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Key Points

• Granulocytic MDSCs
attenuate immune
marrow failure in a
minor histocompatibility
antigen mismatched
murine model.

• T-cell inhibition and
hematopoietic cell
preservation are key
mechanisms of
granulocytic MDSC
therapy.
8861/blooda_adv-
Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells that originate in the

bone marrow (BM) and have immunoregulatory functions. MDSCs have been implicated in

the pathogenesis of several autoimmune diseases but have not been investigated in immune

aplastic anemia (AA). We examined the roles of granulocytic-MDSCs (G-MDSCs) in murine

models of human AA and BM failure (BMF). As both prophylaxis and therapy, BM-derived

G-MDSCs improved pancytopenia and BM cellularity and suppressed BM T-cell infiltration

in major histocompatibility complex (MHC)-matched C.B10 BMF mice. These effects were

not obtained in the MHC-mismatched CByB6F1 AA model, likely because of MHC

disparity between G-MDSCs and donor T cells. Single-cell RNA sequencing demonstrated

that G-MDSCs downregulated cell cycle–related genes in BM-infiltrated T cells, consistent

with suppression of T-cell proliferation by G-MDSCs through reactive oxygen species

pathways. Clearance of G-MDSCs in the MHC-mismatched CByB6F1 model using anti-Ly6G

antibody facilitated T cell–mediated BM destruction, suggesting an intrinsic

immunosuppressive property of G-MDSCs. However, the same anti-Ly6G antibody in the

MHC-matched C.B10 AA model mildly mitigated BMF, associated with expansion of an

intermediate Ly6G population. Our results demonstrate that G-MDSC eradication and

therapeutic efficacy are immune context-dependent.
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Introduction

Aplastic anemia (AA) is the stereotypical bone marrow failure (BMF) syndrome, featuring characteristic
marrow hypocellularity and peripheral blood pancytopenia.1 A significant role of immune dysfunction in
AA pathology is inferred from many clinic observations of hematologic recovery following immuno-
suppressive therapy (IST),2-5 as well as from animal models of AA in which infusion of allogeneic
lymphocytes incites massive T-cell expansion and leads to marrow destruction.6-9

Although it is generally believed that myeloid-derived suppressor cells (MDSCs) are immature cells
derived from myeloid progenitors, recent studies provide evidence that mature neutrophils may also
transform to MDSCs when stimulated by specific cytokines.10,11 MDSCs are categorized based on
their monocytic (M-MDSC) and granulocytic (G-MDSC) origins.12-14 In mice, these 2 MDSC subsets
differ in cell surface markers, with CD11b+Ly6ChighLy6G− for M-MDSCs and CD11b+Ly6ClowLy6G+

for G-MDSCs, as well as in functional activities and interactions with other cellular components.14 The
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pathophysiologic role of MDSCs is illustrated in the tumor micro-
environment, where MDSCs accumulate and suppress host
immune function, allowing cancer cell growth and metastasis.15-18

In addition, MDSCs play important roles in autoimmune diseases
such as type 1 diabetes,19,20 arthritis,21,22 experimental autoim-
mune encephalomyelitis (EAE),23-27 inflammatory bowel disease
(IBD),28-31 and graft-versus-host disease (GVHD).11,32-36 Because
of the autoimmune pathophysiology of AA and the immunosup-
pressive property of MDSCs, we reasoned that MDSCs might be
involved in the pathophysiology of AA and potentially be a cell
therapy, as they have in other autoimmune diseases such as EAE,
IBD, and GVHD. We focused on G-MDSCs in our murine models,
which are more consistently described as having immunosup-
pressive functions, whereas M-MDSCs have been reported to have
conflicting roles in autoimmunity.23,24,37

Materials and methods

Animals and induction of AA and BMF

Inbred C57BL/6 (B6) and BALB/cBy (BALB), congenic C.B10-
H2b/LilMcd (C.B10), and hybrid (BALB/cBy × C57BL/6)F1
(CByB6F1) mice were from the Jackson Laboratory (Bar Harbor,
ME). Mice were bred and maintained in National Institutes of Health
animal facilities under conditions of standard care and nutrition and
were used at 2 to 5 months of age. All animal studies were
approved by the Animal Care and Use Committee at the National
Heart, Lung, and Blood Institute.

