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Underweight children older than 5 years with sickle cell anemia are
at risk for early mortality in a low-resource setting
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Key Points

• Underweight children
aged 5 to 12 years and
with SCA are at risk for
early death in a low-
resource setting.

• Weight-for-age z score
is a simple measure to
screen children older
than 5 years with SCA
at risk for death in a
low-resource setting.
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Undernutrition is a risk factor for under-5 mortality and is also postulated to be a risk factor

for mortality in older children and adults with sickle cell anemia (SCA). We tested the

hypothesis that underweight is associated with mortality in children aged 5 to 12 years with

SCA. We performed a secondary analysis of participants in the Primary Prevention of

Stroke in Children with Sickle Cell Disease in Nigeria trial, a double-blind, parallel-group

randomized controlled trial for low-dose or moderate-dose hydroxyurea in children with

abnormal transcranial Doppler velocities and a comparison group of participants with

nonelevated transcranial Doppler velocities in northern Nigeria. Nutritional status was

classified as underweight (weight-for-age z score), stunting (height-for-age z score), and

wasting (body mass index z score) using the World Health Organization growth reference.

The mean weight-for-age z score was lower in children who died during the study than in

those who survived. Otherwise, the baseline characteristics of children who died during the

study were not significantly different from those of the children who survived. A pooled

analysis of participants demonstrated that a lower weight-for-age z score was associated

with an increased hazard of death. Underweight participants (weight-for-age z score <−1)

had a greater probability of death during follow-up than those who were not underweight.

Underweight status in school-aged children with SCA is a previously unrecognized risk

factor for early mortality in Nigeria and can be easily applied to screen children at risk for

death. This trial was registered at www.clinicaltrials.gov as #NCT02560935.
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Introduction

Undernutrition and sickle cell anemia (SCA) are common occurrences in children living in sub-Saharan
Africa, where 75% of all children with SCA are born.1-3 Initial efforts to model the mortality rates in
children with SCA indicated 50% to 90% early-life mortality.4 Through improved medical therapies and
access to care, the survival of children with SCA has been substantially enhanced.5 A recent
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multicenter and multicountry retrospective study of children with
SCA living in sub-Saharan Africa estimated a significant decline in
childhood mortality.5 However, there continues to be excess mor-
tality and morbidity in children with SCA living in sub-Saharan
Africa.1,4-6 In the Primary Prevention of Stroke in Children with
Sickle Cell Disease in Nigeria (Stroke Prevention in Nigeria
[SPRING]) trial, the mortality in children aged 5 to 12 years with
SCA was 2.38 per 100 person-years, with no significant difference
between participants on low-dose or moderate-dose treatment or
those in the treatment or comparison group.7 In contrast, children
with SCA aged 5 to 14 years in the United States have a death rate
of <0.5 per 100 000 person-years.8-10

We had not identified specific risk factors in the SPRING trial for
the high mortality rate.7 Moreover, in our primary analysis we did not
explore the 3 standard indicators of undernutrition (underweight,
stunting, and wasting) associated with death in children under 5
years.11,12 Of these 3 indicators, weight-for-age z score (under-
weight) is a biomarker for acute and chronic undernutrition.13

Decreased weight-for-age z score is associated with death in
children under 5 years of age without SCA, with ~45% of deaths in
this age group attributable to undernutrition.11,14,15 Additionally,
weight-for-age z scores in children under 5 have high sensitivity
and specificity for identifying those children who are concurrently
stunted and wasted.16

Whether weight-for-age z score is associated with excess mortality
in children with SCA older than 5 years in the region has not been
established. As a secondary analysis, we tested the primary
hypothesis that weight-for-age z score (continuous measurement)
and the corresponding underweight (weight-for-age z score <−1;
categorical value) are independent risk factors for mortality in
children aged 5 to 12 years old with SCA in northern Nigeria. We
also evaluated whether the other 2 standard undernutrition indi-
cators, stunting and wasting, were associated with mortality in the
same cohort.

Methods

Study design and participants

We performed a secondary data analysis of deidentified data sets
of children with SCA enrolled in the SPRING trial
(NCT02560935).7 The SPRING trial was a National Institute of
Health-funded multicenter phase III double-blind, parallel-group
randomized controlled trial conducted in a low-income region of
northern Nigeria from July 2016 to April 2020.7,17 The trial was
approved by the institutional review board of Vanderbilt University
Medical Center in Nashville, TN, and the respective ethics com-
mittees of the local participating sites: Aminu Kano Teaching
Hospital and Murtala Mohammad Specialist Hospital, with referrals
from Hasiya Bayero Pediatric Hospital and Muhammad Abdullahi
Wase Specialist Hospital, all in Kano, Nigeria and Barau Dikko
Teaching Hospital in Kaduna, Nigeria. The parent or legal guardian
of all participating children provided written informed consent.

