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Chimeric antigen receptor (CAR)–modified T cells have been reported to successfully treat patients with
hematological malignancies.1,2 Several obstacles have limited the availability of autologous CAR T cells;
for example, intensively treated patients have an insufficient number of T cells or poor-quality T cells, pre-
venting the manufacture of effective therapeutic products, and eligible patients must wait for the cell
products to be generated on schedule.3-5 These challenges may restrict the application of autologous
CAR T cells in the clinic.

Recent studies have indicated the feasibility of using allogeneic universal CAR T cells to treat infant,
pediatric, and adult patients with leukemia.6,7 However, although allogeneic universal CAR T cells that
disrupt the T-cell receptor (TCR) a chain to reduce the expression of TCR could reduce the occurrence
of graft-versus-host disease (GVHD), these allogeneic cells can be rapidly rejected by the host’s immune
system because of their expression of human leukocyte antigen (HLA). Several studies have indicated
that allograft survival can be sustained by disrupting b-2 microglobulin (B2M) to decrease the expression
of HLA class I molecules.8-10 Reduced alloreactivity of TCR and B2M double-disrupted CAR T cells
in vitro and in animal models has been observed.8,11 Therefore, universal CAR T cells with double disrup-
tion of TCR and B2M may be a candidate for the treatment of patients with cancer.

We generated TCR and B2M double-disrupted universal CAR T cells from healthy donor T cells
using lentivirus and CRISPR/Cas9 genome-editing technology, and their in vitro characteristics and spe-
cific antitumor efficacy were confirmed as shown in supplemental Figure 1. In addition, we report 2
cases of relapsed/refractory diffuse large B-cell lymphoma (DLBCL) in which patients received universal
CAR T-cell therapy. Additional details regarding the study procedures are provided in the data
supplement.

The first patient was a 63-year-old man with rapidly progressive and primary refractory DLBCL after
receiving radiation therapy and multiple cycles of chemotherapy within 8.5 months after diagnosis, sum-
marized in supplemental Figure 2. The patient had a bulky tumor burden located on the right trunk skin
and in the subcutaneous soft tissue, right pleural space, peritoneum, bilateral cervical lymph nodes,
supraclavicular lymph nodes, and bilateral axillary lymph nodes. He received preconditioning treatment
with a total dose of 30 mg/m2 of fludarabine and a total dose of 15 mg/kg of cyclophosphamide, fol-
lowed by a total dose of 1.5 3 106/kg universal CAR T cells in 2 separate doses, without experiencing
any immediate infusion-related toxicity (supplemental Figure 2). Within 21 hours after cell infusion, the
patient experienced fever, respiratory distress, blood pressure reduction, acute pulmonary edema, and
pleural fluid on chest X-ray, accompanied by a significant increase in cytokines, indicating that he had
developed grade 4 cytokine release syndrome (CRS; Figure 1A-C). Although multiple cycles of tocilizu-
mab, etanercept, and methylprednisolone were subsequently administered, the patient’s fever and CRS
were not effectively ameliorated (Figure 1A-B). Occurrences of thrombocytopenia, anemia, and
leukocytopenia were observed after universal CAR T-cell infusion, possibly associated with precondition-
ing regimens, and these toxicities were reversed after intensive medical intervention (supplemental
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Figure 1. Toxicities, persistence, and response in patient 1 after administration of universal CAR T cells. (A) The change in maximum temperature

(Tmax) and the serum level of C-reactive protein (CRP) were tested in patient 1 before and after universal CAR (UCAR) T-cell infusion and CRP recovery after multicycle of
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Figure 3A-D).12 In addition, no GVHD or other toxicities were
observed after cell infusion (supplemental Figure 3E-F). CAR gene
copy numbers were detectable after universal CAR T-cell infusion

and then gradually decreased (Figure 1D). The number of B cells
was maintained at a low level within �7 days after universal CAR
T-cell infusion, and then, the number of B cells increased (Figure

Figure 1 (continued) methylprednisolone (red arrow), tocilizumab (light green arrow), and etanercept (purple arrow) administration. (B) The serum levels of cytokines, including

interleukin-2 (IL-2), IL-6, IL-8, IL-10, and tumor necrosis factor-a (TNF-a), were tested after UCAR T-cell infusion. (C) Chest X-ray showed the appearance of acute pulmonary edema

after UCAR T-cell infusion. (D) Persistence of infused UCAR T cells in patient peripheral blood (PB) before and after cell infusion. The level of UCAR T cells was analyzed using

quantitative polymerase chain reaction to detect the CAR gene copy number in genomic DNA obtained from PB of patient 1. (E) The change in B-cell number before and after

