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The transcription factor C/EBPa initiates the neutrophil gene expression program in the

bone marrow (BM). Knockouts of the Cebpa gene or its 137kb enhancer in mice show

2 major findings: (1) neutropenia in BM and blood; (2) decrease in long-term

hematopoietic stem cell (LT-HSC) numbers. Whether the latter finding is cell-autonomous

(intrinsic) to the LT-HSCs or an extrinsic event exerted on the stem cell compartment

remained an open question. Flow cytometric analysis of the Cebpa 137kb enhancer

knockout model revealed that the reduction in LT-HSC numbers observed was

proportional to the degree of neutropenia. Single-cell transcriptomics of wild-type (WT)

mouse BM showed that Cebpa is predominantly expressed in early myeloid-biased

progenitors but not in LT-HSCs. These observations suggest that the negative effect on

LT-HSCs is an extrinsic event caused by neutropenia. We transplanted whole BMs from

137kb enhancer-deleted mice and found that 40% of the recipient mice acquired

full-blown neutropenia with severe dysplasia and a significant reduction in the total

LT-HSC population. The other 60% showed initial signs of myeloid differentiation defects

and dysplasia when they were sacrificed, suggesting they were in an early stage of the

same pathological process. This phenotype was not seen in mice transplanted with WT

BM. Altogether, these results indicate that Cebpa enhancer deletion causes cell-

autonomous neutropenia, which reprograms and disturbs the quiescence of HSCs,

leading to a systemic impairment of the hematopoietic process.

Introduction

Pioneering transplantation studies showed that long-term hematopoietic stem cells (LT-HSCs) possess a
multilineage differentiation potential toward all hematopoietic lineages after myeloablative conditioning.1,2

Bone marrow (BM) differentiation occurs along a continuum of cellular states, progressing in a trajectory
from LT-HSC toward cell-lineage specific progenitors.3-6 Hematopoietic stem and progenitor cells
(HSPCs) forming these trajectories are interconnected by transcription factor networks that drive
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Key Points

� Cebpa activates
granulocytic differenti-
ation in early myeloid-
biased progenitors
but not in LT-HSCs
during steady-state
hematopoiesis.

� Unresolved
neutropenia caused
by Cebpa 137kb
enhancer deletion
disturbs the LT-HSC
pool and leads to
severe BM dysplasia.
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differentiation.7 Despite their role in differentiation, it remains unclear
how transcription factors protect HSCs from exhaustion to preserve
BM integrity.8

The myeloid lineage transcription factor C/EBPa, encoded by
Cebpa, has been studied extensively to understand its role in mye-
loid differentiation. The expression of Cebpa in myeloid cells is spe-
cifically controlled by the 137 kb enhancer (142 kb in humans).9,10

Genetic knockout of Cebpa11 or its 137kb enhancer9,12 in vivo
(both referred to as Cebpa null mice) causes neutropenia concomi-
tant with reduced LT-HSC numbers. These studies describe
C/EBPa as one of the major myeloid regulators that interconnect
HSCs with myeloid progenitors. In addition, it has been suggested
that C/EBPa has a dual role in LT-HSCs: maintaining LT-HSC qui-
escence by repressing the self-renewal13 and proliferative14 gene
expression programs while simultaneously priming early myeloid
genes.11

One major technical limitation in these studies is the low resolving
power of the technologies used to study rare cell types such as
LT-HSCs. Bulk genome-wide transcriptomics measures gene
expression signatures at the population level, thereby masking the
presence of any rare and transient cell state of physiological impor-
tance in the BM. This limitation has been overcome by high-
resolution single-cell technologies combined with lineage tracing or
in vivo barcoding. Emerging findings from studies in native hemato-
poiesis4,15,16 place LT-HSCs as a separate and an occasional con-
tributing entity to myelopoiesis in contrast with a continuous HSC to
myeloid state, therefore questioning the role of Cebpa as a myeloid
priming factor in HSCs.

Here we investigated whether LT-HSC loss in Cebpa null mice is
the cause or consequence of neutropenia. We hypothesize that
either (1) LT-HSCs harboring an active Cebpa locus are lost upon
enhancer deletion, leading to myeloid trajectory shutdown, and ulti-
mately neutropenia or, (2) myeloid-biased progenitors expressing
Cebpa are lost upon enhancer deletion, causing neutropenia, which
systematically disturbs and depletes the LT-HSC pool. To address
this question, we combined previously published single-cell datasets
from wild-type (WT) BMs with bulk-cell transcriptomics from the
137kb enhancer-deleted mice. Furthermore, we transplanted
Cebpa enhancer-deleted cells to study the possible systemic effects
on hematopoiesis of the host. Using these approaches, we con-
clude that LT-HSCs do not express detectable levels of Cebpa in
unperturbed hematopoiesis, and Cebpa null-induced neutropenia
systemically disturbs LT-HSC quiescence, leading to HSC deple-
tion, BM hypocellularity, and severe dysplasia.