Bone marrow failure was induced using previously described
methods.8,38 Briefly, inguinal, axillary, and lateral axillary lymph
nodes (LNs) were collected from B6 donor mice, homogenized
using a mini-tissue grinder (Daigger & Company, Vernon Hills, IL) in
RPMI 1640 media, filtered through 90-μM nylon mesh (Small Parts,
Miami Lake, FL), and counted by a Vicell counter (Beckman
Coulter, Miami, FL). To induce AA, we injected B6 LN cells into sex-
matched but minor-histocompatibility (minor-H)–mismatched
C.B10 (B6⇒C.B10 LN-cell infusion model, minor H–mismatched
AA model) or major histocompatibility complex (MHC)-
mismatched CByB6F1 (B6⇒CByB6F1 LN-cell infusion model,
MHC-mismatched AA model) recipients, respectively, at 3 to 5 ×
106 cells per recipient through lateral tail vein. All recipients
received 5 Gy total body irradiation (TBI) from a Gammacell 40
(K2K 1 × 8; MDS Nordion, Ontario, Canada) 4 to 6 hours before
LN cell infusion. Recipient mice were bled and killed at days 7 to 14
after LN infusion to collect tissues for various measurements.

G-MDSC enrichment and administration

BM cells were extracted from tibiae and femurs of B6, C.B10,
CByB6F1, and BALB donor mice, incubated with Ly6G microbe-
ads (Miltenyi Biotec, Auburn, CA), and passed through a magnetic
column to collect Ly6G+ cells, which were confirmed by flow
cytometry to contain 94% to 97% cells with the CD11b+Ly6-
G+Ly6Clow phenotype characteristic for G-MDSCs, and these
cells suppressed T-cell proliferation in a dose-dependent fashion
in vitro (supplemental Figure 1).

In the minor H–mismatched AA model, G-MDSCs enriched from
BM of C.B10 donors were infused into C.B10 recipients at 10 ×
106 cells/recipient, at the same time of B6 LN cell infusion (pro-
phylaxis) or at day 3 after B6 LN cell infusion (therapy). In a specific
74 FENG et al
study, we enriched G-MDSCs from male C.B10 donors and
infused them into female C.B10 recipients at the same time of LN
cell injection from female B6 donors. Recipients were assessed at
day 14 after LN cell infusion. In a separate experiment, we induced
BM suppression in C.B10 mice with 5Gy TBI without LN infusion,
IV injected 10 × 106 G-MDSCs to each mouse and evaluated the
mice at 14 days after irradiation.

In the MHC-mismatched AA model, we obtained G-MDSCs from
B6, BALB, and CByB6F1 donors and infused 10 × 106 G-MDSCs
to each CByB6F1 recipient at the time of B6 LN cell infusion.
Recipient mice were assessed at day 14 after LN cell infusion.

Anti-Ly6G antibody treatment

Ultra-LEAF purified rat anti-mouse Ly6G antibody (clone 1A8) were
obtained from Biolegend (San Diego, CA) and were diluted in
normal saline (Nurse Assist) to 1 mg/mL. In both minor H–
mismatched and MHC-mismatched AA models, anti-Ly6G anti-
body was injected intraperitoneally into C.B10 or CByB6F1
recipients at 500 μg/mouse 1 hour after LN cell infusion. Recipient
mice were assessed at days 13 to 14.

Cell counts and flow cytometry

At the end of each experiment, blood was taken from the retro-
orbital sinus of each recipient mouse into Eppendorf tubes with
ethylenediaminetetraacetic acid as an anticoagulant. Complete
blood counts were performed using an Element HT5 hematology
analyzer (Heska Corporation, Loveland, CO) to measure white
blood cells (WBCs), neutrophils (NEU), red blood cells (RBCs),
hemoglobin (HGB), and platelets (PLTs). Mice were killed by CO2.
BM cells were extracted from tibiae and femurs, filtered through
90-μM nylon mesh, and counted by a Vi-Cell counter (Beckman
Coulter, Miami, FL) to estimate the total BM cells per mouse,
assuming that 2 tibiae and 2 femurs contain 25% of total BM cells.

