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Plasmablastic lymphoma (PBL) represents a clinically heterogeneous subtype of

aggressive B-cell non-Hodgkin lymphoma. Targeted-sequencing studies and a

single-center whole-exome sequencing (WES) study in HIV-positive patients recently

revealed several genes associated with PBL pathogenesis; however, the global mutational

landscape and transcriptional profile of PBL remain elusive. To inform on

disease-associated mutational drivers, mutational patterns, and perturbed pathways in

HIV-positive and HIV-negative PBL, we performed WES and transcriptome sequencing

(RNA-sequencing) of 33 PBL tumors. Integrative analysis of somatic mutations and gene

expression profiles was performed to acquire insights into the divergent

genotype–phenotype correlation in Epstein-Barr virus–positive (EBV1) and EBV– PBL. We

describe a significant accumulation of mutations in the JAK signal transducer and

transcription activator (OSMR, STAT3, PIM1, and SOCS1), as well as receptor

tyrosine-kinase RAS (ERBB3, NRAS, PDGFRB, and NTRK) pathways. We provide further

evidence of frequent perturbances of NF-kB signaling (NFKB2 and BTK). Induced

pathways, identified by RNA-sequencing, closely resemble the mutational profile

regarding alterations accentuated in interleukin-6/JAK/STAT signaling, NF-kB activity,

and MYC signaling. Moreover, class I major histocompatibility complex–mediated antigen

processing and cell cycle regulation were significantly affected by EBV status. An almost

exclusive upregulation of phosphatidylinositol 3-kinase/AKT/mTOR signaling in EBV1 PBL

and a significantly induced expression of NTRK3 in concert with recurrent oncogenic

mutations in EBV– PBL hint at a specific therapeutically targetable mechanism in PBL

subgroups. Our characterization of a mutational and transcriptomic landscape in PBL,

distinct from that of diffuse large B-cell lymphoma and multiple myeloma, substantiates

the pathobiological independence of PBL in the spectrum of B-cell malignancies and

thereby refines the taxonomy for aggressive lymphomas.
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Raw fastq files have been deposited in the European genome-phenome archive
(EGA) under the accession number EGAD00001006795. The samples
PBL_WES_005200 (EGA ID: EGAR00002570178) and PBL_WES_004923 (EGA

ID: EGAR00002570203) were retrieved from the same patient, at the same time
point, but from 2 different locations and uploaded to EGA. In the current study, only
PBL_WES_004923 was used for analysis.

The full-text version of this article contains a data supplement.
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Key Points

� WES coupled with
RNA-sequencing of a
large PBL cohort
reveals genetic drivers
of oncogenesis in
RTK-RAS, NF-kB, and
JAK/STAT signaling.

� The mutational
landscape and SCNV
data emphasize the
distinctness of EBV1/
EBV– PBL from both
DLBCL and multiple
myeloma.
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Introduction

Plasmablastic lymphoma (PBL) is a rare and clinically aggressive
large B-cell lymphoma of post-germinal center origin.1 Both immuno-
blastic and/or plasmablastic morphology alongside immunohisto-
chemical features of terminal B-cell differentiation (CD79a1,
MUM-11, CD38/CD1381; CD20–, PAX5–) illustrate its biological
and clinical behavior intermediate between diffuse large B-cell
lymphoma (DLBCL) and multiple myeloma (MM).2-4 According to
chromogenic in situ hybridization, Epstein-Barr virus (EBV)-encoded
RNA is detectable in �70% of cases.

PBL exhibits a pronounced incidence in HIV-positive patients,
although observations regarding the presence of an underlying HIV
infection in �50% to 60% of cases partially contradict initial reports
claiming a near pathognomonic association.3 The disease can
indeed also occur in patients with immunodeficiency of other cause
(eg, secondary to organ transplant recipients or age-related immu-
nosenescence) but is also occasionally encountered in immunocom-
petent individuals.5-7 The incidence of PBL accounts for �2% of all
lymphomas arising in patients with AIDS.7

Due to the rarity of PBL and the ongoing lack of an evidence-based
standard treatment approach, resulting from a deficiency in prospec-
tively gathered clinical data, translational research remains challeng-
ing.7,8 Compared with other aggressive B-cell lymphomas, PBL
outcomes are dismal. Despite recent prognostic advances with
intensified treatment approaches and alternative therapeutic options,
including CD38-directed monoclonal antibody, proteasome inhibi-
tors, and immunomodulatory treatment strategies, these are highly
limited in their applicability in elderly and frail patients, warranting
the need for alternative, if possible, specifically targeted therapeutic
approaches.2,9,10

The most frequently detected chromosomal aberrations are low-
level amplifications and/or translocations involving MYC, frequently
juxtaposing MYC to the immunoglobulin heavy chain locus, present
in approximately one-half of cases.11-13 Comparative genomic
hybridization studies revealed a copy number variation profile, inter-
mediate between DLBCL and MM, while favoring an association
with the former.14

PBL was shown to exhibit a transcriptional profile distinct from
DLBCL regarding B-cell receptor signaling and targets of the tran-
scription factors MYC and MYB.15 Moreover, preliminary studies
suggested a significant impact of EBV status on gene expression
profiles affecting T-cell activation signatures and mechanisms of
immune escape.16,17