Materials and methods

RNA sequencing

Total sample RNA was extracted using Trizol with Genelute LPA
(Sigma) as a carrier, and SMARTer Ultra Low RNA kit for Illumina
Sequencing (Clontech) was used for cDNA synthesis according to
the manufacturer’s protocol. cDNA was sheared with the Covaris
device and processed according to the TruSeq RNA Sample Prep-
aration v2 Guide (Illumina). Amplified sample libraries were sub-
jected to paired-end sequencing (2 3 75 bp) and aligned against
mm10 using TopHat.17 Gene expression levels were quantified by
the fragments per kilobase of exon per million fragments mapped
(FPKM) statistic as calculated by Cufflinks18 in the RefSeq

Transcriptome database.19 Read counts were determined with
HTSeq-count20 and subsequently used for differential expression
analysis in DESeq2,21 with default parameters in the R environment.
Multiple testing correction was performed by the Benjamini-
Hochberg procedure on the calculated P values to control the false
discovery rate (FDR).

For gene set enrichment analysis (GSEA), a ranking metric was
defined for each gene as the log10 of the adjusted P value calcu-
lated by DESeq2 with the sign of the log2 fold change. The ranked
gene list was tested against a customized version of the C2
MSigDB collection, incorporating datasets on HSC quiescence
from the literature3,22-24 (supplemental Table 1).

Single-cell RNA sequencing

A compendium of previously published mouse BM single-cell RNA-
Seq datasets (Fluidigm C1 platform) was assembled to evaluate the
expression of key progenitor genes of interest described25-27 (avail-
able at: http://www.altanalyze.org/ICGS/Public/Mm-Grimes-Fluidigm-
Panorama/User.php). Specifically, WT in vivo mouse SLAM, LSK,
GMP, CMP, and lineage-negative Sca11 CD1171 cells from BM
were selected, with labels derived from the noted prior studies
(GSE70245, GSE141472). Data were analyzed with RSEM to esti-
mate TPM for all genes as previously described.28 The gene expres-
sion data of selected genes were visualized in the python package
plotly or GraphPad Prism, represented as log2 TPM values.

For the analysis in supplemental Figure S1, published single-cell
RNA-seq data of HSPCs from the BM of 10 female 12-week-old
C57BL/6 mice were retrieved.29 Raw counts were downloaded
from the GEO database (GSE81682), with labels derived from the
broad gating strategy used in the original study (available here:
http://blood.stemcells.cam.ac.uk/data/all_cell_types.txt). Data were
imported and processed using the Seurat R package.30 Cells with
fewer than 200 000 total counts, fewer than 4000 detected genes,
or more than 10% mitochondrial reads were excluded. Expression
data were log-normalized, and the 5000 most variable features were
selected for dimensionality reduction with UMAP. Cebpa expression
was projected on the UMAP and compared with the expression of
other selected genes (Mecom, Hlf) to investigate its association
with different cell populations.

Mice and transplantation procedures

The strains of 137kb enhancer-1.2kb and 137kb enhancer-
1.15kb-deleted mice were generated using zygotes derived from
C57/BL6 mice by CRISPR/Cas9 editing and maintained as previ-
ously described.9 The CRISPR/Cas9 single guide RNAs were
directed against the 137kb enhancer of Cebpa, using the following
sequences:

59: TGAAGCCTACACTACTTTGT and AGAGGTAGGAACTCC
ATTCC
39: AGAGCCTCGCTCAAGCCCAT and TTGAGACATCTGGT
AACCTT

Recipient mice were exposed to a 5.5 Gy of g radiation. Given that
the native 137kbHOM mouse exhibits a 3- to 5-fold increase in the
cKIT1 lineage-negative progenitor fraction of the BM, we trans-
planted 1 million WT CD34.2 total BM cells and 250000 of HOM
CD34.2 cells to compensate for the fold difference. Nontrans-
planted mice were sacrificed for FACS analysis between 4 and
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8 weeks of age. For transplantation experiments, BM from 4 week
old WT or 137kb enhancer-deleted CD45.2 mice were harvested
in phosphate-buffered saline (PBS)/5% FCS and injected intrave-
nously in tails of (CD45.1) female mice. All mice were sacrificed in
a CO2 chamber. Animal studies were approved by the Animal Wel-
fare/Ethics Committee of the EDC in accordance with legislation in
The Netherlands (approval No. EMC 2067, 2714, 2892, 3062).