Eligible children aged 5 to 12 years with confirmed hemoglobin SS
or hemoglobin Sβ0 thalassemia (referred to as SCA) and abnormal
transcranial Doppler measurements of the terminal portion of the
internal carotid, middle cerebral artery, or both vessels above 200
cm/s were randomized to either low-dose (10 mg/kg) or moderate-
dose (20 mg/kg) hydroxyurea by mouth daily. A comparison group
2340 KLEIN et al
of children with SCA with normal or conditional transcranial
Doppler velocities was also prospectively followed. The compari-
son group did not receive hydroxyurea therapy.

Data collection and definitions

Demographics, anthropometrics, and baseline laboratory values
were collected. Hematological variables, including baseline hemo-
globin and white blood cell count, were included when the
potential participant was in a steady state during study screening
when the participants were not acutely ill or had not been recently
hospitalized.

Following standard anthropometric methods, study administrators,
nurses, or physicians noted weight (kg) and height (cm) details.
Body mass index (BMI) (kg/m2) was calculated. Anthropometric
measurements were converted to age- and sex-specific z scores
based on the World Health Organization (WHO) growth refer-
ence.12,18 The WHO charts do not provide weight-for-age z scores
for children older than the age of 10 years. The Canadian Pediatric
Endocrine Group growth charts were used for weight-for-age z
scores of children beyond the age of 10 years. The Canadian
Pediatric Endocrine Group growth charts complement the WHO
growth charts by extending the weight-for-age z score using the
same core data set as the WHO reference for school-aged chil-
dren and adolescents.19 Undernutrition was defined as z scores
<−1, with degrees of anthropometric deficits further delineated as
mild with z scores between ≥−2 and <−1, moderate between ≥−3
and <−2, and severe <−3. Underweight, stunting, and wasting
were determined by weight-for-age, height-for-age, and BMI z
scores, respectively.12,18

The follow-up of the pooled participants from the treatment and
comparison groups was planned for a minimum of 3 years and the
primary outcome was death. Causes of death were categorized
into infectious and noninfectious causes or unknown because
previous research has only established the relationship between
undernutrition and mortality for infectious disease-related deaths.14

Infectious causes included causes of death that were most likely
related to an infection, including but not limited to febrile illnesses,
sepsis, and presumed malaria. The end date for follow-up was
either the date of last contact with the participant at the previous
clinic visit or the date of death or stroke.

Statistical analysis

Summary statistics for continuous variables were summarized as
means and standard deviations or as medians and interquartile
ranges for variables not normally distributed. Categorical variables
and prevalence were reported as numbers and percentages. A χ2

or Fisher exact test was used for percentages, a t test for means,
and a Mann-Whitney U test for medians.

We used multivariate Cox regression to assess the association
between continuous anthropometric z scores with death, adjusted
for age, sex, and hemoglobin levels. The hazard ratio (HR) with a
95% confidence interval (CI) was used to assess the risk of death
associated with each covariate. Kaplan-Meier curves were gener-
ated to assess the association between underweight (weight-for-
age z score <−1) and death. As this is a secondary analysis, we
used a 2-sided P value of .05 as potential evidence of a significant
result, but < .01 as stronger evidence for significance.20 Data
analysis was performed using SPSS 27.0 (IBM, Armonk, NY).
13 JUNE 2023 • VOLUME 7, NUMBER 11
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Results

Baseline characteristics of the study participants

There were 431 participants in the SPRING trial, all of whom had
complete anthropometric values at baseline. The median follow-up
time was 2.6 years (interquartile range 2.0-3.0, Table 1). During the
trial, 2.7% (6 of 220) of participants withdrew from the therapy
group, 3 participants from each arm. A total of 8.6% (18 of 209) of
the participants withdrew from the comparison group. Participants
that did not follow up for the routine visits were called on the pri-
mary and secondary phones to assess their scheduled follow-up
visits. There were 24 deaths among the SPRING trial partici-
pants during follow-up, with 15 and 9 deaths in the treatment and
comparison groups, respectively (supplemental Table 1). Of the
deaths, 50% (12 of 24) were classified as an infectious cause
(supplemental Table 1). The proportion of deaths from presumed
infections was not statistically different between the treatment and
comparison groups (P = 1.000).