Recently, in a targeted sequencing study, Garcia-Reyero et al
reported on an elevated frequency of PRDM1/BLIMP1 and STAT3
mutations together with other genetic aberrations, including muta-
tions in BRAF and NOTCH signaling.18,19 According to another tar-
geted sequencing study that focused on a panel of oncogenes
implicated in large B-cell lymphomas, the overall mutational burden
in PBL was markedly low. Only 60% of patients were thus shown
to harbor oncogenic mutations.19 Together with its morphologic and
immunophenotypical peculiarities, this finding suggests the pres-
ence of alternative drivers of lymphomagenesis in PBL that are dis-
tinct from those associated with other aggressive B-cell lymphomas.
Of note, several recent studies on the mutational landscape of PBL

hinted at pervasive mutations in JAK-STAT3 and RAS-MAPK as
well as noncanonical NF-kB signaling. However, these studies,
including 15 cases studied by using whole-exome sequencing
(WES), were exclusively investigating HIV-positive patients or PBL
as a posttransplantation lymphoproliferative disease.20-22 Most
recently, in an amplicon panel–based and array-based study, Ramis-
Zaldivar et al23 provided a first report, investigating divergences
between HIV-positive and HIV-negative cases alongside the impact
of an underlying EBV infection. They observed that EBV-negative
PBL cases harbored a higher mutational and copy number load and
more frequent TP53, CARD11, and MYC mutations, whereas EBV-
positive PBL tended to have more mutations affecting the JAK-
STAT pathway.

Although previous studies have hinted at a limited number of potential
genetic drivers in PBL lymphomagenesis, a comprehensive characteri-
zation of the genomic and transcriptomic landscape in a representative
cohort of patients is lacking thus far. The current study combined
WES and RNA sequencing (RNA-seq) of 33 PBL samples. Through
the integrated analysis of mutational and gene expression data, we
outline oncogenic drivers, copy number alterations, and pathway per-
turbations. We thus refine the molecular taxonomy of terminally differ-
entiated B-cell malignancies and substantiate the independent role of
PBL, distinct fromDLBCL andMM.

Materials and methods

Case selection and clinicopathologic characteristics

In a retrospective approach, we reviewed our institutional database
to identify patients with PBL whose primary diagnostic biopsy speci-
men had been referred to the reference center for Haematopathol-
ogy University Hospital Schleswig Holstein Campus L€ubeck and
H€amatopathologie L€ubeck for centralized histopathologic panel eval-
uation between January 1998 and December 2019. Further clinico-
pathologic characteristics are presented in the supplemental
Materials and Methods.

This retrospective study was approved by the ethics committee of
the University of L€ubeck (reference no. 18-311) and conducted in
accordance with the Declaration of Helsinki. Patients at the Refer-
ence Center for Hematopathology have provided written informed
consent regarding routine diagnostic and academic assessment,
including genomic studies of their biopsy specimen in addition to
transfer of their clinical data.

Extraction of nucleic acids, WES, and RNA-seq

Genomic tumor DNA and tumor RNA were each extracted from 3
formalin-fixed, paraffin-embedded (FFPE) tissue sections of 5 mm
thickness using a Maxwell RSC DNA FFPE kit and Maxwell RSC
RNA FFPE kit (both Promega). WES was performed by using a
hybrid capture approach with the SureSelect Human All Exon V6
library preparation kit (Agilent Technologies) followed by massively
parallel sequencing of enriched exonic sequences on a NovaSeq
platform (Illumina). All samples with successful library preparation
(33 of 41) were taken forward to sequencing.

PBL samples were sequenced to an average depth of 2013
(6503; median, 2033). Sequencing was performed at Novogene
(UK) Co., Ltd.
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Raw fastq files have been deposited in the European genome-
phenome archive (EGA) under the accession number
EGAD00001006795. The transcriptional profile of PBL was investi-
gated by RNA-seq, when exome sequencing had previously been
conducted successfully. A Ribo-Zero Magnetic Kit (Human, Mouse,
Rat) (Illumina) was used for ribosomal RNA depletion, and library
preparation was performed by using the NEBNext UltraT Directional
RNA Library Prep Kit (New England BioLabs). Sequencing in cases
with successful library preparation (20 of 33) was performed at
Novogene (UK) Co., Ltd., and all genomic studies were guided by
the principles of the European Medicines Agency International
Council for Harmonisation of Technical Requirements for Registra-
tion of Pharmaceuticals for Human Use guideline E18 on genomic
sampling and management of genomic data.

Variant calling

As described in Gebauer et al,24 raw fastq reads trimmed (adapter
and quality values) using FASTP

25 (version 0.20.0; minimum length,
50 bp; maximum unqualified bases, 30%; trim tail set to 1) and
trimmed reads were mapped to GRCh37/hg19 by using BWA MEM

(version 0.7.15).26 Resulting SAM files were cleaned and sorted
and converted into BAM format using PICARD TOOLS (version
2.18.4). Next, mate-pair information was fixed, duplicates were
removed, and base quality recalibration was performed by using
PICARD TOOLS

27 and dbSNP version 138. Single nucleotide variants
(SNVs) and short insertions as well as deletions (indels) were identi-
fied following the best practices for somatic mutation calling pro-
vided by GATK.28 Briefly, the GATK MUTECT229 (version 4.1.5.0)
algorithm was applied to all BAM files with GNOMAD variants as
germline resource and the b37 exome panel data as a panel of nor-
mal, capturing the expected repertoire of germline variants to be
expected in a Central European study population. Afterward, FFPE
read orientation artifacts were identified and removed according to
GATK guidelines. Filtered variants were annotated by using
ANNOVAR30 (24 October 2019 version). Coverage for reference
and alternative alleles for each variant was extracted by using VCF-
QUERY (VCFTOOLS version 0.1.1331). The top 20 frequently mutated
genes (FLAGS32) were removed from further analysis. Somatic var-
iants were filtered as follows: minimum coverage of 40, minimum
variant allele frequency of 10%, and only variants with a frequency
,0.001 in 1000 genomes, GNOMAD, or ExAC were considered for
subsequent downstream analysis. To identify genes that are more
often mutated than expected, MUTSIGCV (version 1.41)33 was
applied, and potential driver genes were identified using P , .05.
Selected mutations in PRDM1, SOCS1, STAT3, and TP53 in
samples from which sufficient tissue was available for confirmatory
investigations were subjected to either Sanger sequencing or
amplicon-based next-generation sequencing (supplemental Figure
1; supplemental Table 2).