Flow cytometry and sorting

Flow cytometry was carried out on the LSRII and the FACSCanto II
(BD Biosciences). FACS AriaIII (BD Biosciences) was used for cell
sorting, using the following fluorescent antibodies: markers for
mature hematopoietic cells (CD11B APC/GR1-FITC/B220-PE/
CD3 PB); pan-hematopoietic marker (CD45.1 PE; CD45.2 APC-
CY7); LIN biotinylated cocktail (CD11B, GR-1, B220, and CD3)
streptavidin-Pacific Orange; LSK (cKIT-APC/SCA1-PB); LT-HSCs
(CD48-FITC/CD150-PE-CY7). Lineage-negative selection was car-
ried out using a cocktail of antibodies targeting antigens expressed
on mature hematopoietic cells, including CD11B, GR-1, B220, and
CD3. All antibodies were purchased from BD Biosciences or Biole-
gend (supplemental Table 2). The LSK population was gated from
live (DAPI-), CD451, lineage-cKIT1 SCA-11 BM cells, and the
sorted LSK fraction was collected in 500 ml PBS with 5%
FCS, spun down and resuspended in 800 ml of Trizol and used for
RNA-seq.

Results

Neutropenia results in LT-HSC number reduction in

137kb Cebpa enhancer-deleted mice

To study the causal relationship of neutropenia and loss of
LT-HSCs, we investigated the allelic dosage effect of Cebpa
enhancer deletion on the numbers of neutrophils and LT-HSCs
using Cebpa 137kb enhancer heterozygous (137kbHET)-deleted
and 137kb homozygous (137kbHOM)-deleted mouse strains.9 The
neutrophil (Mac11Gr11) frequency and absolute numbers in the
peripheral blood (PB) and BM of the 137kbHET and the 137kbHOM

mice correlated with their monoallelic and biallelic enhancer deletion,
respectively (Figure 1A-D). Therefore, 50% enhancer activity
reduced the neutrophil output by approximately half (median fre-
quency: 44.6%) (Figure 1C), while a full enhancer deletion
completely abrogated neutrophil production (median frequency 0%).
The reduction of neutrophils occurring in the 137kbHOM mice was
confirmed by hematoxylin and eosin (H&E) staining of BM sections
(Figure 1E) and by the decreased frequency of S100A8 cells (Fig-
ure 1F). To investigate whether enhancer deletion affects the
LT-HSC pool, we studied the LT-HSC population using the SLAM
CD150 and CD48 markers (LT-HSCs: LSK/CD1501CD48-) in the
137kbHET and 137kbHOM mice. The LT-HSC pool was not
affected in the 137kbHET mice despite the 50% enhancer dosage
(Figure 1G,H). Although there was a near 2-fold reduction in
LT-HSC numbers, this difference was not statistically significant. In
contrast, a 10-fold reduction of LT-HSC numbers at 100%
enhancer dosage reduction was observed in the 137kbHOM mice
(Figure 1G,H). The fact that monoallelic enhancer deletion does not
affect LT-HSC numbers, but reduces the neutrophil compartment
by half, suggests that Cebpa only becomes expressed in neutrophil-
primed progenitors and is inactive in LT-HSCs. Thus, the quantita-
tive changes in the LT-HSC pool of the 137kbHOM mice could be

explained by an indirect effect of complete ablation of neutrophils,
whereas partial neutropenia in the 137kbHET is insufficient to inflict
these changes. Alternatively, myeloid progenitors may be more sen-
sitive to reduced C/EBPa levels than LT-HSCs, which would only
become depleted upon biallelic deletion of the 137 kb enhancer.

Cebpa is predominantly expressed in early

myeloid-biased progenitors

To study Cebpa expression along differentiation from LT-HSCs
toward multipotent and myeloid progenitors, we used single-cell
RNA sequencing datasets generated by a Fluidigm-based platform.
In total, 1110 BM cells were analyzed (27 libraries, �50 cells per
library, and .2 million reads/cell on average) and assigned to a
specific BM cell type. The identified cellular states were classified
into LT-HSC (SLAM) population, HSPC-1 and HSPC-2 (both LSK),
and multilineage progenitors, which constitute a mixture of bipo-
tent and unipotent restricted myeloid progenitors, as previously
described.25-27 To investigate at what differentiation stage Cebpa
becomes expressed, we first used known gene markers associated
with HSC quiescence, namely Hlf3 and Mecom,31 and early myeloid
differentiation (Elane, Mpo) (Figure 2A). We found a positive correla-
tion between Hlf and Mecom, while Cebpa negatively correlated
with Hlf/Mecom (Figure 2B). Accordingly, Cebpa expression was
almost negligible in LT-HSCs (detected in 0.8% of LT-HSCs), while
it appeared in a subset of HSPCs expressing early myeloid lineage
genes, indicating priming of the myeloid lineage at very early stages
of differentiation (Figure 2C). The detection limit of this technique is
0.25 transcripts per million (TPM), which could possibly exclude
cells with very low but present levels of Cebpa. However, these
results were confirmed in another dataset29 generated by a different
single-cell sequencing strategy (supplemental Figure S1). Alto-
gether, our single-cell analysis does not support a cell-autonomous
role for Cebpa in LT-HSCs. Thus, the reduction in LT-HSC numbers
observed in the Cebpa null mice seems to occur systemically as a
consequence of neutropenia.