Excluding anthropometric measurements, the baseline character-
istics of children who died during the study were not significantly
different from those of children who survived (Table 2). The median
age of children at enrollment was 7.7 (6.0-10.1) and 7.5 (6.3-9.0)
years for those who survived and died (P = .778), respectively.
Participants in the comparison group were older with higher
baseline hemoglobin (P < .001, Table 1).

Baseline prevalence of undernutrition

The mean weight-for-age, height-for-age, and BMI z scores were all
negative, at −1.5 or lower for those who survived and died during
study participation (Table 2). All participants had a weight-for-age z
score <1, signifying no overweight participants, and therefore
participants with a weight-for-age z score >−1 were referred to as
normal weight. The participants who died during the SPRING trial
had a weight-for-age z score significantly lower than that of those
who survived (−2.6 and −2.1, respectively; P = .016, Table 2).
Table 1. Baseline characteristics of the SPRING trial participants (n = 4

Characteristics* Combined population (n = 431)

Age at enrollment, y 7.7 (6.0-10.0)

Female sex 224 (52.0)

Follow-up time (y), median (IQR) 2.6 (2.0-3.0)

Transcranial Doppler velocity at screening, cm/sec 200.0 (131.0-207.0)

Total hemoglobin, g/dL 7.3 (6.6-8.1)

Height (cm) 117.5 (109.5-126.0)

Weight (kg) 18.0 (16.0-22.0)

BMI (kg/m2) 13.5 (12.6-14.5)

Height-for-age z score, mean (SD) −1.5 (1.3)

Weight-for-age z score, mean (SD) −2.1 (1.1)

BMI z score, WHO standard, mean (SD) −1.8 (1.2)

IQR, interquartile range; SD, standard deviation.
The therapy group comprised of children with abnormal transcranial Doppler velocities on hydrox

velocities.
IQR, interquartile range; SD, standard deviation.
*Median (IQR) for continuous variables and counts (percentages) for categorical variables unle
†χ2 test for counts, t test for means, and Mann-Whitney U test for medians between the thera
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There was no significant difference between baseline anthropo-
metric z scores in the therapy and comparison groups (Table 1).

The baseline prevalence of at least moderate (z score <−2)
underweight, stunting, and wasting were 52.3%, 33.6%, and
42.7%, respectively (supplemental Table 2). All moderately stunted
participants were also underweight; however, 2 children were
severely stunted and did not reach the severe category in other
domains. All the participants who were severely wasted and died
during the study follow-up were also severely underweight at
baseline.

Association of nutritional status and mortality in

children with SCA

Of the participants who died (n = 24), 100% were underweight,
and 54% (13 of 24) were stunted, underweight, and wasted
(Figure 1). The proportion of children who survived but were
underweight at baseline was 85.25% (n = 347). The proportion of
deaths during follow-up was greater in those who were under-
weight vs normal weight, as determined by a Fisher exact test
(6.5% vs 0.0%, respectively, P = .035, Table 3).

A total of 3 separate multivariate Cox regression models were
constructed with continuous z scores for weight-for-age, height-
for-age, and BMI. All model criteria included age, hemoglobin at
screening, and sex. In the pooled analysis, in the model for weight-
for-age z score, the HR for death was <1, so a lower z score was
associated with an increased hazard of death (HR, 0.580; P =
.004; 95% CI 0.399-0.843; Table 4). In the therapy group alone,
the hazard of death with decreasing weight-for-age z score was
also significant (HR, 0.593; P = .032; 95% CI, 0.300-0.956).
However, height-for-age and BMI z scores were not associated
with death in the pooled analysis (P = .092 and P = .117,
respectively). When the treatment group (none, low- or moderate-
dose) group was added to the model for weight-for-age z-score,
there was no significant association with mortality (low dose:
p=0.168; moderate dose: p=0.843, supplemental Table 3), and
31) in the therapy (n = 220) and comparison groups (n = 211)

