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 CatG cleavage of
PAR4 generates a
novel tethered ligand
that induces PAR4
activation and platelet

Platelet-neutrophil interactions regulate ischemic vascular injury. Platelets are activated
by serine proteases that cleave protease-activated receptor (PAR) amino termini,
resulting in an activating tethered ligand. Neutrophils release cathepsin G (CatG) at sites
of injury and inflammation, which activates PAR4 but not PAR1, although the molecular
mechanism of CatG-induced PAR4 activation is unknown. We show that blockade of the
canonical PAR4 thrombin cleavage site did not alter CatG-induced platelet aggregation,
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signaling and
aggregation.

Elucidation of the
molecular basis of
CatG cleavage of
human PAR4 expands
our understanding of
protease activation of
PARs.

suggesting CatG cleaves a different site than thrombin. Mass spectrometry analysis using
PAR4 N-terminus peptides revealed CatG cleavage at Ser®’-Arg®®. A synthetic peptide,
RALLLGWVPTR, representing the tethered ligand resulting from CatG proteolyzed

PAR4, induced PAR4-dependent calcium flux and greater platelet aggregation than

the thrombin-generated GYPGQV peptide. Mutating PAR4 Ser®’or Arg®® reduced
CatG-induced calcium flux without affecting thrombin-induced calcium flux. Dog
platelets, which contain a conserved CatG PAR4 Ser-Arg cleavage site, aggregated in
response to human CatG and RALLLGWVPTR, while mouse (Ser-Gln) and rat (Ser-Glu)
platelets were unresponsive. Thus, CatG amputates the PAR4 thrombin cleavage site by
cleavage at Ser®’-Arg®® and activates PAR4 by generating a new functional tethered
ligand. These findings support PAR4 as an important CatG signaling receptor and suggest
a novel therapeutic approach for blocking platelet-neutrophil-mediated
pathophysiologies.

Introduction

Human platelets express 2 G-protein coupled, protease-activated receptors (PAR1 and PAR4).
Although many serine proteases activate platelets through PARs,? thrombin is the best studied. PARs
are activated by proteolysis of their amino termini.' The resulting new N-terminus functions as a tethered
ligand that binds to an extracellular loop of the PAR®* resulting in platelet activation. Compared with
PAR1, PAR4 has been less studied, but recent findings emphasize its importance and potential as a
therapeutic target.> PAR1 has a higher affinity for thrombin, and Ca®" transients rise and fall sharply after
activation. In contrast, PAR4 acts as an “amplifier,” inducing a gradual but sustained rise in Ca®" that

The full-text version of this article contains a data supplement.
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Figure 1. Neutrophil cathepsin G cleaves PAR4 at Ser®”-Arg®® to induce platelet aggregation. (A) Washed platelets were treated with varying concentrations of
CatG in the presence or absence of the PAR4 inhibitor, BMS-986120 (400 nM BMS; n = 5), and maximum(MaXplatelet aggregation (percent = SEM) recorded. The PART activation
peptide (SFLLRN; 10 wM) served as a negative control (n = 5) for PAR4 inhibition. (B) Washed platelets were stimulated with increasing concentrations of CatG, and
platelet activation was measured by PAC-1 binding (Ala: n = 7; Thr: n = 7) and displayed as MFI (mean = SEM). (C) PAR4 amino acid sequence targeted by RC3

monoclonal antibody shown above. The underline represents the tethered ligand generated by thrombin. The arrow represents the location of the canonical thrombin

cleavage site. All aggregation studies were performed with PAR1 blockade using 100 nM vorapaxar. Representative tracing of washed platelets treated with 0.25 U/mL

thrombin or 200 nM CatG in the presence or absence of RC3. (D) Quantification of maximum (max) platelet aggregation (mean percent = SEM) (n = 3 different subjects).

(E) PAR4-B and PAR4-C peptide sequences used in CatG proteolysis analysis by LC-MS/MS. Red sequence indicates novel tethered ligand generated by CatG.
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accounts for greater intracellular Ca?" flux, thrombin generation,
and fibrin formation under shear stress.>®

Elevated blood neutrophil levels correlate with ischemic arterial
events,” and platelet-leukocyte aggregates are elevated during a
stroke.® Activated neutrophils release the serine protease cathepsin
G (CatG) at sites of injury and inflammation.® CatG is a potent
human PAR4-dependent platelet agonist,'®"® but it is unknown
where CatG cleaves PAR4 and how this cleavage might activate
the receptor.