Details on data analysis regarding copy number aberrations, network
diffusion analysis, gene expression profiling, and fusion gene detec-
tion, as well as subsequent statistical methods, are provided in the
supplemental Materials and Methods.

Results

Clinical characteristics of the study group

We collected 41 cases of PBL at diagnosis with sufficient FFPE tis-
sue samples for molecular studies (age range, 29-86 years); 33

cases were included in the final analysis, following 8 dropouts due
to insufficient yield at library preparation for WES. An underlying
HIV infection was detectable in 14 (42.4%) of 33 patients, and
PBL tumor cells were shown to express EBV-encoded RNA in 20
(60.6%) of 33 cases. HIV-positive patients were significantly youn-
ger (mean age, 44 vs 70 years; P 5 .0001) and had a significantly
lower international prognostic index (IPI; P 5 .006) and a trend
toward lower-stage disease at diagnosis (P 5 .076). Whenever
evaluable, human herpesvirus-8 was absent (immunohistochemistry,
n 5 6 [18.2%]), and serologic test results were available in 9
(27.3%) cases. The majority of patients in our study were male (23
of 33 [69.7%]) and presented with advanced-stage disease (19 of
33 stage III/IV [57.6%]) and an adverse prognostic constellation
(18 of 33 IPI .2). Most patients received an intensive CHOP-like
(cyclophosphamide, doxorubicin, vincristine, and prednisolone) ther-
apeutic front-line regimen (21 of 33 [63.6%]), resulting in an overall
response rate of 72.7% (24 of 33). Median progression-free and
overall survival was 9 and 22 months, respectively. Two elderly, frail
patients refused any type of anticancer treatment and rapidly died
due to PBL progression.

Baseline characteristics of PBL cases included in the current study
are briefly summarized in Table 1. Treatment outcome in our cohort
was dismal overall, although slightly more favorable in the HIV-
positive subgroup (supplemental Figure 2) as could be expected
from previous studies (median overall survival, 19 vs 45 months) as
significantly more HIV-negative patients received an intensive
CHOP-like first-line regimen (P 5 .001).7,34 Most samples (except
case 01) included in the current study were previously investigated
for the impact of MYC gene rearrangements and amplifications on
clinical outcome.34Beyond these observations, we detected no sig-
nificant association between an underlying HIV or EBV infection and
any of the other reported clinicopathologic features.

Mutational landscape of PBL identified by WES

To characterize the mutational landscape in an extensive cohort of
PBL cases, WES was successfully performed in 33 patient-derived
tumor biopsy specimens. Matched germline DNA was not available
for comparative analysis. We therefore applied the analytical frame-
work outlined earlier to analyze WES data in the absence of paired
germline DNA. After the primary identification of SNVs and indels in
individual samples and subsequent filtering to correct for FFPE-
derived artifacts and spurious mutations, we applied the MutSigCV
algorithm and thereby initially identified 110 potentially significant
candidate driver genes (P , .05) (supplemental Table 3).33

At an overall low to intermediate tumor mutational burden (median,
3.273; range, 1.377-9.870mutations/Mbase), we describe 8450 pre-
sumably harmful somatic mutations (cutoffs are discussed in theMate-
rials and methods) involving 4505 genes after variant filtering. Of
these, SNVs and indels represented 66% of the mutations (5219
SNVs for 4505 genes). Among them, missense mutations were the
most frequent alterations (91%), followed by nonsense (4%) and
splice-site (2%) mutations; indels posed 2% of somatic mutations
(Figure 1). An oncoplot showing significantly mutated geneswith alter-
ations in $3 cases is provided in Figure 2A. Confirmatory Sanger
sequencing or amplicon-based next-generation sequencing identified
variants, previously detected by WES on all investigated occasions
(supplemental Figure 1; supplemental Table 2).
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We observed no evidence of microsatellite instability (MSI)-
associated hypermutations. This finding appears similar to results
obtained in DLBCL (0.3%) but unlike and significantly lower than other
aggressive lymphomas (eg, primary mediastinal B-cell lymphoma).35

All PBL cases harbored mutations in genes implicated in oncogenesis
according to our bioinformatics annotations. Upon integrated analysis
of molecular and clinical data, we investigated the 17 most frequent
genomic alterations identified in the current study (mutations with a
frequency $15% in the study cohort) for their impact on overall sur-
vival and progression-free survival. We identified a significant impact
(P , .05) of CSMD3 mutational status (supplemental Figure 3) on
both overall survival and progression-free survival; upon correction for
multiple testing according to the Bonferroni method, an additional
effect regarding ZNF462 mutation status failed to reach statistical sig-
nificance, and neither gene was significantly mutated according to the
subsequent MutSigCV analysis. Finally, within a Cox proportional haz-
ards model, CSMD3 mutation status failed to display prognostic inde-
pendence from established IPI factors, which prompts the need for
additional, preferably prospective clinical correlations of mutational
data in PBL, in the search for molecular prognosticators.