Transcriptional programs of LT-HSC quiescence and

neutrophil lineage priming are deregulated in

137kbHOM HSPCs

The results so far indicate that the enhancer deletion decreased the
pool of LT-HSCs through a systemic effect in the presence of neutro-
penia. To study mechanisms linking the 2 observed events, we
applied RNA sequencing on sorted HSPCs using LSK markers on
137kbWT (n 5 3) and 137kbHOM (n 5 3) BM cells. We confirmed
that 137kb enhancer deletion in HSPCs reduces Cebpa expression
relative to WT controls (Figure 3A). Differential expression analysis
identified dysregulated genes related to neutrophil differentiation
(S100a9, Camp) and HSC quiescence (Hlf) (Figure 3B; supplemen-
tal Table 3). Differentially expressed genes in 137kbHOM LSKs were
further investigated by GSEA (supplemental Tables 4 and 5). Genes
associated with neutrophil ontogeny were downregulated in
137kbHOM LSK cells (Figure 3C), indicating an early block in myeloid
differentiation. Interestingly, we found an early myeloid gene set
(Cpa3, Mpo, Cd48) (Figure 3D) to be upregulated in 137kbHOM

HSPCs, suggesting that an early myeloid-biased population upstream
of Cebpa-HSPCs is primed for myelopoiesis. Based on these find-
ings, we conclude that Cebpa-HSPCs are intermediate progenitors
that link early myeloid-biased HSPCs to myeloid-committed
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Figure 1. Cebpa enhancer deletion causes neutropenia and reduction in LT-HSCs of 137kb
HOM

BMs. (A-B) Representative flow cytometry plots showing

Mac11Gr11 myeloid cell populations in PB (A) and BM (B) of 137kbWT (blue), 137kbHET (green), and 137kbHOM (red) mice. (C) Absolute numbers of Mac11Gr11

cells calculated from total PB counts of 37kbWT (blue), 137kbHET (green), and 137kbHOM (red) mice. (D) Relative numbers of total Mac11Gr11 cells calculated from total

BM cell count from 1 femur, corrected for body weight in grams of each mouse. (E) Hematoxylin and eosin (H&E) staining of representative cross sections showing BM

architecture (left), identifying megakaryocytes (right [arrows]) in 137kbWT and 137kbHOM mice. (F) S100A8 immunohistochemical staining of representative BM cross

sections from 37kbWTand 137kbHOM mice. (G) Representative flow cytometry plots of LK, LSK, LT-HSC, ST-HSC, MPP3, MPP2 cell populations in BM of 37kbWT,

137kbHET, and 137kbHOM mice. (H) Absolute numbers of CD1501CD48- LT-HSCs calculated from total BM cell counts from 1 femur. All data are represented as mean

1/2 SD. Statistical significance was calculated using a Student t-test. *P value , .05; **P value , .005; ***P value , .0005; N.S., not significant; SD, standard deviation;

LK, Lineage- cKit1; LSK, Lineage- Sca11 cKit1; LT-HSC, long-term hematopoietic stem cell; ST-HSC, short-term hematopoietic stem cell; MPP, multipotent progenitor;

137kbWT, wild type 137kb enhancer; 137kbHET, heterozygous 137kb enhancer deletion; 137kbHOM, homozygous 137kb enhancer deletion.
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progenitors, and they represent the cell of origin for the induced neu-
tropenia in Cebpa null mice.

To investigate pathways related to LT-HSC depletion, we retrieved
datasets from published hematopoietic studies and pooled them with
the MSigDB datasets.3,23,32-34 Of the most significantly (FDR
,0.025) enriched pathways, 6 gene sets were enriched for loss of

HSC quiescence and exhaustion (Figure 3E). The identified gene sets
(Figure 3F; supplemental Figure S2A-F) included transcription factors
related to HSC dormancy (Hlf, Mecom, Tcf15),3,31,35 HSC retention
factors (Ptpn21, Cxcr4),36,37 cluster of differentiation (Cd) markers for
HSC regeneration and engraftment (Cd81, Cd274),38,39 and the pol-
ycomb chromobox proteins for HSC self-renewal regulation (Pbx6,
Pbx7) (gene lists in supplemental Table 1). Deregulation of ribosomal
genes (Figure 3G) in our dataset is in accordance with the loss of
HSC quiescence. Thus, LT-HSC loss in the presence of neutropenia
may result from quiescence exit and subsequent exhaustion. Alto-
gether, the transcriptomic analysis of sorted LSK cells from
137kbHOM mice suggests that myeloid priming in HSPCs occurs
before Cebpa activation and that a neutrophil differentiation block in
these progenitors potentially leads toHSCquiescence exit.