Blood and BM cells were stained with specific antibody mixtures
for flow cytometry. Monoclonal antibodies for murine CD3 (clone
145-2C11), CD4 (clone GK 1.5), CD8 (clone 53-6.72), CD11b
(clone M1/70), CD95 (clone SA367H8), CD178 (clone MFL3),
Ly6C (clone HK1.4), Ly6G (clone 1A8), Sca-1 (clone D-7), CD117
(c-Kit, clone 2B8), interferon γ (IFN-γ; clone XMG1.2), tumor
necrosis factor α (TNF-α; clone MP6-XT22), and Ki67 (clone
16A8) were all from Biolegend (San Diego, CA). Antibodies were
conjugated to Alexa Fluor 700 (AF-700), fluorescein isothiocyanate
(FITC), phycoerythrin (PE), Percp-Cy5.5, PE-cyanin 5 (PE-Cy5),
PE-cyanin 7 (PE-Cy7), allophycocyanin, allophycocyanin-Cy7
(APC-Cy7), pacific blue, brilliant violet 421 (BV421), or brilliant
violet 711 (BV711). PE-labeled Annexin V and 7AAD dye were
purchased from BD Biosciences (San Diego, CA). Stained cells
were acquired using BD FACSCanto II and BD LSRFortessa flow
cytometers operated by FACSDiva software (Becton Dickson, San
Diego, CA), and flow data were analyzed using FlowJo software.

Histology

Sterna were fixed in 10% neutral buffered formalin, sectioned at 5
μm thickness, and stained with hematoxylin and eosin (VitroVivo
Biotech LLC, Rockville, MD). Slides were examined under a Zeiss
Axioskop2 plus microscope with images captured at ×20 magni-
fication using a Zeiss AxioCam HRC camera (Carl Zeiss Micro-
Imaging GmbH, Jena, Germany).
10 JANUARY 2023 • VOLUME 7, NUMBER 1
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Cell culture in vitro

T-cell proliferation was measured by carboxyfluorescein succini-
midyl ester (CFSE) dye dilution as reported previously.39 In brief,
LN cells from B6 mice were first labeled with CSFE dye and
stimulated with phorbol 12-myristate 13-acetate (PMA) and ion-
omycin at concentrations of 50 ng/mL and 500 μM, respectively,
and then were cultured with G-MDSCs or MDSC subsets at
different ratios for 5 days at 37◦C with 5% CO2 in complete RPMI
1640 medium (Life Technologies) supplemented with 100 U/mL
penicillin, 100 U/mL streptomycin, 292 μg/mL L-glutamine, and
10% fetal bovine serum (Life Technologies). In some experiments,
N-acetylcysteine (1 mM; Sigma, St. Louis, MO) or anti-mouse PD-
L1 antibody (10 μg/mL; BioLegend) was added to LN cell culture.
Cells were harvested and stained with CD4 and CD8 antibodies
and analyzed for CFSE dye dilution using a BD LSRFortessa flow
cytometer.

Total-Seq

BM cells from minor H–mismatched C.B10 AA mice treated with
or without G-MDSCs were obtained at 14 days and then barcoded
using “TotalSeq C hash-tag” oligonucleotides (Biolegend). Hash-
tagged samples were pooled and stained with Total-seq antibodies
(various cell surface markers conjugated with oligonucleotides,
Biolegend) per the manufacturer’s protocol (https://www.
biolegend.com/en-us/protocols/totalseq-b-or-c-with-10x-feature-
barcoding-technology). Stained cells were encapsulated for
single-cell reverse transcription using the Chromium Single-Cell
V(D)J Reagent Kit v1.1 (10X Genomics, Pleasanton, CA) as per
the manufacturer’s protocol (https://assets.ctfassets.net/an68im7
9xiti/6se7DVQQ0xSCVYp4eQd4Ld/9b822ceb045ec7b20df633
cddfe3021f/CG000208_ChromiumNextGEMSingleCellV_D_J_R
eagentKit_v1.1_FeatureBarcodingtechnology_RevD.pdf). Single
cell RNA-seq libraries (including 5′ gene expression libraries, V(D)J
enriched libraries, and cell surface protein libraries) were pooled
and sequenced on an Illumina Novaseq System (Illumina, San
Diego, CA) with a customized paired end, single indexing (26/8/0/
98-bp) format according to 10X Genomics recommendations. Raw
sequencing data were processed with the Cell Ranger Software
(Version 6.0.0), using the cellranger multi workflow and mm10
references for gene expression and totalSeq antibody barcode
sequences, to generate gene-cell and protein-cell matrices for each
sample for further analysis. In total, after removing the cell barcode
with <500 genes, 1041 to 3435 and 2845 to 5268 cells were
captured from BMF control mice and G-MDSC–treated mice,
respectively, with 6609 and 6592 mean reads per cell and 1215
medium genes detected per cell. Genes with at least 1 unique
molecular identifier count detected in at least 1 cell were used
(filtering data). The top 1000 most variable genes were identified
based on their mean and dispersion (variance/mean). Thirty-nine
graph-based clusters of cells were visualized by 2-dimensional
t-distributed stochastic neighbor embedding (tSNE) in Seurat4
(resolution 2). In each cluster, the mean expression of each gene was
calculated across all cells to identify genes that were enriched in a
specific cluster. Each gene from the cluster was compared with the
median expression of the same gene from cells in all other clusters.
We downloaded raw data of GSE122467 and processed data
(https://nicheview.shiny.embl.de) for signature gene identification.40

