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Lower incidence of chronic GVHD observed after transplantation
with cryopreserved unrelated allogeneic stem cells
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Allogeneic hematopoietic stem cell transplantation (allo-HSCT) typically utilizes fresh donor bone
marrow (BM) or peripheral blood stem cells (PBSCs) because of concerns that cryopreservation may
negatively impact patient outcomes.1 The COVID-19 pandemic spurred renewed interest in the impact
of cryopreservation after the National Marrow Donor Program (NMDP) mandated cryopreservation of
unrelated donor (URD) PBSCs between March and August 2020.2

Although the cryopreservation mandate was lifted after August 2020, heterogeneity in cryopreservation
practices among transplant centers remains. Moreover, data on long-term outcomes of using such
products are scarce. We previously reported lack of difference in 6-month overall survival (OS), pro-
gression free survival (PFS), relapse, and nonrelapse mortality (NRM) for adult recipients of cry-
opreserved PBSCs compared with those of fresh URD PBSCs, noting lower T-cell chimerism at days
30 and 100.3,4 We and others reported delayed neutrophil and platelet reconstitution with cryopres-
ervation,3,5 whereas other investigators found no difference.6,7 Although some studies have reported
increased moderate/severe chronic graft versus host disease (cGVHD) after allo-HSCT with cry-
opreserved PBSCs,5,6 others have described equivalent or slightly reduced cGVHD incidence,7,8

although differences in GVHD prophylaxis regimens and small sample sizes may account for this
variability.

As lower white blood cell count and T-cell chimerism at 30- and 100-days following allo-HSCT are
associated with relapse,9,10 long-term implications of impaired immune reconstitution after stem-cell
product cryopreservation warranted further investigation. We have expanded our cohort to 387 adult
patients (136 cryopreserved, 251 fresh) treated with URD PBSC and assessed 2-year clinical out-
comes including OS, PFS, relapse, NRM, and acute and chronic GVHD (aGVHD, cGVHD).

This study was approved by the Institutional Review Board of Dana-Farber/Harvard Cancer Center
(DF/HCC) and was conducted in accordance with the Declaration of Helsinki. We analyzed all adult
patients who underwent the first allo-HSCT with URD PBSCs between January 1, 2019 and July 31,
2021 (136 cryopreserved PBSC, 251 fresh). Of the 387 patients, 304 were included in our earlier
reports limited to short-term clinical outcomes.3,4 Indication for cryopreservation was COVID-19 pre-
cautions (clinician preference and/or NMDP mandate) for 128 of 136 patients. For the remaining
8 patients receiving cryopreserved product before March 2020, the indication was donor scheduling.

Baseline and pretransplant operational characteristics were reported descriptively and compared using
Fisher’s exact test, χ2 test, or Wilcoxon rank-sum test, as appropriate. Clinical outcomes of interest
included OS, PFS, NRM, relapse, aGVHD, and cGVHD. OS was defined as time from stem cell infusion
to death from any cause. PFS was defined as time from stem cell infusion to disease relapse, pro-
gression, or death from any cause, whichever occurred first. Patients who were alive without disease
relapse or progression were censored at the time last seen alive and relapse or progression-free. The
Kaplan-Meier method was used to estimate PFS and OS. Cumulative incidence of NRM, relapse, and
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Table 1. Patient and transplant characteristics

Baseline characteristics All Cryo Fresh

P-
value

Patient/Donor

Patient age, median (range) 64 (21, 79) 63 (25, 79) 64 (21, 78) .4

Patient sex, n (%) .39

Female 157 (40.6) 51 (37.5) 106 (42.4)

Male 230 (59.4) 85 (62.5) 145 (57.8)

Donor age, median (range) 27 (18, 64) 28 (19, 64) 27 (18, 54) .35

Donor sex, n (%) .58

Female 142 (36.7) 47 (34.6) 95 (37.8)

Male 245 (63.3) 89 (65.4) 156 (62.2)

Female donor in male
patient, n (%)

64 (16.3) 23 (16.9) 40 (15.9) .89

KPS at transplant, n (%) .74

100-90 140 (36.2) 51 (37.5) 89 (35.5)

<90 247 (63.8) 85 (62.5) 162 (64.5)

Disease, n (%) .96

ALL 45 (11.6) 17 (12.5) 28 (11.2)

AML 144 (37.2) 48 (35.3) 96 (38.2)

MDS 108 (27.9) 38 (27.9) 70 (27.9)

MDS/MPN 2 (0.5) 1 (0.7) 1 (0.4)

