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TO THE EDITOR:

First description of the t(3;17)(q27;q21)/IGF2BP2::LSM12
translocation in marginal zone lymphoma
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Marginal zone lymphoma (MZL) is a rare group of indolent non-Hodgkin lymphomas that originate from
the marginal zone of lymphoid follicles.1 Their diagnosis remains difficult and in many cases is finally
performed by the exclusion of other low-grade B-cell lymphomas. Cytogenetically, gains of chromo-
somes 3 and 18 have been described in all subtypes of MZLs.2 Specifically, extranodal lymphoma of the
mucosa-associated lymphoid tissue is characterized by the occurrence of different translocations
[t(11;18)(q21;q21), t(14;18)(q32;q21), and t(1;14)(p22;q32)].3 The deletion of 7q is the most frequent
abnormality in primary splenic MZL (30%-40% of patients), and trisomy of chromosomes 3/3q is the
most recurrent gain. Cytogenetics in nodal MZLs (NMZLs) is not well defined.4 Molecularly, splenic
MZL and NMZL have a common genetic background, characterized by mutations in NOTCH, KLF2,
and NF-κB genes.5-8 Mucosa-associated lymphoid tissue lymphomas show a heterogeneous genetic
landscape in which many genes, such as TNFAIP3, KMT2C, KMT2D, CREBBP, TET2, SPEN, LRP1B,
PRDM1, and EP300, may be involved.9

Here, we describe a new gene fusion IGF2BP2::LSM12 in 2 patients with MZL and translocation
t(3;17)(q27;q21) in the karyotype. To our knowledge, this is the first time that this genetic alteration has
been reported in cancer.

Cytogenetic tests on bone marrow (BM), peripheral blood (PB), and lymph node (LN) were performed
according to the standard methods used in our laboratory. Fluorescence in situ hybridization (FISH) study
using clones from human 32K bacterial artificial chromosome rearray library (BACPAC Genomics,
Richmond, CA) was applied to confirm IGF2BP2::LSM12 fusion in metaphases from altered karyotypes
(supplemental Figure 1). Cytoscan 750K Array Kit cytogenetic solution (Affymetrix, ThermoFisher) was
used to study genetic gain, loss, and copy neutral loss of heterozygosity following the current recom-
mendations. Optical genome mapping (OGM) was performed with the rare variant pipeline included in
Bionano Solve software (version 3.5) (Bionano Genomics, San Diego, CA) and visualized in Bionano
Access software (version 1.6) to identify structural variants and large copy number variants. Targeted next-
generation sequencing (NGS) was performed on DNA extracted from the PB mononuclear cells or the
LN. Gene libraries were prepared with a QIAseq Targeted DNA Custom Panel (Qiagen, Hilden, Germany)
covering the full coding region of 15 genes involved in lymphoid malignancies (supplemental Table 1) and
were sequenced with MiSeq (Illumina, San Diego, CA). Single nucleotide variants and insertions/deletions
were assessed with a sensitivity of 2% of variant allele frequency. Whole-genome sequencing (WGS)
was performed using DNA from BM of patient 1, allowing the analysis of single nucleotide variants,
insertions/deletions, copy number variants, and rearrangements (Novogene Co, United Kingdom). All the
alterations reported were reviewed using Integrative Genomics Viewer software (Broad Institute).
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Table 1. Comparative table of the clinical and biological characteristics of the 2 patients

Patient 1 Patient 2

Age, y 47 76

Sex Male Female

Eastern Cooperative Oncology Group scale 0 0

B symptoms No No

Lymph nodes affected 2 sides of the diaphragm 2 sides of the diaphragm

Splenomegaly No No

Extranodal involvement No Gastrointestinal infiltration

PB expression Yes Yes

BM involvement Yes Yes

Ann Arbor stage IV IV

Hemoglobin (g/L) 116 120

Platelets (× 109/L) 60 234

Leucocytes

Global count (× 109/L) 6.86 12.7

Neutrophils (× 109/L) 1.5 4.2

Lymphocytes (× 109/L) 4.92 7.8

Monoclonal gammopathy No IgM

Increased lactate dehydrogenase No No

Increased β2 microglobulin No No

HIV Negative Negative

HBV; HCV Positive HB core antibody, negative HB surface
antigen; HCV negative

Positive HB core antibody, negative HB surface
antigen; HCV negative

Immunophenotype CD19++, CD20++, CD79b+, CD23+, CD25+, CD5+,
BCL2+++, kappa restriction