Therapy group (n = 220) Comparison group (n = 211) P value†

7.2 (5.5-8.9) 8.4 (6.4-10.7) <.001

114 (51.8) 110 (52.1) .948

2.4 (2.0-2.8) 2.8 (1.5-3.1) .004

206.5 (203.0-221.0) 130.0 (115.0-146.0) <.001

7.1 (6.5-7.6) 7.7 (6.8-8.4) <.001

114.5 (107.0-123.0) 121.5 (11.5-131.0) <.001

17.0 (15.0-20.0) 20.0 (16.0-24.0) <.001

13.4 (12.7-14.3) 13.5 (12.6-14.7) .280

−1.5 (1.3) −1.4 (1.3) .320

−2.2 (1.0) −2.1 (1.1) .432

−1.8 (1.2) −1.9 (1.3) .385

yurea therapy, and the comparison group was children with nonelevated transcranial Doppler

ss otherwise noted.
py and comparison group.
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Table 2. Baseline characteristics of the SPRING trial participants based on survival status at follow-up (n = 431)

Characteristics* Survived (n = 407) Died (n = 24) P value†

Age at enrollment, median (IQR) 7.7 (6.0-10.1) 7.5 (6.3-9.0) .778

Female 211 (51.8) 13 (54.2) .825

Total hemoglobin (g/dL), median (IQR) 7.3 (6.7-8.1) 7.2 (6.4-7.2) .547

White blood cell count (103/mm3), median (IQR) 13.5 (11.2-16.9) 14.1 (12.5-17.3) .580

Transcranial Doppler velocity at screening (cm/s),
median (IQR)

200.0 (130.0-206.0) 203.5 (146.3-219.0) .113

Height (cm) 118.5 (11.8) 115.1 (10.9) .168

Weight (kg) 19.2 (4.5) 17.3 (3.7) .038

BMI (kg/m2) 13.6 (1.5) 13.0 (1.6) .070

Height-for-age z score −1.5 (1.3) −1.8 (1.2) .186

Weight-for-age z score −2.1 (1.1) −2.6 (1.2) .016

BMI z score −1.9 (1.3) −2.2 (1.6) .161

IQR, interquartile range; SD, standard deviation.
The therapy group comprised of children with abnormal transcranial Doppler velocities on hydroxyurea therapy, and the comparison group was children with nonelevated transcranial Doppler

velocities.
*Mean (SD) for continuous variables and counts (percentages) for categorical variables, unless otherwise noted.
†χ2 test for counts, t test for means, Mann-Whitney U test for medians.
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the HR for weight-for-age z-score remained significant (HR =
0.577, p = 0.005).

The Kaplan-Meier curve demonstrates that underweight partici-
pants had lower survival during follow-up than those who were
normal weight (P = .043, Figure 2). The association with death
persisted when the weight-for-age z score was grouped by severity
into underweight categories as described in "Data collection and
definitions" above (supplemental Table 2, P = .016). Of the chil-
dren with severe underweight (weight-for-age z score <−3, 11.1%
(10 of 80) died during follow-up.
Underweight

WastedStunted

Underweight Only
13%

(3/24)

Underweight
+ Wasted

21%
(5/24)

Wasted
Only
0%

(0/15)

Stunted +
Wasted

0%
(0/24)

Stunted
Only
0%

(0/15)

Stunted +
Underweight

13%
(3/24)

Stunted +
Underweight

+ Wasted
54%

(13/24)

Figure 1. Venn diagram shows the overlap of stunted, underweight, and

wasted children at baseline for those who died during study follow-up

(n = 24). Stunted (height-for-age z score <−1.0), underweight (weight-for-age z

score <−1.0), and wasted (BMI z score <−1.0) were defined using z scores

calculated using the WHO growth references. The number and percentage of cases

in each division are reported. The zero cells indicate that all stunted and/or wasted

children were also underweight.
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In the subgroup analysis of only infectious disease mortality rather
than all-cause mortality, a Cox regression model was constructed
with the only significant covariate of weight-for-age z score.
Because of the small number of participants with infectious-related
deaths, the other covariates were not included. In the pooled
analysis for weight-for-age z score, the HR for death was 0.506
(P = .008, 95% CI 0.304-0.840, supplemental Table 4).

Discussion

Undernutrition and SCA are independent risk factors for death for
children in Nigeria, a country with an estimated 50% of the world’s
newborns with SCA at ~150 000 births per year.21 Although it is
well established that in younger children decreasing weight-for-age
z score is associated with death,11,14 to our knowledge, we have
demonstrated the benefit of routine anthropometric measures to
detect a modifiable risk factor for death in children with SCA, for
the first time. In a prospective cohort of 431 children with SCA
between 5 and 12 years of age, we demonstrated that a lower
weight-for-age z score was associated with a higher hazard of
death, and also that those simply being underweight (weight-for-
age z score <−1) had a greater hazard of death than those not
underweight. We also demonstrated that the relationship of
weight-for-age z score and hazard of death remained in only
infectious-related deaths.

