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Hematopoietic stem cell transplant for Hurler syndrome: does using
bone marrow or umbilical cord blood make a difference?
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Children with severe mucopolysaccharidosis type I or Hurler syndrome (MPS-IH) have a severe
phenotype due to a deficiency in the lysosomal enzyme α-L-iduronidase, responsible for the catabolism
of glycosaminoglycans (GAGs). The resulting effect is an accumulation of heparan sulfate and der-
matan sulfate, leading to the clinical manifestations of the disease: short stature, progressive intellectual
disability, dysostosis multiplex, cardiac complications, hepatosplenomegaly, and other organ system
involvement.1 MPS-IH–affected individuals undergo hematopoietic cell transplant (HCT) and enzyme
replacement therapy (ERT) as treatments to provide a source of the missing enzyme.2,3

The standard treatment approach forMPS-IH has been to expediently proceed toHCTwith the best available
donor. There has been debate on whether umbilical cord blood (UCB) is a superior stem cell source
compared with bone marrow (BM) for patients with Hurler syndrome in terms of absolute enzyme activity,
which may be plausible given the biologic distinctness of each cell source,4 in addition, prior analyses have
been confounded by testing being performed at different laboratories and by different methods.5,6 We have
rigorously measured leukocyte and plasma iduronidase (IDUA) activity as well as urine GAG-related bio-
markers in patients with MPS-IH after HCT in a single institution–single laboratory analysis.

We performed biomarker analysis on long-term surviving patients with MPS-IH who had received UCB
(n = 33) or BM (n = 8) grafts after myeloablative conditioning from 1990 to 2019 (supplemental Table 1).
Themedian age at HCTwas nearly identical between both groups at 1.1 years and 1.2 years for UCB and
BM, respectively. The era of transplant for the BM recipients had a greater range, as BM as a stem cell
source predated the widespread use of UCB as a donor source. Subsequently, the time to most recent
follow-up was different at 6.6 years for UCB and 16.5 years for BM recipients, respectively. Given the
possible effect of age on urine biomarker excretion, we determined the median age at the most recent
follow-up for UCB recipients at 8.1 years and 18.1 years for BM recipients (see supplemental Material for
more details). In all cases, informed written consent from a parent or guardian was obtained from all
patients on Institutional Review Board-approved protocols at the University of Minnesota.

At the most recent follow-up, we found no difference in leukocyte IDUA levels between UCB and BM
recipients (P = .9378) (Figure 1A). There were 4 UCB recipients that did not achieve complete myeloid
engraftment (defined as >85% donor in CD15+ or CD33+ cells). Leukocyte IDUA tended to be lower in
those with mixed myeloid chimerism (P = .0727) (Figure 1B), and excluding them did not significantly
alter the comparison between groups (P = .6897) (Figure 1C). We found no difference in plasma IDUA
activity between UCB and BM recipients (P = .4865) (Figure 1D). Like leukocyte IDUA, plasma IDUA
also was lower in those with mixed myeloid chimerism (P = .0275) (Figure 1E), and excluding them did
not significantly alter the comparison of the means of plasma IDUA activity (P = .2746) (Figure 1F).
Several reports suggest UCB recipients engraft “better” vs BM recipients.6-9 An analysis from Boelens
and colleagues showed that stem cell source did not predict graft failure, though UCB recipients had
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Figure 1. Long-term assessment of iduronidase activity in patients with MPS-IH after HCT. (A-C) Leukocyte IDUA activity in UCB and BM recipients. Black dots

represent individuals with myeloid chimerism <85%, and the actual myeloid chimerism percentages are shown in parentheses. Note, of the 4 UCB patients with <85% myeloid

chimerism, 2 were 6/6 HLA-matched, and 2 were 5/6 HLA-matched. (D-F) Plasma IDUA activity in UCB and BM recipients. Black dots represent individuals with myeloid

chimerism <85%. Shown are the means and standard deviation; P values are derived from a Student’s t test. (G,H) IDUA levels over time from HCT with P values from linear

regression analyses for each cohort.
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higher levels of complete (>95%) donor engraftment.7 The patients
with mixed chimerism in our study had 5/6 to 6/6 level matching,
so other factors likely contributed to their mixed chimerism
(we speculate on viable cell dose, antibody formation, and
6024 RESEARCH LETTER
microenvironment as considerations). In addition, the number of
BM recipients in these analyses is relatively small as a possible
contributor. Finally, we observed stable long-term iduronidase
activity over several decades (Figure 1G-H).
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Urine heparan sulfate-derived nonreducing ends (NREs) have been
previously shown to be a sensitive marker of GAG storage.10-12

The NREs uI0S0 and I0S6 were not different between UCB and
BM recipients (P = .2337 and P = .2453, respectively) (Figure 2A-
B). Assessment of urine heparan sulfate (uHS) and urine total GAG
(uGAG) content found them to be lower in BM recipients. Spe-
cifically, uHS were 1.06 and 0.78 mg/mmol Cr in UCB and BM
recipients, respectively (P = .0413) (Figure 2C). Total uGAG were
20.58 and 9.85 mg/mmol Cr, respectively (P = .0059) (Figure 2D).