Transplantation of 137kbHOM BM into WT recipients

confirms that neutropenia is induced by the 137kb

enhancer deletion

Next, we studied the systemic effects of the 137kbHOM BM on nor-
mal hematopoiesis in recipient mice. A sublethal irradiation approach
was used to overcome the low survival rate caused by the weak chi-
merism known to occur when transplanting Cebpa null BM cells into
lethally irradiated recipients.11 We used donor BM cells from 2 differ-
ent 137kbHOM mouse strains to ensure that the observed phenotype
was not caused by an off-target effect. The strains differed in the
genomic size of enhancer deletion generated by CRISPR, ie,
137kbHOM deletion of 1.15kb (CD45.2 137kbHOM-1.15kb deletion)
or 137kbHOM deletion of 1.2kb (CD45.2 137kbHOM-1.2kb) (supple-
mental Figure S3A,B). Sublethally irradiated recipient (CD45.1) mice
were transplanted with total BM of CD45.2 137kbWT (n 5 8),
CD45.2 137kbHOM-1.15kb (n 5 7), or CD45.2 137kbHOM-1.2kb (n 5

8) mice (Figure 4A). As expected, PB samples withdrawn 12 weeks
after transplantation showed a weaker chimerism in mice transplanted
with 137kbHOM BM compared with those transplanted with WT BM
(Figure 4B). For cellular reconstitution, we determined the frequency
of myeloid cells (Mac11Gr11), B cells (B2201), and T cells
(CD31) by flow cytometry for mice transplanted with 137kbWT or
137kbHOM BM cells (Figure 4C-F; supplemental Figure S4A-C).

Populations from the T-cell, myeloid, and B-cell lineages were pre-
sent in the recipients from the 3 cohorts, indicating that hematopoie-
sis is functional in the recipient (Figure 4D upper panel and 4F
upper panel). However, 137kbHOM donor cells (Figure 4E lower
panel and Figure 4F lower panel) lacked myeloid reconstitution as
compared with 137kbWT (Figure 4C lower panel and Figure 4D
lower panel). Therefore, transplanted 137kbHOM BM cells in a WT
niche did not recover neutrophil differentiation, confirming that neu-
tropenia in 137kbHOM enhancer-deleted mice is cell-autonomous.
In the 137kbWT donor cell compartment, there was a large contri-
bution of B cells, as previously observed in other transplantation
experiments.40-42 Of note, the presence of B cells and T cells from
the 137kbHOM donors in both the native and the transplanted mice
also argues against a strict need for Cebpa in LT-HSCs since they
were able to survive and differentiate into the lymphoid lineage.

Transplanted 137kbHOM BM causes dysplasia and

hypocellularity in recipient mice

Despite the low chimerism, the CD45.2 137kbHOM BM cells per-
sisted and survived for at least 10 months in the CD45.1 recipient

64.3 18.2 83.3

7.51

MPP3 4.5MPP2

LSKLK

82.9 6.34 74.1 6.18

7.2

7.18

0.280.097

92.433.062.5

10.2

C
-K

IT

C
D

4
8

SCA-1

SCA-1 CD150

CD150SCA-1

C
-K

IT

C
D

4
8

C
-K

IT

C
D

4
8

CD150

+37kbWT

Live, lineage-ve

+37kbHET

Live, lineage-ve

+37kbHOM

Live, lineage-ve

ST-HSC LT-HSC 6.9

Bone marrow
(absolute numbers)

1500

1000

500

0
+37kbWT +37kbHET

N.S.
*

+37kbHOM

CD
15

0+
 C

D4
8–

 L
SK

(p
er

 fe
m

ur
/w

eig
ht

 (g
))

G

H

Figure 1. (continued)

1410 AVELLINO et al 8 MARCH 2022 • VOLUME 6, NUMBER 5

D
ow

nloaded from
 http://ashpublications.net/bloodadvances/article-pdf/6/5/1406/1874817/advancesadv2021005851.pdf by guest on 05 M

ay 2024



but eventually declined to almost 0% (median 5 0.89%) on the day
the mice were sacrificed (supplemental Figure S5A). Therefore, cells
from the blood and BM samples analyzed were mostly derived from

the recipient mice. We grouped the recipient mice based on their
phenotype severity, ie, 137kbHOM-mild (n 5 8) or 137kbHOM-severe