Similar to children <5 years of age, we posit that underweight
children with SCA >5 years of age die because of the increased
incidence and even greater case fatality from infections.14,22 When
including all deaths and in the subgroup analysis of only deaths
attributable to infection, weight-for-age z score was predictive of
death. BMI z score was not predictive of death. BMI identifies
children with an acute decrease in weight16; whereas, severe
underweight identifies acute, chronic, or combined undernutri-
tion.13 Furthermore, given that children with SCA have lower
heights, with increasing deficits in height-for-age z score with
age,23-26 BMI may not optimally capture nutritional status. Another
13 JUNE 2023 • VOLUME 7, NUMBER 11



Table 3. Survival stratified by baseline undernutrition measures categorized as not undernourished (greater than or equal to —1 z score) or

undernourished (less than —1 z score) of the SPRING trial participants (n = 431) in the therapy (n = 220) and comparison groups (n = 211)

Nutrition characteristics

Therapy group (n = 220) Comparison group (n = 211) Combined population (n = 431)

Survived

(n = 205)

Died

(n = 15) P value*

Survived

(n = 202)

Died

(n = 9) P value*

Survived

(n = 407)

Died

(n = 24) P value*

Underweight .226 .360 .035

No (weight-for-age z score ≥−1) 27 (100.0) 0 (0.0) 33 (100.0) 0 (0.0) 60 (100.0) 0 (0.0)

Yes (weight-for-age z score <−1) 178 (92.2) 15 (7.8) 169 (94.9) 9 (5.1) 347 (93.5) 24 (6.5)

Stunting .779 .733 1.000

No (height-for-age z score ≥−1) 67 (94.4) 4 (5.6) 76 (95.0) 4 (5.0) 143 (94.7) 8 (5.3)

Yes (height-for-age z score <−1) 138 (92.6) 11 (7.4) 126 (96.2) 5 (3.8) 264 (94.3) 16 (5.7)

Wasting .554 .689 1.000

No (BMI z score ≥−1) 54 (91.5) 5 (8.5) 49 (98.0) 1 (2.0) 103 (94.5) 6 (5.5)

Yes (BMI z score <−1) 151 (93.8) 10 (6.2) 153 (95.0) 8 (5.0) 304 (94.4) 18 (5.6)

The therapy group comprised of children with abnormal transcranial Doppler velocities on hydroxyurea therapy, and the comparison group was children with nonelevated transcranial Doppler
velocities.
*Fisher exact test.
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disadvantage of the BMI measurement is the requirement of both
weight and height, a rate-limiting step for busy malnutrition treat-
ment programs that are often understaffed.12 Importantly, in the
SPRING study cohort, applying screening with weight-for-age z
score <−1 would not have missed any child who died. The
advantage of the weight-for-age z score as a screening measure
for undernutrition is the ability to have a single, quickly obtained,
and reproducible measure without the need for overly specialized
training associated with additional anthropometric measure-
ments.27 For these reasons, the Nigerian care team has imple-
mented weight-for-age z score <−1, as a screening measure for
undernutrition in at least 20 000 older children with SCA at the
Kano SPRING trial study sites.

As expected, our study has limitations. Our study was a secondary
data analysis of the nutritional status of participants from a clinical
Table 4. Baseline nutritional status z scores and risk of death

Model Variable

Therapy

HR 95% CI P

Model 1: weight-for-age z score Age 0.912 0.700-1.118

Female 1.244 0.431-3.592

Hemoglobin (g/dL) 1.343 0.679-2.656

Weight-for-age z score 0.593 0.300-0.956

Model 2: height-for-age z score Age 0.929 0.713-1.211

Female 1.450 0.509-4.133

Hemoglobin (g/dL) 1.275 0.640-2.543

Height-for-age z score 0.692 0.446-1.074

Model 3: BMI z score Age 0.992 0.770-1.277

Female 1.364 0.475-3.912

Hemoglobin (g/dL) 1.322 0.680-2.569

BMI z score 0.891 0.569-1.396

Multivariate Cox regression of factors associated with death among children with SCA in the SP
Multivariate Cox regression models included age, sex, and hemoglobin at screening. The thera

therapy, and the comparison group was children with nonelevated transcranial Doppler velocities
Nutritional status is classified into weight-for-age, height-for-age, and BMI z scores using the W