Cell types were assigned to each cluster based on significance in
overlap between signature genes and cluster-specific genes, as
10 JANUARY 2023 • VOLUME 7, NUMBER 1
well as well-established surface markers. FindMarkers function in
Seurat were used to identify differentially expressed genes between
BMF+G-MDSC mice and BMF control mice. Gene set enrichment
analysis was performed to identify enriched gene sets of all genes
with differential expression (based on average log fold change).
Single cell gene expression data were submitted to National Center
for Biotechnology Information Gene Expression Omnibus (GEO
accession number GSE193421).

Statistics

Data were analyzed using JMP (SAS Institute) or with GraphPad
Prism statistical software with standard variance analyses followed
by multiple comparisons. Results are shown as means with stan-
dard errors. Statistical significance was declared at P < .05, P <
.01, P < .001, and P < .0001 levels.

Results

G-MDSCs suppress T-cell proliferation in vitro

To characterize MDSC subtypes, we collected BM cells from
healthy C.B10 mice and identified BM MDSCs by flow cytometry.
There were 3 subsets: Ly6G+Ly6Clow, Ly6G+Ly6C−, and
Ly6G-Ly6C+ cells. Most Ly6G+Ly6Clow cells were G-MDSCs and
about half of Ly6G-Ly6C+ cells were M-MDSCs based on surface
marker expression, whereas Ly6G+Ly6C− cells were not MDSCs
(Figure 1A). When these cell populations were sorted by flow
cytometry and added to stimulated CFSE-labeled T cells from B6
mice, Ly6G+Ly6Clow cells (G-MDSCs) suppressed proliferation of
both CD4 and CD8 T cells, but Ly6G+Ly6C− cells had no effect
and Ly6G−Ly6C+ cells (M-MDSCs) further stimulated T-cell pro-
liferation compared with T cells alone (Figure 1A). This result
confirmed suppression of T-cell proliferation to be specific to G-
MDSCs in the Ly6G+Ly6Clow cell subset.

G-MDSCs from C.B10 donors attenuate BMF in the

minor H–mismatched AA model

We then examined the role of G-MDSC in vivo in the minor H–
mismatched AA model by injecting LN cells from B6 donors into
sublethally irradiated C.B10 recipients. G-MDSCs enriched from
the marrow of C.B10 donors were infused into AA mice at the time
of LN cell injection as a prophylaxis (Figure 1B). Mice infused with
G-MDSCs had much higher WBCs, RBCs, PLTs, and total BM
cells, with decreased BM CD4 and CD8 T-cell infiltration at day 14,
compared with BMF controls (Figure 1C). Sternal sections showed
that G-MDSC administration improved BM cellularity (Figure 1D).
These results indicated an active role of G-MDSCs in protecting
BM cell targets from immune-mediated destruction. Furthermore,
the preventive effects of G-MDSCs were apparent when donor and
recipient differed by sex, as with infusion of G-MDSCs from male
C.B10 donors into female recipients in the B6⇒C.B10 LN cell
infusion AA model (supplemental Figure 2).

We next examined the therapeutic role of G-MDSCs in immune-
mediated BMF by injecting G-MDSCs at day 3 after LN cell infu-
sion in the same minor H–mismatched AA model (Figure 2A).
Relative to BMF controls, G-MDSC–treated mice had increased
WBCs, RBCs, HGB, PLTs, and total BM cells at day 14 after model
initiation, relative to untreated BMF mice (Figure 2B). Thus, G-
MDSCs effectively alleviated pancytopenia and BM hypoplasia
when administrated as a cell therapy. G-MDSCs also suppressed
G-MDSCS IN BONE MARROW FAILURE 75
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both CD4 andCD8 T-cell infiltration into BM (Figure 2C), decreased
Fas expression and Annexin V binding of residual BM cells (BM cells
excluding T cells; Figure 2D), and suppressed intracellular levels of
IFN-γ and TNF-α, and cell proliferation protein Ki67, in BM CD4 and
CD8 T cells relative to control BMF mice (Figure 2E). By linear
regression, G-MDSCs were positively correlated with WBC, RBC,
PLT, and residual BMcounts and negatively correlatedwithBMCD4
and CD8 T-cell frequencies (Figure 2F).