Methods

A more detailed methods section is provided in the supplemental
Data.

Platelet and neutrophil isolation

Platelets and neutrophils were isolated as previously described.'*
Platelet isolation from dogs, rats and mice was approved by the
IACUC. Platelet activation and aggregation were performed as pre-
viously described.'®

PAR4 calcium flux assays

PAR4-dependent calcium flux was measured using Fura2-QBT in
platelets and HEK293T/17 cells with wild-type (WT) and mutant
PAR4.'®

PAR-4 peptide and cleavage analysis

PAR4 synthetic peptides were incubated with protease, snapped
frozen, and sent for mass spectrometry analysis.

Results and discussion

CatG elicits platelet activation and aggregation
through PAR4 signaling

Of the major serine proteases released from neutrophils, CatG was
the only protease to induce platelet aggregation and «allb3 activa-
tion (supplemental Figure 1A-D). Supplemental Figure 1A shows
the effect of neutrophil activation on platelet activation is mediated
in large part by CatG. Using PAR-specific inhibitors, we observed
CatG-dependent platelet activation was mediated by PAR4 and
not PAR1 (Figure 1A; supplemental Figure 2). Because platelet-
neutrophil interactions are critical in stroke pathophysiology and a
common PAR4 Ala120Thr variant has been associated with human
stroke risk,'”'® the effect of this variant on CatG-induced platelet
activation was studied. Compared with platelets from homozygous
Ala'? individuals, CatG stimulation of platelets homozygous for the
racially divergent and hyperreactive PAR4 Thr'?° variant demon-
strated modest but significantly greater «llboB3 activation and
P-selectin expression (Figure 1B; supplemental Figure 3). Thus,

neutrophil-released CatG may contribute to the increased stroke
risk associated with the PAR4Thr120 variant.

Thrombin cleavage of PAR4 at Arg*’-Gly*® is blocked by the mono-
clonal antibody RC3.° RC3 had little effect on CatG-induced
platelet aggregation despite largely abolishing thrombin-induced
aggregation (Figure 1C-D; supplemental Figure 4) (note thrombin
activation of PAR1 was blocked in Figure 1C-D, as determined by
supplemental Figure 4). These results suggest CatG cleaves PAR4
at a site different than thrombin. It is not clear why our data appar-
ently differ from previous observations using a polyclonal antibody to
PAR4%'3 since the antibodies were raised against the same
sequence, but perhaps the polyclonal antibody also blocked the
CatG cleavage site while monoclonal RC3 does not.

CatG proteolysis of PAR4 N-terminal
extracellular sequence

To examine the possible cleavage fragments generated by CatG, 2
portions of the PAR4 extracellular N-terminus were synthesized and
analyzed by LC-MS/MS: PAR4-B containing the thrombin cleavage
site, and PAR4-C, downstream of the thrombin cleavage site (Figure
1E). As expected, PAR4-B was cleaved by thrombin between amino
acids Arg*” and Gly*®, while litle cleavage was observed with
CatG (supplemental Figure 5). In contrast, thrombin failed to cleave
PAR4-C, while CatG cleavage generated several fragments, including
DSDTLELPSS (Figure 1G; and data not shown). Identification of the
DSDTLELPSS fragment (amino-terminal sequence of PAR4-C) indi-
cated CatG cleavage between Ser®” (S67)-Arg®® (R68). As a con-
trol, in the absence of thrombin or CatG, PAR4-B and PAR4-C
remained intact in these analyses (Figure 1F; supplemental Figure 5).

Mutations of amino acids Ser®” and Arg®® decrease
CatG-stimulated PAR4-mediated calcium signaling