(n 5 6, namely mice # 2,5,7,9,12, and 17). The 137kbHOM-severe
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Figure 2. Single-cell RNA sequencing data in WT BMs exclude the presence of Cebpa-expressing LT-HSCs. (A) Bar plot of single-cell expression of Cebpa in

different progenitor populations alongside genes involved in LT-HSC quiescence (Mecom, Hlf) or myeloid differentiation (Elane, Mpo). (B) Scatterplots of single-cell gene
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Figure 3. Transcriptome analysis reveals loss of HSPC quiescence in 137kb
HOM

mice. (A) Volcano plot showing genes differentially expressed in HSPCs of

137kbHOM (n 5 3) compared with 137kbWT mice (n 5 3). Differentially expressed genes are represented as log2 fold change (x-axis) and log10 P value (y-axis).
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mice represented 40% of all the transplanted mice that showed
physical weakness (squinting eyes, hunched posture, and social iso-
lation), which had to be sacrificed (supplemental Figure S5B). One
of the mice died before it could be analyzed. BM hypocellularity and
pancytopenia were the primary hallmarks of the 137kbHOM-severe

group (Figure 5A; supplemental Figure S5C). Hypocellular BMs
showed remodeling of blood vessels surrounded by a high degree
of immature hematopoietic cells characterized by incomplete differ-
entiation (Figure 5B). The 137kbHOM-mild group showed lower white
blood cell (supplemental Figure S6A) and platelet counts (supple-
mental Figure S6C) compared with WT controls, whereas hemo-
globin levels were comparable to those of the 137kbWT group
(supplemental Figure S6B). BM cellularity in the 137kbHOM-mild

mice varied from normocellular to hypocellular. Both the
137kbHOM-severe and the 137kbHOM-mild cohorts showed abnormal
megakaryocytes with dysplastic features (Figure 5B). These data
are in line with the dysplastic megakaryocytes found in the native
137kb enhancer-deleted mice (Figure 1E; supplemental Figure
S7), which might possibly explain the abnormal PB platelet counts
in the recipient mice (supplemental Figure S6C). In conclusion, a
significant number of mice transplanted with 137kbHOM BM exhibit
perturbed hematopoiesis featuring hypocellularity and peripheral
cytopenia, incomplete differentiation, and severe dysplasia.

Acquired neutropenia leading to LT-HSC loss is

recapitulated in mice transplanted with

137kbHOM BM

Next, we sought to study whether the differences between the
137kbHOM-severe and the 137kbHOM-mild phenotypes involve matura-
tion defects of myeloid cells or LT-HSCs in the BM of recipient
mice. The 137kbHOM-severe-transplanted mice showed a marked
reduction in the numbers of recipient (CD45.1) Mac11Gr11 cells
(Figure 5C), which was confirmed by the decrease in S100A8
protein-expressing cells (Figure 5D). In contrast, the 137kbHOM-mild

mice showed normal neutrophil numbers compared with the WT
controls (Figure 5C). The 137kbHOM-severe mice also showed a
reduction in the CD45.1 HSPC and LT-HSC numbers (Figure
5E,F), whereas the LT-HSC numbers in the 137kbHOM-mild mice
were comparable to those of the 137kbWT group. Thus, the find-
ings in the 137kbHOM-severe support the notion that Cebpa null-
induced neutropenia triggers LT-HSC loss in a cell nonautonomous
manner, as observed in 37kbHOM native mice.

Discussion

C/EBPa is indispensable for myeloid lineage formation and differen-
tiation.13,43 Induced genetic defects in the Cebpa locus of mouse
models9,12,44-46 or CEBPA coding mutations detected in human

acute myeloid leukemia (AML) specimens47,48 are all associated
with myeloid differentiation abnormalities. The expression of CEBPA
is also frequently repressed in leukemia by transcriptional or post-
transcriptional mechanisms.8 Notably, CEBPA is silenced by onco-
proteins targeting the 142 kb enhancer (homologous to 137 kb in
mouse), including RUNX1-RUNX1T149 and EVI1.50 Earlier mouse
studies revealed an indispensable role for Cebpa in differentiating
common myeloid progenitors into granulocyte-monocyte progeni-
tors. The profound neutropenia observed in our 137 kb enhancer-
deleted model confirms the absolute requirement for Cebpa in mye-
lopoiesis. We observed a 3-fold increase in Cebpb expression in
cKit1 Sca1- Cd341 myeloid progenitors, but this was insufficient
to compensate for the loss of Cebpa. Although C/EBPbeta can
substitute for C/EBPalpha during hematopoiesis when knocked into
the Cebpa gene locus,51 it cannot fully replace C/EBPalpha when
expressed from its native locus.