MPN 28 (7.2) 9 (6.6) 19 (7.6)

NHL 33 (8.5) 13 (9.6) 20 (8)

Other leukemia 15 (3.9) 5 (3.7) 10 (4)

CML 5 (1.3) 2 (1.5) 3 (1.2)

Histiocytosis 4 (1) 2 (1.5) 2 (0.8)

Hemoglobinopathy 1 (0.3) 1 (0.7) 0 (0)

Other Anemia 1 (0.3) 0 (0) 1 (0.4)

Atypical CML 1 (0.3) 0 (0) 1 (0.4)

Recipient/Donor
CMV, n (%)

.55

R-/D- 148 (38.2) 51 (37.5) 97 (38.6)

R-/D+ 86 (22.2) 27 (19.9) 59 (23.5)

R+/D- 84 (21.7) 30 (22.1) 54 (21.5)

R+/D+ 68 (17.6) 27 (19.9) 41 (16.3)

Not tested 1 (0.3) 1 (0.7) 0 (0)

HCT-CI, n (%) .65

0 12 (3.1) 6 (4.4) 6 (2.4)

1 58 (15) 18 (13.2) 40 (15.9)

2 56 (14.5) 19 (14) 37 (14.7)

≥3 261 (67.4) 93 (68.4) 168 (66.9)

Median (range) 4 (0, 12) 4 (1, 10) 4 (0, 12)

Degree of HLA
match, n (%)

.24

8/8 333 (86) 122 (89.7) 211 (84.1)

7/8 52 (13.4) 13 (9.6) 39 (15.5)

6/8 2 (0.5) 1 (0.7) 1 (0.4)

ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; MDS, myelodysplastic
syndrome; MPN, myeloproliferative neoplasm; NHL, non-Hodgkin’s lymphoma; CML,
chronic myelogenous leukemia.
*Comparison of Tacrolimus+methotrexate and/or sirolimus versus PTCY-based GVHD

prophylaxis regimen

Table 1 (continued)

Baseline characteristics All Cryo Fresh

P-
value

Transplant characteristics

Conditioning intensity, n (%) .095

Myeloablative 105 (27.1) 44 (32.4) 61 (24.3)

Reduced intensity 282 (72.9) 92 (67.6) 190 (75.7)

GVHD prophylaxis regimen, n (%) .23*

PTCY 1 (0.3) 0 (0) 1 (0.4)

PTCY/Tacrolimus/Mycophenolate
mofetil

76 (19.9) 32 (23.5) 43 (17.9)

Tacrolimus/Methotrexate 238 (61.5) 90 (66.2) 148 (59)

Tacrolimus/Rapamycin 6 (1.6) 1 (0.7) 5 (2)

Tacrolimus/Rapamycin/Methotrexate 66 (16.8) 13 (9.6) 53 (20.7)

Duration of cryopreservation (h),

median (range)

272.7 (48.1, 2855,7)

ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; MDS, myelodysplastic
syndrome; MPN, myeloproliferative neoplasm; NHL, non-Hodgkin’s lymphoma; CML, chronic
myelogenous leukemia.
*Comparison of Tacrolimus+methotrexate and/or sirolimus versus PTCY-based GVHD

prophylaxis regimen
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GVHD were estimated in the context of a competing risks frame-
work. NRM and relapse were treated as competing events to each
other and death or relapse without developing GVHD served as a
competing event for GVHD. All calculations were performed using
SAS 9.3 (SAS Institute, Inc, Cary, NC) and R version 3.3.2.