Recurrent copy number alterations in PBL

We investigated our PBL cohort for somatic copy number variants
(SCNVs) using the CONTROL-FREEC (v11.4)36 algorithm in
tumor-only mode followed by GISTIC2.0 (version 2.0.23)37 analysis,
while excluding chromosomes X and Y as well as common CNVs
according to theBroad Institute’s panel of normal (supplementalMate-
rials). Subsequently, these observations were cross-referenced with
the loci of known oncogenes, tumor suppressors, and elements of
potential oncogenic pathways.38 We found recurrent copy number
gains in oncogenes (eg,MEF2B andCSF1R) previously implicated in
lymphomagenesis and previously reported to be incidentally amplified
in a variety of human cancers, as well as copy number losses in tumor
suppressors such as NPM1 (Figure 2B-C); common CNVs, as

Table 1. Baseline clinicopathologic characteristics in patients with

PBL

Characteristic PBL group (N 5 33)

Age, median (range), y 61.5 (29-86)

Sex

Female 10 (33.3%)

Male 23 (69.7%)

HIV status

HIV-positive 14 (42.4%)

HIV-negative 19 (57.6%)

EBV status

EBV-positive 20 (60.6%)

EBV-negative 13 (39.4%)

HIV- and EBV-positive 13 (39.4%)

R-IPI

0 4 (12.1%)

1-2 11 (33.3%)

.2 18 (54.5%)

Stage (Ann Arbor)

I 6 (18.2%)

II 8 (24.2%)

III 8 (24.2%)

IV 11 (33.3%)

B symptoms

Yes 15 (45.5%)

No 18 (54.5%)

Chromosomal aberrations

MYC overall 26 (78.8%)

MYC amplification 12 (36.4%)

MYC split (1/2 amplification) 14 (42.4%)

CD30 by immunohistochemistry

Positive 7 (21.2%)

Negative 26 (78.8%)

Extranodal sites

0 4 (12.1%)

1-2 27 (81.8%)

.2 2 (6.1%)

ECOG performance status

0-2 25 (75.8%)

.2 8 (24.2%)

Lactate dehydrogenase

Normal 10 (30.3%)

Elevated 23 (69.7%)

CNS involvement at diagnosis

Yes 0 (0.0%)

No 33 (100.0%)

Front-line therapy regimen

CHOP-like 21 (63.6%)

Table 1. (continued)

Characteristic PBL group (N 5 33)

R-based 5 (15.2%)

Others* 8 (24.2%)

Refusal of treatment 2 (6.1%)

Front-line therapy response rates (n 5 32)

CR 10 (30.3%)

VGPR 4 (12.1%)

PR 5 (15.2%)

SD 5 (15.2%)

PD 7 (21.2%)

CHOP, cyclophosphamide, doxorubicin, vincristine, prednisolone; CNS, central nervous
system; CR, complete response; ECOG, Eastern Cooperative Oncology Group; GCB,
germinal-center B-cell like; PD, progressive disease; PR, partial remission; R, rituximab;
R-IPI, revised-international prognostic index; SD, stable disease; VGPR, very good partial
remission.
*Indicates other regimen (eg, bendamustine) or palliative cytoreductive treatment.
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defined by the aforementioned referenced panel of normal, were iden-
tified in the expected frequencies.39-41 Additional information on mini-
mal common regions alongside all affected genes within a given
SCNV is provided in supplemental Table 4.

Significantly mutated candidate driver genes and

mutational signatures

The list of significant candidate driver genes included several genes
previously implicated in PBL pathogenesis, such as STAT3 and
PRDM1 alongside mutational drivers in other B-cell lymphoprolifera-
tive disorders such as DLBCL and MM (NRAS, BRAF, and TP53)
(Figure 2). We observed no subtype-specific predominance regard-
ing MYC, EBV, and/or HIV status of statistical significance in our
limited cohort. However, STAT3 mutations were found to be signifi-
cantly enriched in HIV-positive PBL (Fisher’s exact test, P 5 .0463),
whereas they were rare in HIV-negative patients, hinting at partially
distinct molecular paths of pathogenesis. Similar trends bordering
on statistical significance of enrichment were observed in LNP1 for
HIV-positive patients as well as TP53, PRDM1, and IRS4 in HIV-
negative patients. Significantly mutated, putative driver genes in
PBL identified according to our pipeline exhibited a high degree of
estimated pathogenicity with a median combined annotation depen-
dent depletion (CADD) score of 25.45.

To further characterize the mutational profiles driving PBL pathogene-
sis, we performed mutational signature analysis as recently described
in DLBCL and other aggressive B-cell lymphomas.35,42 Here, we
identified the presence of 2 signatures, SBS2 (indicating impaired
activity of the AID/APOBEC family of cytidine deaminases) and
SBS6 (associated with defective DNA mismatch repair), with an
overall predominance of the latter (supplemental Table 5). This phe-
nomenon was significantly accentuated in EBV-negative PBL cases
(supplemental Figure 4). Unlike our previous work on PBL and MYC
in a more comprehensive, clinically annotated cohort, no correlation
was observed between MYC status and overall survival (P 5 .62) or
progression-free survival (P 5 .91), both when analyzing amplifica-
tions and translocations together or separately.34 The number of
mutations was similar betweenMYC wild-type andMYC altered sam-
ples (again, translocations and amplifications; Wilcoxon test, P 5

.44). MYC rearrangements were not correlated with EBV status (x2

test, P5 .1493). Regarding genes andMYC aberrations, OGFOD2,
CASC4, and CTDSPL2 were found to be mutated more often in
MYC wild-type samples (4 of 7 vs 2 of 25; fdr 5 0.0122, fdr 5
0.0258, fdr 5 0.0258). Furthermore, the expected association
between gene expression of MYC and cytogeneticMYC status failed
to reach statistical significance within our limited sample set (Student
t test, P 5 .095); splitting MYC status into amplification and translo-
cation also revealed no statistically significant differences (Student t
test, P. .05).