CD10−, CD11c−, CD103−, CD123−, CD200−,
BCL6−, cyclin D1−, SOX11−

CD19++, CD20++, CD79b+, CD5−, CD11c+,
BCL2+++, kappa restriction

CD10−, CD23−, CD103−, CD123−, CD200−,
cyclin D1−

Ki67 (%) 10-20 5

Cytogenetics

Karyotype 46,XY,t(3;17)(q27;q21)[10]/46,XY[10] 46,XX,t(3;17)(q27;q21)[15]/46,XX[5]

FISH, IGF2BP2:LSM12 Positive in 60% of the nuclei Positive in 58% of the nuclei

FISH, IGH:CCND1 Negative Negative

FISH, BCL6 (3q27) SPLIT Negative Negative

Single nucleotide polymorphism array No copy number alterations or loss
of heterozygosis

No copy number alterations or loss of heterozygosis

OGM Not done IGF2BP2::LSM12

MYD88 Not mutated Not mutated

CXCR4 CXCR4 Ser341PhefsTer3 mutation Not mutated

WGS CXCR4 Ser341PhefsTer3 mutation
IGF2BP2::LSM12

Not done

HBV, hepatitis B virus; HCV, hepatitis C virus.
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The first patient was a 45-year-old man who presented with a 4-
month history of peripheral lymphadenopathy. Physical examina-
tion revealed bilateral cervical, axillary and inguinal enlarged LNs.
Laboratory investigations showed a hemoglobin level of 116 g/L,
leukocyte count of 6.86 × 109/L (neutrophils, 1.5 × 109/L; lym-
phocytes, 4.92 × 109/L), and platelet count of 60 × 109/L. A
positron emission tomography scan revealed increased metabolic
uptake in LNs at cervical, axillary, and inguinal regions. A PB smear
examination identified atypical lymphocytes (6%). BM aspiration
and biopsy showed 90% infiltration of atypical small lymphocytes.
10 JANUARY 2023 • VOLUME 7, NUMBER 1
Flow cytometry (FC) analysis on BM was consistent with the
diagnosis of MZL (Table 1). Karyotype of the BM revealed a single
alteration t(3;17)(q27;q21). An excisional biopsy of an inguinal LN
was performed, and a vaguely nodular infiltration by small lymphoid
cells effacing the LN architecture was found. The immunopheno-
type was equivalent to that observed in the BM. Cyclin D1, SOX11,
and in situ hybridization for Epstein-Barr virus were negative
and proliferative index determined by Ki67 immunostaining
was 10% to 20%. Cytogenetic analysis of LN cells also showed
t(3;17)(q27;q21). NGS lymphoid custom panel showed the
RESEARCH LETTER 163
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Figure 1. Cytogenetic and molecular characterization of t(3;17)(q27;q21)/IGF2BP2::LSM12 in both patients. Chromosomes and metaphase-FISH of both patients

show t(3;17)(q27;q21)/IGF2BP2::LSM12 fusion (left). Dashed line indicates the DNA and domain structure breakpoints (LSM12: NM_152344 and IGF2BP2: NM_006548.6)

revealed after WGS and OGM in both patients. Breakpoints at IGF2BP2 affect RNA recognition motif 1. The RNA recognition motifs have high affinity for RNA, determining the

binding capacities of the RNA-binding proteins (RBPs) to RNA, play a central role in the stability of IGF2BP-RNA complexes, and coordinate the interactions between the complex

and other RBPs. Breakpoints at LSM12 affect anticodon binding domain (AD). Its function consists of binding the anticodon of transfer RNA (right). COOH, carboxylic acid; E,

exon; NH3, ammonia.
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pathogenic CXCR4 frameshift mutation p.(Ser341PhefsTer3), with
a variant allele frequency of 20.9%. The diagnosis of NMZL was
established based on integration of the clinical, morphological,
immunophenotypic, and genetic data.10 To better characterize
t(3;17)(q27;q21), we performed WGS that identified a rear-
rangement between IGF2BP2 (cytogenetic location 3q27.2) and
LSM12 (cytogenetic location 17q21.31) (supplemental Figure 2).
These findings were later confirmed by FISH (Figure 1). The patient
was treated with rituximab plus CHOP (cyclophosphamide, doxo-
rubicin, vincristine, and prednisone) for 6 cycles and achieved
metabolic complete remission with negative minimal residual dis-
ease measured by FC, both in PB and BM.11