To specifically examine if CatG induces PAR4 activation and signal-
ing by cleaving Ser®”-Arg®®, we assessed calcium flux using various
PAR4 mutants. HEK cells transfected with WT PAR4 demonstrated
increased calcium flux when treated with CatG compared with
mock transfection (Figure 1H). CatG activation of HEK cells
expressing either PAR4 mutated Ser®” to Glu (S67E) or Arg®® to
Glu (R68E) resulted in significantly less calcium flux than WT (P <
.001) (Figure 1H). Notably, the PAR4 S67E and R68E mutants
induced minimal calcium flux above baseline, such that we cannot
exclude other minor CatG cleavage sites indicated by our mass
spectrometry data (Figure 1H; supplemental Figure 5; and data not
shown) could induce receptor activation, as has been shown with
elastase-cleavage of PAR2.'® Since neighboring amino acids can
be critical in protease cleavage,® a Ser®® (S66E) mutant was gen-
erated that showed a slight decrease in CatG-induced calcium flux
compared with WT and a significantly greater calcium flux than
mock transfection (Figure 1H). None of the PAR4 mutants were
significantly different than WT when stimulated by thrombin in the

Figure 1. (continued) (F) LC-MS/MS performed on PAR4-C in the absence of CatG. Time of flight analysis showed an experimental peak with the correct mass (m) over
charge (2) ratio. (G) LC-MS/MS analysis performed on PAR4-C after incubation with 400 nM CatG at 37°C for 15 minutes. Time of flight analysis observed a peak with the
correct m/z ratio of a fragment containing the amino acids DSDTLELPSS (the last residue is Ser®?), indicating CatG cleaved PAR4-C between Ser®” and Arg®®. For

reference, the expected m/z ratio of DSDTLELPSS is shown below. (H) Calcium mobilization of WT, mutated PAR4, or empty vector (mock) expressed in HEK293T/17 cells

treated with or without CatG (2.5 uM) in the presence of PAR1 blockade with 100 nM vorapaxar. (I) WT, mutated PAR4, or empty vector (mock) were expressed in

HEK293T/17 cells and treated with thrombin (1.5 U/mL) in the presence of 100 nM vorapaxar. Solid thick lines and thin vertical lines are means and SEMs, respectively.

n = 4 independent experiments performed in duplicate in panels H-I.
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Figure 2. CatG-generated PAR4 tethered ligand RALLLGWVPTR induces platelet activation and aggregation. (A) WT human PAR4 (hPAR4, black) or empty
vector (mock, blue) was expressed in HEK293T/17 cells and treated with 1.5 mM RALLLGWVPTR (RA-11mer, solid line) or tyrodes (dash lines). Thick lines and thin
vertical lines are means and SEMs, respectively. n = 3 independent experiments performed in duplicate. (B-C) Washed platelets (n = 6) were treated with buffer or 1 mM

RA-11mer, and platelet activation was measured by (B) PAC-1 binding (mean percent = SEM) and (C) P-selectin expression (mean percent = SEM). (D) Representative
aggregation tracing of washed platelets treated with 1 mM GYPGQV (GYP), ALLLGWVPTR (AL-10mer), or RA-11mer. (E) Maximum (max) aggregation of platelets treated
with buffer or 1 mM of each indicated peptide (mean percent = SEM; n = 5). (F) Representative tracing of platelet calcium flux induced by RA-11mer (2 mM, black line).

Tyrodes buffer (red) served as a negative control. n = 4 independent experiments performed in duplicate. (G) Representative tracing of washed platelets treated with 1 mM

or 10 mM RA-6mer or 1 mM RA-11mer. (H) Quantification of maximum (max) aggregation (percent = SEM) elicited by treatment of same subjects’ platelets with RA-11mer

or RA-6mer (1 mM, n = 3). () Dog, human, mouse, and rat PAR4 sequence alignment of the 12 amino acids adjacent to the plasma membrane of the first (N-terminal)

PAR4 extracellular domain. Arrow indicates Arg68 in humans where CatG cleaves PAR4. (J-L) Representative aggregation tracing of dog (blue), human (red), mouse (green),
and rat (purple) washed platelets treated with 1 U/mL human thrombin (J), 1 uM human CatG (K), or 1 mM RA-11mer (L). n > 3 for human and mouse (J-L); n = 2 for dog

and rat (J-K); n = 2 for rat (L); n = 1 for dog (L).

presence of a PAR1 inhibitor (Figure 11). Taken together, these data
support CatG, but not thrombin, cleavage of PAR4 between
Ser®”-Arg®e.

