75

1.00

0

Lower S100A8/A9, n = 151

40 80 120 160

P = .003

I

AS
XL

1

Figure 1. Distinct clinical and biological characteristics of patients with MDS with higher bone marrow plasma S100A8/A9. (A) Scatter plots shows a moderate correlation

between ASXL1 VAF and S100A8/A9 levels. (B) Heatmap of correlations among mutations. (C) Clustering 51 ASXL1-mutated patients based on concurrent mutations of STAG2,

RUNX1, EZH2, and ZRSR2. (D) Cluster 1 had a trend of higher S100A8/A9 levels than cluster 2. (E) Higher S100A8/A9 conferred inferior LFS and OS of the 215 patients with MDS.
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Because previous studies demonstrated the impact of genetic events
on innate immune and inflammasome-signaling,5 such as the NF-kB
pathway,19,20 pyroptosis and β-catenin signaling,21 and NLRP3
inflammatory pathways,7 we examined whether S100A8/A9 con-
centrations differ across patients with various genotypes. Patients
with ASXL1-mutation had significantly higher S100A8/A9 than those
with unmutated ASXL1 (supplemental Figure 2G), whereas no dif-
ference was detected between patients with or without other epige-
netic or splicing gene mutations (supplemental Figure 2G-H).

Next, we sought to investigate the relationship between mutant
ASXL1 and S100A8/A9 levels. ASLX1 variant allele frequencies
(VAF) significantly correlated with S100A8/A9 levels in 49 patients
with ASXL1-mutation with available VAFs (Figure 1A). Hierarchical
clustering suggested close associations among mutations in
ASXL1, STAG2, RUNX1, EZH2, and ZRSR2 (Figure 1B). Inter-
estingly, patients with ASXL1-mutation with concurrent above-
mentioned mutations (cluster 1) had a trend of higher S100A8/A9
than those without (cluster 2) (Figure 1C,D).

The 215 patients with MDS were subsequently divided into higher-
and lower-S100A8/A9 groups with cutoff point of 7093 ng/mL
determined by maximally selected rank statistics. There were no
significant differences in the distribution of disease subgroups
according to the International Classification Consensus (ICC),
IPSS-R, and karyotypes between the 2 groups; but high-S100A8/
A9 patients had a higher ASXL1 mutation rate (43.5% vs 21.4%)
(supplemental Tables 1-3).

We then examined the impact of S100A8/A9 levels on patients’
survival. Higher-S100A8/A9 was associated with significantly inferior
leukemia-free survival (LFS) and overall survival (OS) not only in the
total cohort (Figure 1E), but also in the lower- and higher-risk sub-
groups based on the ICC and IPSS-R (Figure 1F-G; supplemental
Figures 3-4). Time-dependent receiver operating characteristic
curve analysis also suggested the potential for S100A8/A9 to sup-
plement IPSS-R (Figure 1H). Moreover, despite having higher fre-
quencies of mutant ASXL1, high-S100A8/A9 patients had poorer
survival than those of the lower-S100A8/A9 group irrespective of
ASXL1 mutation statuses (Figure 1I; supplemental Figure 5).

The prognostic implications of S100A8/A9 levels on survival were
also demonstrated in patients carrying different karyotypes
(supplemental Figure 6) or receiving different treatments
(supplemental Figure 7). Remarkably, in 50 patients who received
hypomethylating agent monotherapy, higher-S100A8/A9 retained
strong discriminatory prognostic impact on LFS and OS
(supplemental Figure 8). In multivariable analysis, we included
parameters with a P value <.05 in the univariate analysis
(supplemental Table 4), and hazard ratios were adjusted with
treatments that well-stratified survivals (supplemental Figure 9).
Higher-S100A8/A9 remained an independent adverse prognostic
factor for LFS and OS (Figure 2A).