To investigate whether G-MDSCs improved WBC, RBC, PLT, and
total BM counts directly rather than by suppressing T cells, we
76 FENG et al
created an irradiation-mediated BM suppression model without LN
cell infusion (Figure 3A). In this model, sublethal TBI caused
decreased WBCs, NEUs, RBCs, and PLTs relative to normal mice
without TBI (Figure 3B). Treatment with G-MDSCs improved
WBCs and RBCs slightly, but increased NEUs and PLTs signifi-
cantly, compared with TBI mice without G-MDSCs (Figure 3B).
G-MDSCs treatment slightly increased total BM cells (Figure 3B)
and the recovery of CD117+Sca-1+Lin− (KSL) cells (Figure 3C)
and significantly increased the proportion and total number of
myeloid progenitors (CD117+Scal-1−Lin−; Figure 3C). Thus,
G-MDSCs not only suppressed T cell–mediated hematopoietic
10 JANUARY 2023 • VOLUME 7, NUMBER 1
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binding of residual BM cells (RBMs). (E) G-MDSCs suppressed intracellular levels of IFN-γ and TNF-α, as well as cell proliferation protein Ki67 in BM CD4 and CD8 T cells relative
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destruction in immune-mediated BMF but also preserved hemato-
poietic progenitor cells, especially myeloid progenitors, directly
from irradiation-induced hematopoietic injury.

TotalSeq was applied to the therapy model of BMF to simulta-
neously detect surface proteins and mRNA expression at the single
cell level among BM mononuclear cells. We observed increased
proportions of myeloid cells and reduced proportions of T cells in
BM cells from G-MDSC–treated mice, based on cell surface
markers and marker genes (Figure 4A), consistent with flow
cytometry results. In the BM infiltrated T-cell population, the most
prominent change was decreased expression of genes related to
cell cycle (Figure 4B-C), G2M checkpoint (Figure 4D;
supplemental Figure 3A), and E2F targets (Figure 4E;
supplemental Figure 3B) pathways in BM infiltrated T cells from G-
MDSC–treated mice compared with BMF control mice, consistent
with suppression of T-cell proliferation by G-MDSCs. Many genes
were shared in these pathways (Figure 4B; supplemental
Figure 3A-B) including Cdk1, Cdk4, Top2A, Mki67, and Ezh2.
Top2A was the most suppressed gene. TOP2A and Ki67 are 2
common markers of cell proliferation.41,42 Of note, reduced gene
expression of Mki67 detected by single-cell RNA sequencing
(supplemental Figure 3A-B) was consistent with the decreased
protein levels of Ki67 by flow cytometry (Figure 2E). Production of
reactive oxygen species (ROS) and reactive nitrogen species is the
main mechanism used by G-MDSCs to suppress T-cell prolifera-
tion.43 In our single cell RNA sequencing data, some genes
78 FENG et al
involved in the ROS metabolic process including Arg2, Tspo, Rac1,
and Hsp90aa were increased in non-T cells from G-MDSC–

treated animal samples, suggesting this mechanism of action.
When activated T cells were co-cultured with G-MDSCs in the
presence or absence of ROS inhibitor N-acetylcysteine, inhibition
of ROS production reversed G-MDSCs’ suppression of T-cell
proliferation, whereas checkpoint blockade by PD-L1 antibody had
no effect (Figure 4F). Our in vitro assay confirmed the involvement
of the ROS pathway in G-MDSC–mediated T-cell suppression.

Eradication of host G-MDSCs accelerates BMF in the

MHC-mismatched AA model

We further investigated the role of G-MDSCs in murine AA and
BMF with antibody-mediated cell depletion. In the MHC-
mismatched B6⇒CByB6F1 LN cell infusion AA model, recipient
mice received intraperitoneal injection of anti-mouse Ly6G anti-
body to deplete G-MDSCs (Figure 5A). At day 13 after LN infusion,
we confirmed by flow cytometry near total clearance of Ly6G+ cells
in the BM of antibody-injected animals (Figure 5B). We observed
worsened neutropenia, lymphopenia, anemia, thrombocytopenia,
and BM hypoplasia along with increased BM CD4 and CD8 T-cell
infiltration in anti-Ly6G antibody-treated BMF mice compared with
control BMF mice without antibody injection (Figure 5C). These
results indicate that anti-Ly6G antibody facilitated T cell–mediated
BM destruction through eradication of G-MDSCs in MHC-
mismatched AA mice.
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Anti-Ly6G antibody mildly mitigates BMF in minor