Functional characterization of CatG-generated
PAR4 tethered ligand

A synthetic peptide RALLLGWVPTR representing the CatG-generated
PAR4 tethered ligand was synthesized to assess its potential

2306 STOLLER et al

functionality. RALLLGWVPTR induced calcium flux in HEK cells
transfected with WT PAR4 compared with mock, indicating the
tethered ligand induces signaling through PAR4 (Figure 2A). Plate-
lets treated with RALLLGWVPTR demonstrated increased integrin
activation, a granule release, and platelet aggregation (Figure 2B-
E). In addition, RALLLGWVPTR induced a significant and sustained
calcium flux in platelets similar to other peptide-tethered ligands®'
(Figure 2F). Peak calcium flux was similar between CatG and
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RALLLGWVPTR, and consistent with previous literature, CatG-
induced platelet calcium flux decreased over time'® (supplemental
Figure 6).

LC-MS/MS analysis also indicated a minor CatG cleavage between
Arg®® and Ala®® under the conditions of our experiment, so we also
synthesized an ALLLGWVPTR 10mer. However, platelets exposed
to ALLLGWVPTR displayed no discernable platelet aggregation or
calcium flux (Figure 2D-E; supplemental Figure 6) independent
of peptide concentration (supplemental Figures 6 and 7). Notably,
1 mM RALLLGWVPTR produced maximal platelet aggregation,
while 6 mM GYPGQV (the thrombin-generated PAR4 tethered
ligand) was necessary to induce maximal platelet aggregation
consistent with previous literature, demonstrating high concentra-
tions of GYPGQV are needed to induce receptor activation
(Figure 2D-E; supplemental Figure 7). The CatG-generated tethered
ligand appears to be a more potent activator of PAR4 than the
thrombin-generated tethered ligand, but the CatG enzyme is much
less potent than the thrombin enzyme. Perhaps thrombin has greater
affinity for the PAR4 extracellular domain than does CatG.

PARA4 signaling can be induced by the thrombin-tethered ligand with
as few as 6 amino acids (GYPGQV), but a 6mer from the CatG teth-
ered ligand (RALLLG) was not able to induce platelet aggregation
(Figure 2G-H). We also synthesized an intermediate length peptide,
RALLLGWV 8mer, but were unable to test its activating potential
due to its inability to go into solution despite numerous attempts with
different solvents. Thus, we cannot exclude the possibility that the
minimal tethered ligand length required for PAR4 activation in vivo
may be less than 11 residues. Having said that, perhaps the hydro-
phobic portion of the C-terminus of RALLLGWVPTR stabilizes the
tethered ligand on the platelet plasma membrane.

Genetics of PAR4 variants

Conservation of amino acid sequence across species can be sup-
portive and informative of sequence function. Supplemental Table 1
shows the sequence alignments of PAR4 N-terminal from 12 animals,
4 of which are shown in Figure 2I. Human thrombin induced platelet
aggregation in humans, dogs, mice, and rats (Figure 2J), whereas
human CatG only induced platelet aggregation in humans and dogs
(Figure 2K). Similar to CatG, the RA-11mer induced aggregation only
in humans and dogs (Figure 2L). Dog platelets were not as respon-
sive to human CatG, perhaps due to inefficient binding of human
CatG to dog PAR4 or the substitution of an alanine for a proline in
the dog PAR4 sequence. Furthermore, the human RA-11mer could
be less effective binding to the dog PAR4 extracellular domain that
mediates the signaling response to the dog tethered ligand. This
genetic data lends support to the mutagenesis and functional peptide
data regarding the importance of Arg®® in mediating CatG-mediated
PAR4 cleavage and activation. Perhaps the positive charge of Arg68
is important for the activity of the tethered ligand (mouse Gin is
uncharged while rat Glu is negatively charged).
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Implications

There are a relatively small number of serine protease-generated func-
tional PAR tethered ligands. Identifying the potentially diverse array of
PAR tethered ligands may be important if they activate different cellu-
lar signaling pathways or vary by pathophysiologic conditions. In cer-
tain clinical settings, such as those with extensive platelet-neutrophil
interactions or leukocytosis in malignancy, CatG may dampen or elim-
inate thrombin signaling through PAR1 and PAR4, while the CatG
tethered ligand could induce persistent PAR4 e‘,ignaling.22 PAR4 is
also expressed in nonplatelet tissues, where inflammation alters func-
tion and expression levels, and CatG could affect activation.?®2*
Lastly, in hemorrhagic conditions, the RALLLGWVPTR peptide could
be therapeutic for rescuing or enhancing platelet reactivity.
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