Characteristics of patients, donors, and transplant regimens were
similar between cohorts (Table 1). Median follow-up time among
survivors was 23.1 months (range, 12-40.9 months). Two-year OS
(60% versus 65%, P = .64) and PFS (55% versus 58%, P = .4)
were not different in patients receiving cryopreserved PBSCs
compared with those receiving fresh PBSCs (Table 1, Figure 1A).
Relapse (34% versus 29%, P = .28) and NRM (11% versus 12%,
P = .74) at 2 years and graft failure (5.1% versus 2%, P = .18)
were comparable between cryopreserved and fresh cohorts
(Figure 1B). Eight patients died of COVID-19 (3 cryopreserved, 5
fresh). At 1 year, T-cell chimerism was not different between
groups (Table 2). Incidence of grade II-IV and grade II-IV aGVHD at
6 months did not differ between cryopreserved and fresh cohorts
(grade II-IV: 25% versus 20%, P = .36; grade III-IV: 12% versus
8%, P = .35; Table 2). Strikingly, 2-year incidence of any grade
cGVHD and moderate/severe cGVHD was lower in patients
receiving cryopreserved PBSCs than in those receiving fresh
PBSCs (any grade: 39% versus 57%, P = .00066; moderate/
severe: 18% versus 31%, P =.00065; Figure 1C). This difference
was restricted to patients receiving a tacrolimus+methotrexate
and/or sirolimus GVHD prophylaxis regimen (any grade: 42%
versus 61%, P = .0008; moderate/severe: 21% versus 36%,
P = .0025; Figure 1D) but not those receiving posttransplant
cyclophosphamide for GVHD prophyaxis (any grade: 29% versus
29%, P = .81; moderate/severe: 4.2% versus 9.3%, P = .28;
Figure 1E). Multivariable analysis showed an increased sub-
distribution hazard ratio (sHR) for cGVHD for fresh versus cry-
opreserved PBSCs, donor age ≥40, and patient/donor CMV
positivity (Table 3). This difference in cGVHD incidence was
13 JUNE 2023 • VOLUME 7, NUMBER 11



0
0.0

0.2

0.4

0.6

0.8

Fresh
Cryo

P = .4

1.0

A

1

Years from transplantation

Pr
ob

ab
ilit

y

PFS

2 3

251 156 99 22
136

Fresh:
No. at Risk

Cryo: 82 13

0
0.0

0.2

0.4

0.6

0.8
Fresh
Cryo

Fresh
Cryo

Relapse, P = .28

NRM, P = .74

1.0

B

1

Years from transplantation

Pr
ob

ab
ilit

y

Relapse and NRM

2 3

251 156 99 22
136 82 13

0
0.0

0.2

0.4

0.6

0.8

1.0

C

6

Months from transplantation

Pr
ob

ab
ilit

y

Incidence of Chronic GVHD
All patients

12 18 24

251 162 76 32
6136

Fresh:
No. at Risk

Cryo: 83 55
43
33

0
0.0

0.2

0.4

0.6

0.8

Fresh
Cryo

Fresh
Cryo

All cGVHD, P = .0008

Moderate/severe cGVHD, 
P = .0025

Fresh
Cryo

Fresh
Cryo

All cGVHD, P = .00066

Moderate/severe cGVHD,
P = .00065

0
0.0

0.2

0.4

0.6

0.8

1.0

E

6

Months from transplantation

Pr
ob

ab
ilit

y

Incidence of Chronic GVHD
PTCY-based GVHD prophyalxis

12 18 24

46 31 22 8
332

Fresh:
No. at Risk

Cryo: 22 18
12
10

Fresh
Cryo

Fresh
Cryo

All cGVHD, P = .81

Moderate/severe cGVHD,
P = .28

1.0

D

6

Months from transplantation

Pr
ob

ab
ilit

y

Incidence of Chronic GVHD
Tacrolimus-based GVHD prophyalxis

12 18 24

205 131 31 24
3104

Fresh:
No. at Risk

Cryo: 61 23
54
37

Figure 1.

13 JUNE 2023 • VOLUME 7, NUMBER 11 RESEARCH LETTER 2433

D
ow

nloaded from
 http://ashpublications.net/bloodadvances/article-pdf/7/11/2431/2056879/blooda_adv-2022-009231-m

ain.pdf by guest on 03 M
ay 2024



Table 2. Clinical outcomes

Clinical outcomes, % (95% CI) Cryo Fresh P-value

2-y OS 60 (49, 69) 65 (58, 70) .64

2-y PFS 55 (46, 63) 58 (52, 64) .4

2-y GRFS 41 (31, 51) 37 (31, 43) .45

2-y NRM 11 (6.5, 18) 12 (8.6, 17) .74

2-y relapse 34 (26, 42) 29 (24, 35) .28

6-mo Grade II-IV acute GVHD 25 (18, 33) 20 (16, 256) .36

6-mo Grade III-IV acute GVHD 12 (7, 18) 8 (5, 12) .35

2-y chronic GVHD 39 (30, 49) 57 (50, 63) .00066

2-y moderate/severe chronic GVHD 18 (10, 27) 31 (26, 37) .00065

Tacrolimus+methotrexate and/or
sirolimus GVHD prophylaxis, n (95% CI)

2-y chronic GVHD 42 (31, 53) 61 (54, 68) .0008

2-y moderate/severe chronic GVHD 21 (12, 31) 36 (29, 42) .0025

PTCY-based GVHD prophylaxis,
n (95% CI)