Given that urine glycosaminoglycan excretion decreases with age,
and the BM recipients were further out from transplant, we plotted
the biomarkers by age after transplant as a surrogate for follow-up
time after transplant along with the range for unaffected individuals
Figure 2E-G. Although uHS showed a continuous decline by age,
no patient was in the normal (unaffected) range. For total uGAG,
only 3 patients were found to be within the normal range for age
after transplant. Overall, there was an inverse correlation between
age and uHS and total uGAG for the entire cohort (r, −0.3879; P =
.0342; and r, −0.7188; P < .0001, respectively). Evaluation of
uI0S0 and uI0S6 showed similar results, and no patient reached
the normal range for either of these NREs (Figure 2G-H).

“Early” decreases in urine GAG-based biomarkers (within the first
year after HCT) likely reflect a reduction in storage material due to
successful donor cell engraftment. While age and follow-up time
are colinear variables, our data suggest urine GAG-related bio-
markers may continue to decrease long after HCT. Wynn and
colleagues also reported a continued decrease in urine dermatan
sulfate/chondroitin sulfate going out to 3.5 years after HCT.13,14

Although the long-term decreases in urine biomarkers need to be
considered with the age-related reduction in uGAG that occurs
naturally, which are likely a result of growth, kidney function, and
metabolism,15-18 it should be noted that MPS-IH children have very
little growth after 5 years of age, which may confound the issue.19

Additionally, there perhaps are “hard to reach” areas in terms of
donor engraftment/enzyme delivery, which includes the bones and
joints that could contribute to an overall long and slow process of
GAG clearance in patients with MPS-IH after HCT, perhaps even
occurring over the lifetime of a patient.

Multivariate correlation analyses showed very positive correlations
among urine biomarkers, as one might expect (Figure 2I-J). Of note,
leukocyte IDUA had a stronger negative correlation with urine
biomarkers (r, −0.22 to −0.47) than did plasma IDUA (r, −0.01
to −0.27). Interestingly, the strongest (negative) correlation was
between leukocyte IDUA and uHS with a significant linear asso-
ciation, as shown in Figure 2K (P = .0237).
Figure 2. Long-term assessment of urinary glycosaminoglycan-related biomarker

D) Urine glycosaminoglycan-related biomarkers. I0S0 and I0S6 are nonreducing ends. uH

disaccharides, D0A0 + D0S0. Total uGAG is the total glycosaminoglycan determined in t

standard deviation; P values are derived from a Student’s t test. (E-H) Urinary biomarkers ov

values derived from ordinary least squares linear regression analyses are shown in each pan

from a curve fitting a logarithmic function (log [Y]) across the entire cohort. The yellow boxe

0.624 mg/mmol Cr; >10 years: 0.007 to 0.422 mg/mmol Cr. (F) The normal ranges are: age

years: 2.4 to 10.2 mg/mmol Cr; ≥14 years: 0.0 to 7.1 mg/mmol Cr. (G) The normal ranges a

normal ranges are: age 1 to 10 years: ≤0.02 mg/mmol Cr; >10 years: ≤0.01 mg/mmol/Cr

biomarkers; the color scale shows the strength of the correlation coefficient. (J) shows the

regression between leukocyte IDUA and uHS. R2 = 0.1818. P = .0237.
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Higher IDUA linked to lower uHS, along with IDUA being higher in
fully engrafted patients, suggests that patients with mixed chime-
rism may not clear GAG as well as fully engrafted patients.
Furthermore, even in the setting of full engraftment, very few
patients achieved a reduction in urine biomarkers into the unaf-
fected range. One could speculate that it may be possible for urine
GAG-related biomarkers to be driven lower through IDUA over-
expression or supplemental ERT, but the clinical utility of this is yet
unknown.

In conclusion, our data support that the choice of stem cell source
for patients with MPS-IH should depend on the level of human
leukocyte antigen-matching, cell dose, the timing of the transplant,
and donor availability. Additionally, the biomarkers presented here
represent novel tools that can be explored in relation to clinical
outcomes in future studies.
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