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Intravascular large B-cell lymphoma (IVLBCL) is an extremely rare extranodal B-cell lymphoma char-
acterized by the selective growth of large lymphoma cells inside the lumens of small- and intermediate-
sized blood vessels. IVLBCL has an age-adjusted incidence of 0.095 per 1 000 000 and has a
propensity to involve the skin and central nervous system.1 Presenting symptoms in IVLBCL are highly
heterogenous and most commonly include cutaneous lesions. However, approximately one-third of
patients present with only transient neurologic changes, making IVLBCL challenging to diagnose,2 and
in some patients, a diagnosis may only be confirmed at autopsy. The biology of IVLBCL is not well
characterized, and the mechanism behind the unusual localization of lymphoma cells within the lumen of
the blood vessels is poorly understood.

Given the rarity of the disease and difficulties obtaining sufficient diagnostic material for study, limited
genomic data from IVLBCL is available. Shimada et al3 demonstrated genomic variants mainly using
cell-free DNA obtained from patients with IVLBCL using whole-exome sequencing. Schrader et al4 and
Suehara et al5 performed targeted sequencing in IVLBCL cases. The mutational spectrum of IVLBCL
from these studies shows similarities to the MCD6,7 subtype of diffuse large B-cell lymphoma (DLBCL),
characterized by MYD88L265P/CD79B mutation. MCD subtype is dominated by activated B-cell–type
DLBCL and has a significantly worse prognosis.7 MYD88L265P/CD79B mutation also typically coexists
at higher frequency in extranodal DLBCL.6

In this study, we identified 6 cases of IVLBCL in autopsy patients seen at Washington University in
St. Louis between 1996-2018. The diagnosis of IVLBCL was made antemortem in 1 case and post-
mortem in the remaining 5. Slides were rereviewed by a boarded hematopathologist (E.J.D.) and
2 neuropathologists (J.C. and P.J.C.) to confirm the diagnosis (Figure 1A-D; supplemental Figure 5). All
autopsies were performed under unrestricted permits for research studies. Areas involved by IVLBCL
were microdissected using 1 mm core punches of paraffin block with approximate tumor content of
>90%. Paired normal tissue was used from 3 patients. Exome libraries were prepared using extracted
DNA from involved areas in each case and sequenced on an Illumina NovaSeq 6000. Data were
analyzed using the Illumina DRAGEN Bio-IT Platform v3.8 workflow for single-nucleotide variant and
indel calling. Variants were annotated using Annovar.8 Variants were excluded if the variant allele fre-
quency was <2%, total depth was <8×, the variant was not predicted to alter protein coding, or the
variant was present in normal populations in >0.2% of individuals (Supplemental Materials). Copy
number alterations were analyzed using CNVkit.9

Mean exome coverage per patient was 144.9×. The median number of coding variants detected per
patient was 195 (supplemental Data). C>T transitions were the most common alteration (supplemental
Figures 1-2). All 6 IVLBCL cases had recurrent genetic aberrations that are part of the “MCD type” of
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Figure 2. Distinct genetic features of IVLBCL. (A) Cooccurrence of top 10 mutations detected in IVLBCL cohort. (B) Lollipop plot showing SNVs detected in switch 2 domain

of Rho GTPase family member RAC2 in 4 patients of IVLBCL. (C-D) Copy number loss of CDKN2A on chromosome 9p21 in 2 patients detected in our cohort. SNV, Single

nucleotide variants.
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DLBCL6 and genes commonly implicated in somatic hyper-
mutations in lymphomas10,11 (Figures 1 and 2A; supplemental
Figure 1; supplemental Table 1). Five of 6 cases had CD79B
(NM_001039933.3) mutations (4 variants at p.Y197 in exon 5 and
1 at p.L200 in exon 6) and had high cooccurrence with MYD88
p.L265P (n = 4), RAC2 (n = 4), and genes that are common tar-
gets of somatic hypermutations like IGLL5, ETV6, HLA-B, and
PIM13,11 (Figure 2A; supplemental Figure 3).
Figure 1. Histopathology and recurrent SNVs in IVLBCL. (A) H&E-stained section o

R68Q (NM 002872.5) (×20 original magnification shows large, atypical lymphocytes within

the vascular lumen (×100 original magnification). (C) A CD20 immunostain demonstrates

confirms that large cells are confined to the vascular lumen (×60 original magnification). (E

Horizontal lines represent genes, and the vertical line indicates a single patient. The type of

depicted in the bar plot on the left-hand side. The tumor mutation burden (TMB) for each