Several studies hinted toward an intrinsic role for Cebpa in myeloid
lineage priming of LT-HSCs.11,12 However, the bulk-sequencing
methods used in these studies do not meet the resolution required
to dissect the heterogeneity of the HSPC compartment. Using
single-cell RNA sequencing, we showed that Cebpa is barely
detectable in LT-HSCs during steady-state hematopoiesis. In con-
trast to previous studies, we found that Cebpa licenses myeloid-
primed HSPCs downstream of LT-HSCs for neutrophil lineage dif-
ferentiation. This suggests that other transcription factors account
for the myeloid lineage bias in LT-HSCs52 and activate the neutro-
phil lineage trajectory through binding the Cebpa 137kb enhancer
in a subset of HSPCs.9,53 Although Fluidigm C1 exhibits better sen-
sitivity54 and fewer dropout events55,56 than droplet-based
approaches, it remains possible that LT-HSCs with very low Cebpa
levels (below the detection threshold of 0.25 TPM) exist. The physi-
ological relevance of such low transcript levels, which could be
attributable to pervasive transcription, is unknown. It is equally possi-
ble that the few Cebpa-expressing LT-HSCs identified are the result
of technical noise or phenotypic misclassification.

In the enhancer-deleted models, LT-HSC loss was proportional to
the degree of neutropenia, suggesting a causal relationship
between them. Although an alternative explanation could be that
LT-HSCs are less sensitive to Cebpa levels than myeloid progeni-
tors, the normal production of lymphoid cells indicates that
LT-HSCs remain viable in the absence of Cebpa. This is further sup-
ported by the almost complete absence of Cebpa-expressing
LT-HSCs in healthy BM. Critically, LT-HSCs were also lost in mice
transplanted with 137 kbHOM BM: 40% of the transplanted mice
showed this severe phenotype, while the other 60% showed
signs of myeloid differentiation defects and dysplasia, sug-
gesting they were in an early stage of the same pathological

Figure 3. (continued) blue, and genes without significant differences are shown in gray. (B) Mean and SD of Cebpa expression in 137kbWT and 137kbHOM LSKs,

expressed as FPKM values. (C) Bar plot showing the top downregulated neutrophil-associated genes in 137kbHOM HSPCs compared with 137kbWT HSPCs, presented as

log2 fold change. (D) GSEA enrichment plot (left) showing upregulation (NES 5 2.22; FDR ,0.05) of the early myeloid-biased gene expression program in 137kbHOM

HSPCs. Heatmap (right) showing significant differentially expressed genes of this pathway in 137kbHOM vs 137kbWT HSPCs. (E) Bar plot showing downregulation of

LT-HSC quiescence-related pathways in 137kbHOM vs 137kbWT HSPCs, expressed as -log2 transformation of FDR. (F) GSEA enrichment plot (left) showing

downregulation (NES 5 22.52; FDR ,0.05) of the HSC quiescence pathway from3 in 137kbHOM vs 137kbWT HSPCs. Heatmap (right) of the significant differentially

expressed genes in this dataset. (G) GSEA enrichment plot (left) showing downregulation (NES 5 22.22; FDR ,0.05) of the ribosome pathway and heatmap (right) of

differentially expressed ribosomal Rsp and Rlp genes. (H) Mean and SD of Mycn expression in 137kbWT and 137kbHOM HSPCs, expressed as FPKM values. The

experiment was done in triplicates for each condition, 137kbWT (n 5 3) and 137kbHOM (n 5 3), and the heatmap values were calculated using Z-scores. SD, standard

deviation.
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process. These effects can only be explained by systemic con-
sequences triggered in the presence of neutropenia. Even in a
hybrid model in which a few LT-HSCs express Cebpa, the evi-
dence gathered in this study supports the hypothesis that the
major LT-HSC depletion in Cebpa null mice is an indirect con-
sequence of neutropenia.

To our knowledge, none of the previously reported neutropenia
mouse models26,57 demonstrated a depletion of LT-HSCs. A

likely explanation is that the differentiation block in these other
models (such as Sbds57 and Gfi158 mutants) often occurs at a
late stage of neutrophil differentiation. Niches supporting a late
stage of neutrophil differentiation are located distant from
LT-HSC niches. Given that the differentiation block in Cebpa
null BM occurs in early progenitors located proximally to
LT-HSC niches, the proposed systemic effect of neutropenia
onto the LT-HSCs might be specific to this model. Fifteen
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percent of patients with congenital neutropenia develop LT-HSC
clonal BM conditions such as myelodysplasia and AML,59,60 sug-
gesting LT-HSC impairment may also occur in human neutropenia.
Thus other models of neutropenia are required in order to under-
stand the mechanisms that lead to hematopoietic insufficiency in the
presence of neutropenia, such as Cebpa-137kb-Enh(f/f);Mx1-Cre
mice.12 The advantage of those mice with an inducible 137kb

enhancer-deletion system is that one could avoid enhancer deletion
during embryogenesis.