UCAR T-cell infusion. (F) Skin damage in the right trunk developed after UCAR T-cell infusion. The swelling improved after methylprednisolone treatment.
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Figure 2. Toxicities, persistence, and response in patient 2 after administration of universal CAR T cells. (A) The change in maximum temperature (Tmax) and

the serum level of C-reactive protein (CRP) were monitored in patient 2 before and after universal CAR (UCAR) T-cell infusion, and Tmax and CRP recovered without any

treatment. (B) The serum levels of cytokines, including interleukin-2 (IL-2), IL-6, IL-8, IL-10, and tumor necrosis factor-a (TNF-a), were tested before and after UCAR T-cell

infusion. (C) Persistence of the infused UCAR T cells in peripheral blood (PB) of patient 2 before and after cell infusion. Flow cytometry and quantitative polymerase chain

reaction were used to detect the level of UCAR T cells in PB. (D) The change in B-cell number before and after UCAR T-cell infusion. (E) The change in NK cell number

before and after UCAR T-cell infusion.
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1E). Skin damage was aggravated at the tumor lesion location in
the right trunk after cell infusion (Figure 1F; supplemental Figure
3G). In addition, swelling, high temperature, and exudate were
observed at the lesion location. The swelling improved after adminis-
tration of methylprednisolone. Unfortunately, the patient declined all
treatment 21 days after cell infusion.

The second patient was a 64-year-old man treated using a similar
protocol in January 2018 (supplemental Figure 4). He was diag-
nosed with relapsed/refractory DLBCL after administration of multi-
ple types and cycles of cancer treatment, summarized in
supplemental Figure 4. The patient had a tumor burden located in
the bilaterally cervical, right submandibular, right clavicular, mediasti-
nal, and bilateral hilar lymph node regions. Lymphodepletion was
performed with a total dose of 20 mg/kg of cyclophosphamide and
a total dose of 52.6 mg/m2 of fludarabine, followed by a total dose
of 1.21 3 106/kg universal CAR T cells (supplemental Figure 4).
No immediate infusion-related toxicity was observed. After universal
CAR T-cell infusion, the patient experienced fever accompanied
by a significant increase in C-reactive protein and cytokines
(Figure 2A-B). Hyperpyrexia and the levels of serum C-reactive pro-
tein and several cytokines, except interleukin-2, recovered without
any treatment .1 week after cell infusion. In addition, no GVHD or
other toxicities developed after cell infusion (supplemental Figure 5).
Laboratory investigations confirmed the presence of universal CAR
T cells by quantitative polymerase chain reaction and flow cytometry
in peripheral blood (Figure 2C). Rapid increases in universal CAR T
cells were observed after cell infusion, and universal CAR T cells
then decreased after 1 month. In addition, the number of B cells in
peripheral blood decreased after cell infusion and recovered after 1
month (Figure 2D). By 1 month after cell infusion, he had disease
progression.

More than 5 3 104 mismatched T cells per kilogram is often con-
sidered a threshold effect for GVHD in HLA-haploidentical stem cell
transplantation after ab T and B cells are removed,13 and in our
practice, 2.28 3 104/kg and 5.46 3 104/kg residual TCR-ab1

cells were infused in patients 1 and 2, respectively. Despite the
number of infused TCR-ab1 cells in patient 2 being .5 3 104/kg,
GVHD was not observed in either of the 2 patients after universal
CAR T-cell infusion.

Several trials have indicated that CRS directly correlates with tumor
burden at the time of CAR T-cell infusion.14,15 In this study, both
patients developed CRS after universal CAR T-cell infusion. Patient
1, who had a bulky tumor burden, developed grade 4 CRS that did
not improve despite intensive medical intervention. Patient 2, who
had a lower tumor burden than patient 1, developed grade 1 CRS
that recovered without any treatment .1 week after cell infusion.
Therefore, administering salvage chemotherapy in the context of a
bulky tumor burden could reduce the risk of CRS.

Recent studies have indicated that clinical outcome is closely asso-
ciated with persistence of CAR T cells in peripheral blood circula-
tion.16,17 Our current data showed a rapid increase in universal
CAR T cells after cell infusion and then a decrease within 1 month
after universal CAR T-cell infusion. With the universal CAR T cells in
our study, HLA class I2 cells may be lysed by host natural killer
(NK) cells.8,18,19 In patient 2, the number of NK cells was increased
after universal CAR T-cell infusion (Figure 2E); in contrast, the uni-
versal CAR T cells were decreased. Lymphodepletion via chemo-
therapy or NK cell–specific antibodies was shown to effectively

deplete most host NK cells to reduce the risk of NK cell–mediated
lysis in HLA class I2 cells.20,21 However, lymphodepletion regimens
may be toxic and may affect the antitumor activity of universal CAR
T cells. Constitutive expression of nonclassic HLA class I molecules,
such as HLA-E and HLA-G, on HLA class I2 cells could protect
against allogeneic NK cell–mediated lysis.22-24 In addition, in our
preclinical study, we constitutively expressed the mutant B2M-HLA-
E and B2M-HLA-G fusion proteins in anti-CD19 universal CAR T
cells to reduce allogeneic NK cell–mediated lysis, indicating that
this approach could improve the persistence of universal CAR T
cells in patients.25

In conclusion, our study shows that immunotherapy with universal
CAR T cells negative for TCR and HLA class I molecules is a poten-
tial treatment for patients with DLBCL. This study had a number of
limitations, such as safety and clinical response; however, our
pooled analysis provides a substantial step forward in the develop-
ment of universal CAR T cells to improve safety, efficacy, and feasi-
bility for patients with hematological malignancies.
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