Deregulation of JAK/STAT, RTK-RAS, NF-kB, and

phosphatidylinositol 3-kinase/AKT/mTOR signaling

in PBL by distribution of mutations and network

diffusion analysis

The predicted functional impact of all reported mutations is shown
in supplemental Table 6 (CADD score) as well as protein domain
annotations for SNVs and indels. Selected MutSigCV genes
showed an average CADD score of 22.2 (standard deviation, 8.1;
median, 23.4; minimum, 1.21; maximum, 37.0). We further investi-
gated the putative functional relevance of mutations proven to be
significant upon MUTSIGCV analysis. In this context, we matched our
results from MUTSIGCV analysis with the pfam database to describe
the impact on the protein function in more detail. Supplemental
Table 6 summarizes the impact of SCNVs on post-transcriptomic
changes. Here, we identified 4754 (64.8%) missense mutations,
231 (3.1%) nonsense mutations, 5 (0.1%) nonstop mutations, 121
splice site mutation, and 108 frame shift mutation harboring the
potential to affect protein folding and the sequence of amino acids.
Focusing on the most frequently mutated genes in our PBL cohort,
by way of example, we were hereby able to confirm the relevance of
STAT3, HIST1H1E, PRDM1, TP53, NRAS, and PIM1 mutations on
protein functions.

The STAT3 protein plays a key role in cell growth and apoptosis.43

Our results indicate relevant disruption of the STAT3 binding
domain (pfam 02864) and the SH2 domain in STAT3 (cd10374).44

The proto-oncogene NRAS encodes a protein with intrinsic guano-
sine triphosphatase activity, which is involved in the regulation of
cell growth and division. Thus, NRAS mutations promote carcino-
genesis.45 Here, we identified frequent NRAS missense mutations

Variants per sample median: 126
380

253

Missense mutation
Nonsense mutation

Nonstop mutation

Splice site
Frame shift ins
In frame ins

126

0

Figure 1. Number and type of mutations per sample.
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affecting the H-N-K Ras–like domain (cd04138). Mutations in this
domain are known to lead to the dysregulation of cell growth.46 We
also found frequent TP53 missense mutations affecting the p53
DNA-binding domain (cd08367). The relevance of this mutation on
carcinogenesis has been reported plurally.47

Cumulatively, we detected genetic lesions, putatively resulting in
gain of function in JAK/STAT signaling, in 64% of PBL cases.
Expanding on previously reported STAT3 mutations in PBL, we fur-
ther identified recurrent mutations and/or SCNVs affecting OSMR,
PIM1, and ITGA4. Although JAK/STAT signaling was the predomi-
nant target of somatic mutation in PBL, the overall distribution
regarding the mutational signature within the pathway was heteroge-
neous (33 mutations in 24 genes in 21 patients) (supplemental Fig-
ures 5 and 6). Several genes, including OSMR, were previously

implicated in alternative signaling pathways, including the enhance-
ment of Ras/Raf/MAPK signaling, rendering the gene a rather pro-
miscuous target of pathway allocation. Most of these genetic
alterations have been previously reported to constitute gain-of-func-
tion mutations resulting in constitutive JAK/STAT pathway activation
in various types of T cells as well as primary or central nervous sys-
tem/or central nervous system B-cell lymphoma and MM.35,48-50

Merging mutational and SCNV data, we observed alterations
that putatively resulted in gain of function in RTK-RAS signaling
in 76% of patients (supplemental Figures 5, 6, and 8). Activat-
ing mutations affecting ERBB3 and NRAS were most frequent
in our series and have been previously described in a number of
other tumor types, including MM, whereas an amplification of
PDGFRB was found to be the overall dominating genetic lesion

Figure 2. Genomic andmutational landscape in plasmablastic lymphoma. (A) An oncoplot of genes mutated in at least 3 PBL samples after PBLMutSigCV analysis

(P, .05) with allele frequencies added (left bar) and samples affected (right bar). Different types of mutations are color coded. In addition, covariates are shown below the plot for

each sample. EBV-encoded RNA [EBER] EBV/HIV: neg, negative; pos, positive. MYC fluorescence in situ hybridization (FISH): ab, aberrated; NA, not available; wt, wild type.