2-year chronic GVHD 29 (14, 46) 29 (16, 43) .81

2-year moderate/severe chronic GVHD 4.2 (0.3, 18) 9.3 (3, 20) .28

Graft failure, n (%) .18

Yes 7 (5.1) 5 (2)

No 129 (94.9) 245 (97.6)

Expired before count recovery 0 (0) 1 (0.4)

CD3 Chimerism at 1 y, % .14

<50% 2 0

50%-75% 5 2

>75% 93 98
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observed both during and after the NMDP-mandated cryopreser-
vation period. The median duration of cryopreservation was 262.7
hours (range 48.4 to 2855.7). We observed no difference in
cGVHD based on duration of cryopreservation (data not shown).

PBSC cryopreservation is an attractive option allowing greater
flexibility in timing and coordination of donor collection and allo-
HSCT not only during the COVID-19 pandemic but perhaps
Table 3. Multivariable analysis for cGVHD

Variable Comparison

Cryopreservation Cryo versus fresh

Donor age ≥40 y versus <40 yr

Patient or donor CMV serologic status Recipient or donor positive (+/+, +/−
Both negative (-/-)

Figure 1. Clinical outcomes of patients receiving cryopreserved versus fresh PBSCs

green) versus cryopreserved (red or orange) PBSCs. Incidence of all grade cGVHD and moder

comparedwith those receiving fresh PBSCs (blue or green) (C). This differencewas only observe

but not in patients given PTCY for GVHD prophylaxis (E).
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beyond. We now report that cryopreservation is associated with
lower cumulative incidence of any grade cGVHD and moderate/
severe cGVHD without compromising relapse in patients who
receive tacrolimus+methotrexate and/or sirolimus GVHD prophy-
laxis but not in those who receive PTCY. Initially pioneered to
improve engraftment and reduce GVHD in haploidentical allo-
HSCT,11 PTCY-based GVHD prophylaxis is gaining traction for
reducing incidence of cGVHD in matched related or unrelated allo-
HSCT.12-14 PTCY is hypothesized to prevent GVHD by limiting
alloreactivity in donor T cells, favoring more rapid recovery of reg-
ulatory T cells and delaying CD4+ conventional T-cell reconstitu-
tion, thereby inducing tolerance and abrogating inflammation.15-17

Our previous analysis of T-cell reconstitution and immunopheno-
typing between recipients of fresh and cryopreserved PBSCs
demonstrated lower absolute numbers of conventional naïve and
effector memory (EM) T cells at 30 and 100 days following allo-
HSCT and a trend toward decreased numbers of conventional
central memory, effector memory reexpressing RA (EMRA) T cells,
and Tregs after cryopreserved PBSCs.3 Although the ratio of
regulatory to conventional T cells was preserved, there was a trend
toward a higher ratio at day 100 (regulatory to conventional T-cell
ratio: 0.12 for cryopreserved versus 0.09 for fresh, P = .06). Given
that cryopreservation appears to offer similar protection from
GVHD compared with that offered by PTCY, a question for future
investigation is whether cryopreservation selectively impairs similar
T-cell functional subsets as PTCY.

We show that allo-HSCT with cryopreserved URD PBSCs results
in similar OS, PFS, relapse rates, and NRM at 2 years post-
transplantation. Despite early impairment of T-cell chimerism, pre-
viously linked to higher relapse,10 we do not observe differences in
longer term relapse rates. We hypothesize that reduction in T-cell
reconstitution caused by cryopreservation is fundamentally
different from impaired T-cell reconstitution predisposing to
relapse. Further analysis is needed of specific T-cell and other
lymphocyte phenotypes in cryopreserved and fresh PBSC recipi-
ents who either relapse or have sustained remission to fully dissect
these differences. Such an analysis may elucidate functional sub-
sets of T cells required for maintenance of a graft-versus-leukemia
effect and incidence of cGVHD after allo-HSCT. Multicenter or
registry analyses are needed to confirm the clinical observations
reported here.
sHR 95% CI P-value

0.42 0.29, 0.63 .0001

1.77 1.12, 2.79 .014

, −/+) vs 1.71 1.21, 2.42 .0023

. PFS (A), NRM (B), and relapse (B) were similar between patients receiving fresh (blue or

ate/severe cGVHD was lower in patients receiving cryopreserved PBSCs (red or orange)

d in patients treatedwith tacrolimus+methotrexate+/− sirolimus forGVHDprophylaxis (D)
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