Loss of HSC quiescence is one of the hallmarks identified at the
transcriptional level in the 137kbHOM enhancer-deleted mice. The
activation of compensatory mechanisms forcing neutrophil differenti-
ation in myeloid-biased progenitors is a potential underlying cause.
For example, increased production of granulocyte colony-stimulating
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factor (G-CSF) in the absence of peripheral neutrophils is seen in
patients with neutropenia.61,62 G-CSF stimulates granulopoiesis
through binding to G-CSF receptor-expressing progenitors63 and
activates HSCs through attenuation of the Cxcr4-Cxcl12 retention
factors expressed on HSCs and BM stromal cells, respectively.64,65

Therefore, the neutropenia-GCSF-HSC activation loop can

eventually lead to exhaustion and consumption of the LT-HSC pool.
Other potential causes that might lead to LT-HSC quiescence exit
include metabolic stress caused by impaired differentiation,66 emer-
gency myelopoiesis due to infections acquired in the absence of
neutrophils,67 or the lack of mature neutrophils in the BM niche that
support HSC quiescence.68
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Figure 5. Systemic BM perturbations impair myeloid differentiation and deplete the LT-HSC pool of recipient mice. (A) Total BM cellularity per femur, corrected

for body weight in grams of each mouse. The mice transplanted with homozygous BM cells were divided into 2 subgroups based on disease severity: homozygous mild and

homozygous severe. Mice transplanted with WT BM were used as controls. (B) Histological examination using H&E on processed paraffin BM sections of recipient CD45.1

transplanted mice. (C) Absolute numbers of Mac11Gr11 neutrophils from BM of CD45.1 recipient mice. (D) Immunohistochemistry of S100A8 protein expression on

histological BM sections of recipient CD45.1 transplanted mice. (E) HSPC absolute numbers in BMs of CD45.1 recipient mice, calculated from LSK/lineage-negative/live
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SD, standard deviation.
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Myeloid niches in the BM have been reported to be located spatially
distant from niches occupied by HSCs69 or lymphoid progenitor
populations.70 In addition, the dendritic, neutrophil, and monocyte
lineages are also distantly located from each other and organized in
different sinusoid niches. Therefore, it is likely that the neutrophil-
primed progenitors derived from both donor and recipient share a
common environment that is potentially disturbed upon transplanta-
tion of 137kbHOM BM. The question that remains to be answered
is how transplanted 137kbHOM myeloid progenitors impair the dif-
ferentiation process of the host. Transcriptome analysis shows that
myeloid progenitors (cKit1 Sca1- Cd341) derived from the 137kb
enhancer-deleted model are metabolically reprogrammed and exhibit
downregulation of the oxidative phosphorylation (OXPHOS) path-
way (supplemental Figure S8A; supplemental Table 6), as com-
pared with normal myeloid progenitors that are dependent on
oxidative and mitochondrial metabolism.71 Shutting down OXPHOS
eventually activates the glycolytic pathway (known as the Warburg
effect), under the control of nuclear factors such as Mycn,72,73 a
critical metabolic regulator involved in cell competition. In line with
this, we find Mycn expressed at high levels in the 137kbHOM mye-
loid progenitors (supplemental Figure S8B). Such metabolic
changes impact cell-to-cell communication processes required for
normal differentiation programs,66 which may partially explain the
acquired neutropenia in the recipient when transplanted with
137kbHOM BMs.

Our study suggests that prolonged neutropenia induced perturba-
tions in localized myeloid niches and further caused systemic BM
changes resulting in LT-HSC loss, BM hypocellularity, and severe
dysplasia. Although the underlying mechanisms remain unclear, we
hypothesize that Cebpa null progenitors acquire metabolic reprog-
ramming that impairs differentiation and disturbs HSC quiescence.
Functional studies are required to investigate the intracellular role of
Cebpa in controlling the metabolic pathways related to neutrophil
differentiation and further elucidate how Cebpa null progenitors are

metabolically reprogrammed to inflict systemic changes in the BM.
From a clinical perspective, this phenomenon may explain how met-
abolic stress on HSCs might give rise to BM clonal disorders in a
subset of congenital neutropenia patients. Therefore, our study sets
a paradigm about the underlying mechanisms involved in the pro-
gression of neutropenia to clonal BM disorders.
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