Progress: PD, progression disease; R, remission; SD, stable disease. (B) Location of SCNVs along the genome (red bars denote gains; blue bars denote losses; gene names refer

to affected oncogenes and genes related to oncogenetic pathways). (C) Selected genes (oncogenes and oncogenetic pathway genes) affected by SCNVs.
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in this pathway.51,52 A widespread mutational pattern was
observed, affecting a substantial fraction of the pathway (27 of
85 genes [32%]), including ALK, BRAF, CBLC, and ERBB2,
similar to other B-cell malignancies as well as other solid
tumors.53,54 Intriguingly, we also identified 2 cases harboring a
presumably harmful NTRK3 mutation (CADD score 29.8). This
finding is of relevance in light of the recent tissue-agnostic
approval by the US Food and Drug Administration of the pan-
TRK inhibitors larotrectinib and entrectinib alongside the recent
identification of NTRK point mutations in hematologic malignan-
cies, known to cause similar biological effects as NTRK
fusions.55

In accordance with previous studies, we found mutations and
SCNVs affecting candidate driver genes of lymphomagenesis
directly affecting NF-kB signaling in 58% of cases (supplemental
Figure 7A).20 Although this was among the predominant pathways,
identified through our network diffusion approach, mutations affect-
ing the pathway were broadly distributed, with only 2 genes show-
ing mutations in .1 patient (NFKB2, n 5 4; ATM, n 5 2), both
previously implicated in the pathogenesis of lymphoplasmacytic lym-
phoma, intriguingly another type of terminally differentiated B-cell
lymphoma.56 Upon extension of the analysis onto the NF-kB Path-
way Interactome Map, thus explicitly broadening the scope beyond

the most compelling representatives of a given pathway, several
cases were found to exhibit mutations and SCNVs in CDX1, TWF2,
and ABCB9 as well as the previously described genetic lesions in
PRDM1 (supplemental Figure 7B).18,19,57 Intriguingly and in keep-
ing with recent observations by Ramis-Zaldivar et al,23 we observed
an accumulation of mutations in genes implicated in epigenetic and
chromatin modifiers (11 of 33 cases).

After SNV and indel evaluation with MutSigCV, both a gene set
enrichment as well as a network diffusion approach (Figures 3A-B)
on genes with P , .01 were used to assess the impact of signifi-
cant genetic events on neighboring genes. This evaluation
highlighted the perturbing role of several recurrent alterations in
interleukin-6 (IL-6)/JAK/STAT (OSMR, STAT3, PIM1, and SOCS1)
as well as NF-kB (NFKB2 and BTK) and to a lesser extent phos-
phatidylinositol 3-kinase/AKT/mTOR (PI3K/AKT/mTOR) (ACACA
and HSP90B1) signaling pathways (supplemental Figure 5) as the
mutations detected within the latter pathway do not concede with
the most compelling drivers of PI3K signaling. The former 2 of these
pathways were previously described as being significantly disrupted
in PBL.18,19 Furthermore, through a network diffusion approach, we
found cellular metabolism to be significantly preserved, whereas
NF-kB, MYC target genes, cell cycle regulators, and immunologic
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processes (including allograft rejection and IL6/JAK/STAT3 signal-
ing) were significantly mutated (Figure 3B).

Comparative analysis of PBL mutational landscape

and related entities

To refine the genomic taxonomy of B-cell lymphomas and to investi-
gate the mutational commonalities and differences between PBL
and other related pathological entities chosen, due to similar fea-
tures of (terminal) B-cell differentiation (DLBCL and MM), com-
parative analysis of candidate mutational drivers in PBL as
described earlier and The Cancer Genome Atlas cohorts of DLBCL
(n 5 1,15142,58-60) and MM (n 5 21162) was performed. Interest-
ingly, we identified three overlapping candidate drivers common to
all entities (HIST1H1E, PRDM1, and TP53) as well as 5 genes
exclusively mutated in both PBL and DLBCL (PIM1, BTG1,
CD79B, ETS1, and STAT3), whereas only NRAS was found to be
an exclusively shared driver between PBL and MM. The vast major-
ity of novel candidate genes reported in our study were, however,
found to be PBL exclusive (Figure 3C).

Fusion genes

Using STAR-FUSION (version 1.9.0)63 running in de novo reconstruc-
tion mode and hg19 as reference genome, we were able to identify
fusion genes from RNA-seq data (Figure 4). Ten samples were
shown to carry 22 fusions (supplemental Table 7). In total, 16
unique fusion events were detected. We did not detect any novel,
recurrent fusion events beyond the expectedly high frequency of
MYC aberrations. To verify the fusions identified using STAR-FUSION,

we ran FUSIONCATCHER and FUSIONINSPECTOR to validate our findings.
FUSIONSCATCHER verified 11 of 22 fusions; 3 of 4 MYC fusions were
verified by FUSIONCATCHER. FUSIONINSPECTOR verified 18 of 22 fusions
and 3 of 4 MYC fusions. All of the latter were subsequently vali-
dated by fluorescence in situ hybridization. In total, 19 of 22 fusions
were verified.

RNA-seq

Using STAR ALIGNER (version 2.7.2b)64 and MIXNORM,65 we per-
formed a gene set enrichment analysis employing GSVA and HALL-
MARK gene sets (supplemental Figure 8). The RNA-seq expression
profiles of all 20 patients, whose data sets met our predefined
standards for quality and quantity (.10 Gb/sample at Q30% .