13 JUNE 2023 • VOLUME 7, NUMBER 11

v

trial designed for stroke prevention. However, all-cause-deaths and
death only in those with a history of fever or suspected infection
were associated with weight-for-age z score at P values < .01,
statistically significant after correcting for a secondary analysis.
Thus we believe our results are biologically plausible24,28 and more
likely to be a significant finding that will be replicated in future
studies because they meet our prestated threshold of P < .01.20

We cannot exclude a biological difference between those with
abnormal transcranial Doppler velocities receiving hydroxyurea and
those without abnormal transcranial Doppler velocities not
receiving hydroxyurea, although our regression models used rele-
vant biological covariates to control for known differences between
the 2 groups. Furthermore, the SPRING trial did not demonstrate
any difference in the mortality rates between the 2 groups, and in
our previous analysis we did not identify any relevant difference
between the 2 groups associated with mortality.7 We do not have
Comparison Combined population

value HR 95% CI P value HR 95% CI P value

.494 0.912 0.677-1.156 .546 0.886 0.729-1.076 .222

.687 0.839 0.215-3.266 .800 1.151 0.514-2.578 .733

.396 0.595 0.704-2.714 .190 0.873 0.546-1.396 .570

.032 0.610 0.321-1.158 .131 0.580 0.399-0.843 .004

.586 0.976 0.719-1.323 .875 0.916 0.756-1.111 .373

.487 0.669 0.178-2.507 .551 1.108 0.495-2.479 .804

.490 0.563 0.253-1.248 .157 0.864 0.535-1.396 .551

.101 0.950 0.547-1.650 .855 0.753 0.541-1.047 .092

.950 0.943 0.712-1.250 .684 0.936 0.777-1.128 .489

.564 0.970 0.238-3.963 .966 1.128 0.503-2.530 .771

.411 0.582 0.272-1.245 .163 0.840 0.527-1.339 .464

.615 0.629 0.386-1.026 .063 0.778 0.568-1.065 .117

RING Trial (n = 431). Separate models for height-for-age, weight-for-age, and BMI z scores.
py group comprised children with abnormal transcranial Doppler velocities on hydroxyurea
.
HO growth references.
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sufficient data to compare the growth trajectories of the children
who died vs survived. The higher loss to follow-up rate among
participants in the comparison group (8.6%) is a limitation. How-
ever, our loss to follow-up in the comparison group was only ~6%
higher than that of the therapy group, a proportion still considered
small. We were unable to include direct measures of socioeco-
nomic status; interviews during our previous studies revealed that
mothers could not accurately assess household income. We could
not analyze whether the participants were siblings, although none
of the participants who died were related. Despite these limitations,
the opportunity to identify children at risk for near-term death based
on underweight status is within the scope of standard care for all
children and should be emphasized as a potentially modifiable risk
factor for death. Our findings should reinforce the importance of
detecting, monitoring, and treating underweight older children with
SCA living in a low-resource setting.

A perceived limitation is that our results occur in an economically
distressed portion of Nigeria; however, ~40% of the country lives
under the poverty line of 1.00 US dollar per day.29 Furthermore, in
2020, most regions of Africa were economically stressed, and
growth impairment is a common and expected comorbidity in
children with SCA living in Africa,26 the continent where 75% of all
children with SCA are born.1 Despite the significant undernutrition
prevalence in Africa30 and the well-established fact that growth
impairment and SCA are common comorbidities in Africa, to our
knowledge, limited investigation has addressed the impact of
undernutrition on the increased incidence of death in children with
SCA younger or older than 5 years of age.

The most important finding from our prospective cohort study is that
the weight-for-age z score is a reproducible and simple clinical
measure that can screen older children with SCA at risk for death in
a low-resource setting. Additional studies are needed to elucidate
why being underweight is associated with death in older children
2344 KLEIN et al
with SCA. Future studiesmust determine evidence-based strategies
to prevent or mitigate undernutrition in older children with SCA.
Results of the study have changed the clinical management in older
children with SCA in northern Nigeria. Now, older children with
weight-for-age z score <−1 to −2 receive nutrition counseling;
children with weight-for-age z scores <−2 are referred to the nutri-
tion clinic for nutritional counseling and treatment according to local
guidelines for moderate and severe acute malnutrition.
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