13 DECEMBER 2022 • VOLUME 6, NUMBER 23
RAC2 mutations were detected in 4 patients (66%) in the highly
conserved switch 2 domain12,13 (Figure 2B). Ras-related C3 bot-
ulinum toxin substrate 2 (RAC2) is a member of the ρ family
GTPases involved in several cellular functions.14-16 RAC2 is spe-
cifically expressed in hematopoietic lineage and regulates different
cytoskeletal responses and homotypic adhesion in B cells.15,17 A
similar pattern of mutations in the RAC2 gene was previously
reported in cell-free DNA in only 5 cases (23.8%) within 21
f the pituitary from case no. 4, which had a RAC2 switch 2 domain mutation p.

sized vessels). (B) High-power H&E image showing large, atypical lymphocytes within

large intravascular B cells (×20 original magnification). (D) A CD34 immunostain

) Oncoplot24 showing top cooccurring mutations detected in 6 patients with IVLBCL.

mutations is color-coded in the legend. Mean variant allele frequency for each gene is

patient is represented on the upper side of the plot. H&E, hematoxylin and eosin.
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patients with IVLBCL.3 Two large studies in primary DLBCL not
otherwise specified (NOS) by Schmitz et al7 (n = 574) and Chapuy
et al18 (n = 304) had only 10 cases with RAC2 mutations, of
which, 4 cases had mutations in the switch 2 domain, which is
between amino acid 56 to 71.19 Mutation in the switch 2 domain of
RAC2 (p.E62K) results in sustained active guanosine triphosphate
(GTP) bound RAC213,14 (supplemental Figure 4). RAC2 is acti-
vated on B-cell receptor (BCR) stimulation and acts as a link
between BCR activation to cell adhesion via its physical associa-
tion with B-cell linker protein.20 RAC2 plays an important role in the
adhesion of B cells to intracellular adhesion molecule-1 (ICAM-1),
and constitutively active RAC2 creates more adherent B cells.16 In
mice, RAC2 is one of the key genes responsible for lymphoma
progression.21

Three cases in our cohort had a mutation in the tumor sup-
pressor KLHL14, which has been previously reported in IVLBCL
cases by Shimada et al.3 KLHL14 inactivation in MCD cells
maintains NF-κB signaling even in the presence of ibrutinib.22

Interestingly, a genome-wide CRISPR/Cas9 screen comparing
effects of KLHL14 knockout on ibrutinib response in MCD-type
DLBCL cell line TMD8 revealed RAC2 among the top 10 genes
that sensitized to ibrutinib to a greater extent in wild-type
KLHL14,22 and thus, the loss of KLHL14 might be used to
predict ibrutinib treatment resistance in such cases. CDKN2A
deletion at 9p21 is commonly seen in activated B-cell DLBCL
and is associated with a poor prognosis.23 This deletion was
present in ~86% of the IVLBCL cases in a study by Shimada
et al using cell-free DNA.3 In our cohort, we detected 2 out of
6 cases with CDKN2A deletion (Figure 2C-D)

Given the low incidence of IVLBCL and difficulty in establishing the
diagnosis, we conducted a histologic review of sampled organs to
determine the most frequent sites of involvement. Only 1 of the
patients in our series had cutaneous disease documented before
or at autopsy. Most frequently involved sites included the liver,
heart, and kidney (5 of 6 cases). Central nervous system and
pituitary were involved in 3 whereas spleen, lungs, and adrenals
were involved in 2 of 6 cases. Organs with a low incidence of
involvement included testes, prostate, and uterus (supplemental
Data).

To our knowledge, this is the first study to evaluate histologically
confirmed IVBCL tissue by exome sequencing as opposed to
surrogate DNA sources such as cell-free DNA. Given the sparse
nature of involvement in most IVBCL biopsies, the use of post-
mortem tissue allowed for wide sampling of involved areas that
would be difficult to evaluate by antemortem biopsy. The study also
demonstrates the continued utility of hospital-based autopsies in
the genomic era. Using exome data obtained from 6 postmortem
patients with IVLBCL, we demonstrate that the mutation spectrum
of IVLBCL is most like the MCD type of DLBCL, characterized by
gain-of-function mutations targeting CD79B BCR subunit and Toll-
like receptor signaling adaptor MYD88. Recurrent mutations in the
switch 2 domain of RAC2, which are rare in DLBCL not otherwise
specified (NOS), were present in 4 of 6 patients in our cohort. The
lower frequency of RAC2 mutations in IVLBCL cases reported by
Shimada et al3 may be due to the use of surrogate circulating
tumor DNA as opposed to actual tumor tissue used in this study.
We hypothesize that activating RAC2 mutations in the background
6054 RESEARCH LETTER
of chronic BCR signaling may lead to increased adhesion and
sustained growth of B cells inside the lumen of the blood vessels.
Targeted panels analyzing IVLBCL should include RAC2 gene in
addition to the existing known recurrent mutations. Further studies
are required to determine the role of RAC2 mutations in a chronic
activated-BCR signaling state and the dynamics of interaction with
the vascular lumen.
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