We reviewed the cytogenetic database of MZLs from our institu-
tion and identified another patient with t(3;17)(q27;q21) detected
in PB. This patient was a 76-year-old woman who was referred to
our hematology department in 2016 because of lymphocytosis.
She did not have any medical history of interest and was asymp-
tomatic. Physical examination was unremarkable. Laboratory
investigations showed a hemoglobin level of 120 g/L, a leukocyte
count of 12.79 × 109/L (neutrophils, 4.2 × 109/L and lymphocytes,
7.8 × 109/L), and a platelet count of 234 × 109/L. The PB smear
analysis showed 52% atypical small lymphocytes, and immuno-
phenotype determined by FC was consistent with the diagnosis of
MZL (Table 1). Karyotype of the PB showed the t(3;17)(q27;q21),
and IGF2BP2::LSM12 fusion gene was confirmed by FISH. OGM
164 RESEARCH LETTER
was performed to clarify specific breakpoints involved in
IGF2BP2::LSM12 fusion (Figure 1; supplemental Figure 3). NGS
lymphoid custom panel did not detect mutations. BM biopsy
showed 20% infiltration of atypical small lymphocytes with the
same immunophenotype as described for the blood; cyclin D1 and
SOX11 were negative, and proliferative index determined by Ki-67
immunostaining was 5%. Body computed tomography showed
slightly increased LN on both sides of the diaphragm (size,
<1.5 cm). The diagnosis of monoclonal B-cell lymphocytosis of
marginal zone origin was established. The patient followed a watch-
and-wait strategy, but 5 years after diagnosis, a computed
tomography scan showed nodal progression without splenomeg-
aly. An upper gastroduodenal endoscopy showed diffuse duodenal
infiltration by small lymphoid cells with histology and immunophe-
notype consistent with MZL.

Here, we describe 2 patients with MZL with a novel genetic
alteration t(3;17)(q27;q21)/IGF2BP2::LSM12. From the clinical
perspective, both patients had disseminated LN involvement, BM
infiltration, and PB expression. Clinical behavior was indolent, with
slow growing lymphadenopathy in both patients. To our knowledge,
this is the first time that a pathogenic relationship between
IGF2BP2, LSM12, and MZL has been reported.5,12-17 The insulin-
like growth factor 2 messenger RBPs (IGF2BP1, IGF2BP2, and
IGF2BP3) belong to a family of RBPs that modulate important
aspects of cell function in cancer biology, such as cell polarization,
10 JANUARY 2023 • VOLUME 7, NUMBER 1
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migration, metabolism, proliferation, and differentiation.18 IGF2BP2
has been reported as an oncogene because its overexpression has
been associated with aggressive phenotype and poor prognosis in
various solid tumors, acute myeloid leukemia, and diffuse large
B-cell lymphomas.19-21 LSM12 is also an RBP that interacts with
target messenger RNA to regulate gene posttranscriptional
expression, which could affect the expression and function of
proto-oncogenes and tumor suppressor genes.22 Its implication in
oncogenesis has been minimally described. LSM12 has been
identified as a fusion partner with BRCA1 in a pantumor survey of
346 cases of BRCA-associated tumors in males.23 In colorectal
cancer, LSM12 overexpression negatively correlates with tumor
immune infiltration levels, which may promote colorectal cancer
transfer.24 In pancreatic adenocarcinoma, LSM12 seems to be
downregulated according to a recent study.25

In summary, we report a novel genetic alteration t(3;17)(q27;q21)/
IGF2BP2::LSM12 in 2 patients with MZL. Further investigations
are needed to better understand the implications of this genetic
alteration in lymphomagenesis.
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