Considering that RNAseq was performed on whole BM MNCs, we
referenced the single-cell data set of healthy controls22 to identify
Figure 1 (continued) (F) Higher S100A8/A9 conferred significantly worse OS in ICC lower

and lower-risk: others. (G) Higher S100A8/A9 conferred significantly shorter OS in IPSS-R low

risk (IPSS-R high and very high) group. (H) Time-dependent ROC curve analyses demonstrat

curves when incorporated. (I) Patients with higher S100A8/A9 had significantly inferior OS irr
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which cell types contributed to the differentially expressed genes.
Curiously, 18 of the 20 most down-regulated genes (supplemental
Table 5) in high-S100A8/A9 BM were regularly expressed by
lymphocytes (supplemental Figure 10), implying different compo-
sition of lymphocytes in higher- and lower-S100A8/A9 BMs. We
further adopted CIBERSORTx,18,23 which infers the landscape of
infiltrating immunocytes in the BM from gene expression profiles.
Higher-S100A8/A9 was associated with significantly lower frac-
tions of CD8 T-cells and activated natural killer (NK) cells
(Figure 2B; supplemental Table 6).

Weighted gene coexpression network analysis revealed that the
turquoise and blue modules were closely associated with lower-
and higher-S100A8/A9, respectively (supplemental Figure 11).
Corresponding to CIBERSORTx analysis, the 914 genes in the
turquoise module were enriched in pathways involving NK- and
T-cell functions, whereas the 509 genes in the blue module were
enriched in pathways involving MDSCs in cancer immune escape
and altered metabolism (Figures 2C,D).

To the best of our knowledge, this is the first study to significantly
stratify the survival of patients with MDS based on S100A8/A9
levels. We also observed that patients with ASXL1-mutation had
higher S100A8/A9 concentrations than their unmutated counter-
parts, corresponding with the increase in NADPH oxidase and
ROS, TLR4 activation and pyroptosis.7 Fundamentally, the upre-
gulation of S100A8/A9 can exert genotoxic stress in HSCs,
thereby advancing the risk for AML transformation,24 in accordance
with our finding that higher-S100A8/A9 group had a shorter LFS.
In a homogeneously treated lower-risk MDS cohort, S100A8/A9
expression in mesenchymal stem cells was correlated with p53 and
TLR4 upregulation.24 Furthermore, high S100A8/A9 concentra-
tions doubled the risk of leukemic transformation and significantly
reduced the time for AML transformation.

Comparisons of the transcriptomic data highlighted differences in
functions and properties of immune cells between higher- and
lower-S100A8/A9 BM and suggested a high-risk subentity that
was not considered in current risk stratification in this heteroge-
nous disease and required more attention. However, the lack of
external validation, biological validation, and the assessment of the
impact of other inflammasome components such as cytokines or
chemokines is a major issue. Meanwhile, the demographics of our
MDS population are more similar to Korean patients,25 with a
younger and higher-risk skewing when compared with that of
western cohorts, suggesting that the extrapolation of our data may
be compromised. Treatment heterogeneity could also potentially
confound our analysis. Serial follow-up data after treatment will
strengthen the prognostic power of S100A8/A9 and provide more
insight into the changes in the BM microenvironment. In addition,
our findings could be more granular and justified if cytometry by
time of flight or single-cell multiomics approaches were adopted.

Despite above limitations, this study clearly showed that S100A8/
A9 level was an independent poor prognostic factor in MDS, and
-risk group and higher-risk group. Higher-risk: MDS with excess blast and MDS/AML;

er-risk (very low, low, and intermediate) group and a trend of worse OS in IPSS-R higher-

e that S100A8/A9 levels can be complementary to IPSS-R, increasing area under

espective of their ASXL1 mutation statuses. ROC, receiver operating characteristic.
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higher S100A8/A9 in the BM intimated a perturbed microenvi-
ronment with enhanced MDSC signal and impairment in the
functions and quantities of CD8+ T cells and NK cells. We propose
that S100A8/A9 can be incorporated to the current risk stratifi-
cation systems and prospectively assessed in clinical trials.
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