H–mismatched C.B10 recipients by expansion of an

intermediate Ly6G population

We next injected the same 1A8 anti-Ly6G antibody into C.B10
mice in the B6⇒C.B10 LN cell infusion model (Figure 6A). Sur-
prisingly, injection of the antibody improved PLTs and reduced BM
10 JANUARY 2023 • VOLUME 7, NUMBER 1
CD8 T-cell frequency without change in total BM cell recovery,
suggesting a mild protective role of anti-Ly6G antibody in this minor
H–mismatched AA model (Figure 6B-C), which contrasted with the
destructive effects of anti-Ly6G antibody in the MHC-mismatched
CByB6F1 AA model (Figure 5). In these experiments, the
discrepancy between the 2 models (MHC-mismatched
B6⇒CByB6F1 vs minor H–mismatched B6⇒C.B10) appears to
G-MDSCS IN BONE MARROW FAILURE 79
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be due to differential G-MDSC modulation following anti-Ly6G
antibody injection: in CByB6F1 animals, anti-Ly6G antibody treat-
ment eradicated marrow G-MDSC (Figure 5B), but in the C.B10
model, anti-Ly6G antibody promoted generation of a new popula-
tion of identical Ly6ClowCD11b+ phenotype, with intermediate
Ly6G expression (Figure 6D). This intermediate Ly6G cell popu-
lation was present in the BM after anti-Ly6G Ab injection in the C.B
10 model but not in the CByB6F1 model. When these intermediate
Ly6G+ cells were isolated by microbeads and added to stimulated
T cells to assay for immunosuppressive function in vitro, they
suppressed the proliferation of both CD4 and CD8 T cells, similar
to the Ly6Ghigh population (Figure 6E).
10 JANUARY 2023 • VOLUME 7, NUMBER 1
G-MDSCs exert mild to no effect on attenuation of

marrow failure in the MHC-mismatched AA model

To determine whether the therapeutic efficacy of G-MDSCs in
BMF occurred in a different strain combination, we enriched G-
MDSCs from CByB6F1 donor mice and infused them into
CByB6F1 recipients in the MHC-mismatched B6⇒CByB6F1 AA
model at the time of B6 LN injection (Figure 7A). At day 14, G-
MDSC–treated mice did not show improvement in pancytopenia or
BM cellularity compared with control BMF mice, and BM T-cell
infiltration appeared to be increased (Figure 7B). We speculated
that failure of G-MDSCs to protect CByB6F1 recipient mice was
due to the MHC disparity between B6 LN (H2b/b) and CByB6F1
G-MDSCS IN BONE MARROW FAILURE 81
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G-MDSCs (H2b/d), which would stimulate a stronger immune
response between host tissue and donor T cells. To test our
hypothesis, we isolated G-MDSCs from BM of B6 (H2b/b) and
BALB (H2d/d) donors and injected them into CByB6F1 recipient
mice at the initiation of BMF (Figure 7C). At day 14, B6-derived G-
MDSCs (of the same MHC as B6 LN)-treated mice had higher
NEU counts and lower Fas expression in residual BM cells than did
the other 2 groups, whereas BALB-derived G-MDSC–treated mice
had worse blood counts and more T-cell infiltration in BM
82 FENG et al
(Figure 7D). These results suggest that MHC disparity between G-
MDSCs and effector T cells might, at least partly, affect the efficacy
of G-MDSC–mediated immunosuppression.

Discussion

To our knowledge, ours is the first study exploring G-MDSCs in a
well-established murine model of immune-mediated BMF. We
observed that G-MDSCs were effective in MHC-matched setting,
10 JANUARY 2023 • VOLUME 7, NUMBER 1