90%) for subsequent analysis, were subjected to hierarchical clus-
tering of both gene sets and cases. We hereby uncovered 2 domi-
nant clusters of gene sets alongside 4 patient clusters. Induced
pathways were found to reflect the genomic profile with regard to
the heterogeneous distribution of alterations accentuated in IL-6/
JAK/STAT signaling, inflammatory response genes, NF-kB activity,
and MYC signaling. Integrated analysis of WES and RNA-seq
regarding mutational data in an exemplary subset of genes (STAT3,
TP53, DHX33, NRAS, and HIST1H4E) yielded a concordance rate
of 43.8%, which was, however, attributable to low coverage/expres-
sion within the RNA-seq data. Furthermore, the aspect of allele-
specific expression needs to be considered. Successful expression
analysis of genes, affected by SCNAs according to our WES data,
was hampered by the low number of cases with availability of both
types of data.
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Comparative gene expression profiling between

EBV-positive and EBV-negative PBL

RNA-seq profiles were further investigated for genes showing signif-
icant differential expression between EBV-positive PBL and EBV-
negative PBL identified through the linear model fit with P value cor-
rection (padj , 0.01 and log2 fold-change .1). Comparative analy-
sis yielded 1099 genes with significant differential expression
between the 2 groups (Figure 5A); a tabular delineation of gene
expression profiles in our cohort is provided in supplemental Table
8. Of these genes, 623 were upregulated in EBV-positive PBL.
Unsupervised hierarchical clustering of differentially expressed
genes (log2 fold-change .2) is represented on the heatmap shown
in Figure 6. Subsequently, functional annotation of this gene expres-
sion profile was performed by gene set enrichment analysis, using
the Gene Ontology “Biological Process.” Hereby, we uncovered a
predominant induction of metabolic (eg, mitochondrial) processes in
EBV-positive PBL (Figure 5B; supplemental Figure 10). Intriguingly,
class I major histocompatibility complex–mediated antigen process-
ing and presentation were also significantly affected by the pres-
ence of an underlying EBV infection, as was cell cycle regulation.
These findings thus partially confirm previous results, whereas only
IL15 expression was induced in EBV-positive PBL, unlike the other
genes within the IEGS33.16,67 Differential expression was also
prominent in several known EBV targets, including CD83, RAD51,
PGAM1, CDK2, and DNMT3B, a known molecular link between
B-cell state and the EBV latency program.68

Upon restriction of our comparative gene expression analysis on
genes with established functions as tumor suppressors or onco-
genes, we identified several significantly upregulated genes in EBV-
positive PBL (including MET, BCL2, and NRAS). EBV-negative
PBL was significantly enriched for downregulated tumor suppres-
sors (including FLT3, MEN1, MSH2, and NPM1) (Figure 5A).
Intriguingly, we identified significant EBV-dependent deregulations
within all major oncogenic pathways previously found to be affected
by oncogenic mutations. Although most pathways displayed a
homogeneous distribution of deregulated genes between both sub-
groups, key elements of PI3K/AKT/mTOR (including CDK1, CDK2,
and HSP90B1) were almost exclusively upregulated in EBV-positive
PBL (Figure 5A; supplemental Figure 9; supplemental Table 9). This
is in keeping with the known induction of PI3K signaling in EBV-
infected cells as a potent collaborator of MYC.69,70 Specifically, in
PBL, Mine et al71 described an IL-6 dependency of PBL-1, an EBV-
driven PBL cell line, for proliferation and survival. Furthermore,
mTOR inhibitors effectively induced cell death in this model, sug-
gesting its potential therapeutic role in a subset of patients with
PBL.

Further analysis on a case-by-case level, screening signaling path-
ways (predominantly affected by genetic lesions in PBL) revealed a
highly induced expression of NTRK3 in EBV-negative PBL. We
hereby establish a significant, EBV-dependent transcriptional
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divergence in contrast to the widely similar mutational landscape
shared by both PBL subtypes.

A comprehensive tabular summary of the entire processed data
generated in the current study, using the pipeline outlined here, is
provided as supplemental Table 9. Lollipop plots are provided for
selected genes with special emphasis on known cancer-related
genes and MutSigCV top genes within our cohort in supplemental
Figure 11.

Discussion

In this comprehensive genomic and transcriptomic study of PBL, we
report on WES and RNA- seq data obtained in a cohort of PBL
tumors. To the best of our knowledge, we present the largest cohort
and most comprehensive data set for this entity, as previous reports
on PBL were limited by lower case numbers, targeted sequencing
approaches, and lack of transcriptional data, whereas we systemati-
cally defined recurrent mutations, CNAs, and gene fusions along-
side predominant mutation and transcriptional signatures. The
current study made 2 novel and essential observations.

First, a significant enrichment for mutations affecting both NF-kB as
well as IL-6/JAK/STAT signaling pathways was identified, as could be
expected from previous studies reporting on targeted sequencing
approaches.18,19 However, adding to previous and complementing
most recent observations (the former primarily derived from HIV-
positive patients), we unveil several novel and recurrent, activating
genetic alterations involving the classic RTK-RAS pathway in the vast
majority of cases (23 of 33 [69.7%]) as a predominant driver of PBL
lymphomagenesis, regardless of age and/or HIV status.23 These
observations are, however, in line with recent observations in a tar-
geted sequencing study on 11 patients with PBL-type posttransplant
lymphoproliferative disorders.22 Intriguingly, compared with previous
studies in highly selected HIV-positive PBL cohorts, we find that
STAT3 mutations, considered to be essential drivers in PBL lympho-
magenesis, as well as LNP1 mutations, occur less frequently in HIV-
negative cases, whereas TP53, PRDM1, and IRS4 mutations and
RTK-RAS perturbations seem to be more essential in this sub-
group.20,21 Upon comparison with the most recent amplicon-panel
derived study by Ramis-Zaldivar et al,23 we observed vast similarities
with the current study, embedding it firmly within the landscape of pub-
lished data on the molecular pathogenesis of PBL. Similarities
included trends toward more mutations in STAT3 in EBV/HIV-positive
cases and enrichment in TP53 mutations in EBV/HIV-negative cases,
along with enrichment in mutations affecting epigenetic and chromatin
modifiers. However, by contrast, these observations failed to reach
statistical significance in terms of affected pathways, which may be
attributable to the more concise methodologic approach of Ramis-
Zaldivar et al as well as the small sample sizes and strong heterogene-
ity with regard to the composition of both study groups. By using Mut-
SigCV, we describe a set of 110 candidate driver genes (P, .05; 15
genes, P , .01) (Figure 3) with substantial evidence of somatic and
functionally impairing mutation status in the vast majority of studied
tumors.33 Additional q-value analysis would have profusely limited this
set of candidate driver genes in our relatively small study cohort, pre-
cluding known drivers of oncogenesis in aggressive lymphomas (eg,
TP53, PRDM1, and others) from subsequent analysis. Using a widely
established cutoff regarding the q-value (eg, , 0.1) would have
resulted in a reduction in size of the candidate driver gene sets (n5 2
genes [LNP1 and HNRNPUL2]) brought on by the limitations in

cohort size. Mutations inHNRNPUL2 have not been implicated in lym-
phoma pathogenesis but in glioblastoma and colorectal carci-
noma.72,73 Although there was a high grade of confidence in our
filtering pipeline, this suspicious finding requires functional validation
in further studies. To retain pathobiologically meaningful data, q-value
filtering was therefore omitted in our exploratory study as our data set
disallows further screening for significantly mutated genes beyond the
provided data (q-values are reported in supplemental Table 3). Subse-
quent studies on larger cohorts are required to further refine the defini-
tive gene set of significant drivers in PBL and its subtypes. Our
observations regarding NTRK3 in EBV-negative PBL, in concert with
the previously identified oncogenic NTRK3 mutations, hint at a spe-
cific, therapeutically targetable mechanism in a clinically relevant sub-
set of PBL cases.

Of potential therapeutic relevance, we found 2 mutations affecting
BTK at diagnosis, potentially disrupting B-cell receptor signaling,
resistant to specific inhibition (eg, ibrutinib). Moreover, the identifica-
tion of oncogenic mutations in NTRK3 alongside its pronounced
expression in EBV-positive PBL holds potential therapeutic promise
for a subset of patients with PBL given the tissue- agnostic approval
by the US Food and Drug Administration of the pan-TRK inhibitors
larotrectinib and entrectinib.55 There remains, however, a lack of
functional validations of potential novel therapeutic agents in preclini-
cal models of PBL beyond preliminary studies of bortezomib, which
has already found its way into clinical PBL practice.74 This poses a
promising subject for successive studies. Upon comparison of muta-
tional patterns and frequencies in PBL and related B-cell malignan-
cies (DLBCL and MM), we provide evidence of pathogenetic
independence of PBL from DLBCL and MM based on its genomic
landscape, thereby supplementing previous studies on differential
gene expression signatures.15,16 Our observations regarding MSI-
associated hypermutations are clinically relevant as MSI has been
associated with increased sensitivity to programmed cell death pro-
tein 1 blockade across a variety of malignancies, and checkpoint
inhibitor therapies are currently being explored as salvage treatment
options in a subset of relapsed/refractory aggressive B-cell lympho-
mas.75-77 Of note, copy number variation analysis derived from
WES data revealed aberration affecting several genes, previously
implicated in lymphomagenesis, such as CSF1R and MEF2B.39,40

In our case series, however, we were unable to reproduce the find-
ings by Liu et al,21 who described recurrent copy number gains of
CD44. This observation may well be attributed to the pathogeneti-
cally more heterogeneous study group in the current article.

Second, our RNA-seq data mirrored the genomic profile with regard
to the heterogeneous distribution of altered pathways, and we fur-
ther identified several transcriptional clusters, enriched for IL-6/JAK/
STAT signaling, inflammatory response genes, NF-kB activity, and
MYC signaling. Of special interest, however, comparative analysis of
gene expression between EBV-positive PBL and EBV-negative PBL
identified a marked impact on class I major histocompatibility
complex–mediated antigen processing and presentation, as was
cell cycle regulation, by the presence of an underlying EBV infec-
tion. Moreover, key elements of PI3K/AKT/mTOR signaling (includ-
ing CDK1, CDK2, and HSP90B1) were almost exclusively
upregulated in EBV-positive PBL, potentially advising more specific
and phenotypically tailored treatment approaches to be explored in
PBL, taking into account the tumor’s respective EBV status. The
proposed IL-6/JAK/STAT dependency reflected by our WES and
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RNA-seq data appears particularly to be in keeping with a viral
IL-6–driven xenograft model of PBL in which viral IL-6 collaborated
with MYC in the formation of spontaneous plasmablastic tumors in
a mouse model.78 Intriguingly, RNA-seq revealed downregulation of
tumor suppressors (including FLT3, MEN1, MSH2, and NPM1) to
be a recurrent feature significantly accentuated in EBV-negative
PBL. In contrast to the widely similar mutational landscapes shared
by both PBL subtypes, our observations uncovered a fundamental
impact of EBV status on PBL gene expression. Our characterization
of a distinct mutational and transcriptomic landscape in PBL, dis-
tinct from both DLBCL and MM, with pronounced mutational impair-
ment of IL-6/JAK/STAT, RTK-RAS, and NF-kB signaling alongside
transcriptional deregulation of the PI3K/AKT/mTOR pathway pre-
dominantly encountered in EBV-positive PBL, substantiate the path-
obiological independence of PBL in the spectrum of terminally
differentiated B-cell malignancies and thereby refine the taxonomy
for aggressive lymphomas.
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