B6

CByB6F1
Ly6G cells

5Gy TBI

5Gy TBI

CByB6F1 CB1yB6F1

BMF BMF+Ly6G cells

10�106
3–5�1063–5�106

H2b/b

H2b/d

H2b/d

H2b/d

BMF
CByB6F1

5 Gys 5 Gys 5 Gys

BMF+Ly6G
cells-B6

CByB6F1

BMF+Ly6G
cells-BALB
CByB6F1

H2b/d
H2b/d H2b/d

H2b/b

Ly6G BM cells Ly6G BM cells

H2b/b H2d/d

BALBB6B6 LN

5�106

5�10 6 5�10 6

10�106 10�106

0
BMF BMF+Ly6G

cells

1

2

3 *

10
9 /L

WBC

BMF BMF+Ly6G
cells

0

5

10

15

10
12

/L

RBC

BMF BMF+Ly6G
cells

0

500

1000

1500

10
9 /L

PLT

BMF BMF+Ly6G
cells

0

200

400

600

10
6

BM#

BMF BMF+Ly6G
cells

0

20

40

60

%

CD8

BMF BMF+Ly6G
cells

0

2

6

4

10

8

%

CD4

0.0

0.2

0.4

0.6

0.8
WBC

BM
F

B6 Ly
6G ce

lls

BALB
 Ly

6G ce
lls

10
9 /L

0

50

100

150

200
BM#

BM
F

B6 Ly
6G ce

lls

BALB
 Ly

6G ce
lls

10
6

0

5

10

15
CD4

BM
F

B6 Ly
6G ce

lls

BALB
 Ly

6G ce
lls

%

0

10

20

30

40
CD8

BM
F

B6 Ly
6G ce

lls

BALB
 Ly

6G ce
lls

%

0

10

20

30

40
* *

Fas% RBM

BM
F

B6 Ly
6G ce

lls

BALB
 Ly

6G ce
lls

%

0.00

0.05

0.10

0.15

0.20 ** **
NEU

BM
F

B6 Ly
6G ce

lls

BALB
 Ly

6G ce
lls

10
9 /L

0

2

6

4

8

10
RBC

BM
F

B6 Ly
6G ce

lls

BALB
 Ly

6G ce
lls

10
12

/L

0

50

100

150

200
PLT

BM
F

B6 Ly
6G ce

lls

BALB
 Ly

6G ce
lls

10
9 /L

A

B

D

C

Figure 7. G-MDSCs exert mild to no effect on attenuation of immune-mediated BMF in MHC-mismatched CByB6F1 recipients. (A) G-MDSC treatment of

murine BMF in CByB6F1 model. BM G-MDSCs were isolated from CByB6F1 donor mice and were injected to MHC-mismatched CByB6F1 model at 10 × 106 G-MDSCs/

mouse (BMF+Ly6G cell) at the time of B6 mice-derived LN cell infusion. (B) G-MDSCs from CByB6F1 donor mice (n = 14) did not improve pancytopenia and BM cellularity

compared with control BMF mice (n = 12), even increased T-cell infiltration in BM. (C) BM G-MDSCs were isolated from B6 or BALB donor mice and were injected into

MHC-mismatched CByB6F1 model at 10 × 106 G-MDSCs/mouse (BMF+Ly6G cells) at the time of B6-derived LN cell infusion. (D) B6-derived G-MDSCs (MHC-matched with

B6 LN, n = 5) showed mild improvement of neutropenia and BM cellularity and decreased Fas expression in residual BM cells (RBM) in CByB6F1 recipient mice at day 14. BALB-

derived G-MDSCs (MHC-mismatched with B6 LN, n = 6) did not show any improvement of BMF compared with control mice (n = 9). Data are shown as means with standard

errors. *P < .05; **P < .01.

10 JANUARY 2023 • VOLUME 7, NUMBER 1 G-MDSCS IN BONE MARROW FAILURE 83

D
ow

nloaded from
 http://ashpublications.net/bloodadvances/article-pdf/7/1/73/2028861/blooda_adv-2022-007254-m

ain.pdf by guest on 11 June 2024



D
ow

nloaded from
 http://ashpublications.net/bloodadvances/article-pdf/7/1/73/2028861/blooda_adv-2022-007254-m

ain.pdf by guest on 11 June 2024
but less so when MHC mismatched between donor and host
animals.

The primary mechanism of T-cell suppression by G-MDSCs is pro-
duction of ROS and reactive nitrogen species.43 We confirmed that
inhibition of ROS reversed the suppressive effects of G-MDSCs on
T-cell proliferation. Our single-cell RNA sequencing data demon-
strate that G-MDSCs suppressed cell cycle, G2M checkpoint, and
E2F pathways in T cells, the consequence of whichwas the inhibition
of T-cell proliferation. Among genes decreased in expression, Cdk1
andCdk4 are critical in controlling cell cycle and cell proliferation.44

The decreased expression of Top2A and Mki67 at the mRNA level
and of Ki67 at protein level confirmed the suppression of T-cell
proliferation by G-MDSCs. EZH2 promotes the survival of differen-
tiated effector T cells through inhibition of numerous apoptosis
pathways, including FAS, TNFR1, DR4, and MLK1 signaling.45

EZH2-deficient mice have decreased survival after intraperitoneal
Toxoplasma gondii infection, associated with decreased IFN-
γ–producing CD4+ T cells.46 These observations suggest that
EZH2 is important in the generation of T effector cell responses
in vivo, and the defects observed in EZH2-deficient mice attributable
to decreased proliferation of EZH2 effector T cells. EZH2 was crit-
ical for the survival and proliferation of alloantigen reactive T cells and
the development of GVHD in a MHC-mismatched B6 anti-BALB/C
mousemodel; IFN-γ–producing alloreactive T cells were significantly
diminished in the absence of EZH2.47

Clearance of G-MDSCs with anti-Ly6G antibody facilitated T cell–
mediated BM destruction in CByB6F1 mice in the MHC-
mismatched AA model, further evidence of a protective effect of
G-MDSCs. Efficient Ly6G+ cell eradication in CByB6F1 mice by
1A8 clone anti-Ly6G antibody is consistent with an early report in
B6D2F1 mice, in which the 1A8 clone of anti-Ly6G antibody was
introduced as an alternative to the anti–Gr-1 antibody (clone RB6-
8C5) for specific depletion of neutrophils while preserving mac-
rophages and other non-neutrophil Gr-1+ cells.48 In the C57BL/
6⇒BALB/c allo-HCT transplantation models, however, injection of
the same 1A8 anti-Ly6G antibody into BALB/c mice improved
animal survival from GVHD responses in multiple experimental
settings,32 similar to the observation in our minor H–mismatched
AA model, in which anti-Ly6G antibody attenuated BM destruc-
tion. The protective effect of anti-Ly6G antibody in the minor H–
mismatched setting was not the result of clearance of G-MDSCs
but instead expansion of an intermediate Ly6G+ population.
Despite differential effects on Ly6G+ cells at the same dose of anti-
Ly6G antibody in C.B10 and CByB6F1 mice, observations from
both models support a protective role of G-MDSCs, attenuating
immune-mediated BMF.

The ineffectiveness of G-MDSCs in the MHC-mismatched AA
model agrees with findings from earlier reports: when MDSCs are
transferred to recipients of allogeneic donor hematopoietic grafts,
they are exposed to the intense inflammatory environment associ-
ated with acute GVHD that directly undermines MDSC immuno-
suppressive activity.33 In another GVHD model, neutrophils in the
ileum migrated to mesenteric LN, where they colocalized with T
cells and presented antigen on MHC-II.11 In the AA and BMF
model, MHC-II is also upregulated and co-localized with Fas on BM
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hematopoietic cells, which could potentiate apoptotic destruction
of marrow targets.49 Although G-MDSC exerted different immu-
nosuppressive activity in the minor H–mismatched and MHC-
mismatched BMF models, whether MHC directly interferes with
G-MDSC functionality needs further investigation. Of interest, G-
MDSCs also acted directly to preserve HSPCs, especially myeloid
progenitors, and augmented hematopoietic recovery after
irradiation-induced hematopoietic injury. However, such direct
action likely is insufficient to overcome MHC disparity in the MHC-
mismatched BMF model.

We demonstrate the immunosuppressive role of G-MDSCs in
attenuating immune-mediated AA in the MHC-matched C.B10
model, as occurs in other animal models of human autoimmune
disease.21,50,51 B6⇒CByB6F1 LN cell infusion is a heterozygous
MHC mismatch, in which B6 mice carry the H2b/b allele and
CByB6F1 mice the H2b/d allele.7 This mismatch does not exist with
B6⇒C.B10 LN cell infusion, as both B6 and C.B10 mice are MHC
matched, displaying the same H2b/b allele.8 The immunogenicity of
the B6⇒C.B10 LN cell infusion model arises from mismatch at
multiple minor H antigens, H60 being dominant.52-55 Immune
disparity between B6 and C.B10 mice also involves other minor
antigens such as H4, H7, H13, and H28.56 The attenuation of
marrow failure by infusion of male G-MDSCs into female C.B10
BMF recipients showed that G-MDSC immunosuppression could
overcome Y antigen disparity.

In conclusion, G-MDSCs have an active role in protecting hema-
topoiesis from T cell mediated destruction when MHC is matched,
but not when MHC is mismatched, in murine models of BMF: G-
MDSC therapeutic efficacy is immune context-dependent.
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