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Multiplemyeloma (MM)measurable residual disease (MRD) persisting after treatment is an adverse prognostic
factor for progression-free survival (PFS) and overall survival.1 Genomic mutations occurring in the remaining
clonal aberrant plasma cells (A-PCs) are linked to the development of drug resistance and disease relapse.2

Thus, personalized treatment based on the genomic profile of MRD could be highly beneficial and ultimately
increase patients’ survival. However, although large-scale sequencing studies have characterized the genome
of many malignancies, including MM,3-8 the genomic mutations present in MM MRD exist at the beginning of
investigation.9 Here, we set up an exome sequencing analysis to identify genomic mutations characteristic for
MM MRD and explore if they could mediate drug response, resistance, or disease progression.

Samples of peripheral blood and sorted clonal bone marrow A-PCs were collected from 22 patients after
bortezomib-based treatment (supplemental Table 1; supplemental Figure 1) upon signing the informed con-
sent form. The study was approved by the institutional ethics board of the University Hospital Ostrava (ref-
erence number 500/2016) and was conducted in accordance with the Declaration of Helsinki. All
methodological details used in this study are provided in the supplemental methods; importantly, clonal
A-PCs were sorted according to pathological immunophenotype using CD38, CD45, CD19, CD56
(CD117 when necessary)10 (supplemental Figure 2) with the purity exceeding 95%. This led to a median
of 2000 cells per patient. DNA from those cells was amplified, and its exome was further analyzed. Here, we
report only nonsynonymous somatic variants with frequency in human population,1% (supplemental Table
2; supplemental Figure 3; supplemental methods). In total, we identified 278 variants, with a median of 12.5
mutations per patient and a median coverage of 71. These variants were located in exons of 263 genes,
which account for a median of 12.5 mutated genes per patient (Figure 1A). In the results (Figures 1
and 2), we focused only on genes expressed in our independent cohort of 10 MM patients’ A-PCs (D.�Z.,
A.A.S., T.�S., and T.J., unpublished data) and thus potentially playing a role in the MRD cells’ biology.
From all analyzed MMMRD exomes, 8 genes were mutated in at least 2 patients (Figure 1A), which is con-
sistent with high MM heterogeneity.3-7 Recurrently mutated genes included KRAS, DIS3, TRAF3, OGT,
FRG1, UNC13C, FRMPD3, and TRAPPC8. Genes KRAS, DIS3, and TRAF3 are known MM drivers,6

OGT encodes a glycosyltransferase, and O-GlcNAcylation catalyzed by OGT is essential for stabilization
of NRF1, a transcription factor of proteasome subunit genes, potentially linked to proteasome inhibitor resis-
tance.11 FRG1 participates in messenger RNA processing, and its decreased expression promotes cancer
progression, cell migration, invasion, and angiogenesis.12,13 UNC13C plays a role in vesicle maturation dur-
ing exocytosis and acts as a tumor suppressor in solid cancers.14 TRAPPC8 is involved in endoplasmic
reticulum to Golgi apparatus trafficking15 and was often mutated in solid cancers.16
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Figure 1. Mutation profile of the MRD cohort. (A) Recurrently mutated genes and functionally important hits. Patients are depicted as columns; genes are depicted as rows.

Previously identified MM associated genes (supplemental Table 3) are highlighted in red rectangles; star symbols indicate potentially actionable targets. Total number of single

nucleotide variants (SNVs) in particular patients is given on the top. Driver frequencies from other studies were obtained from 5 papers.3–7 (B-C) Kaplan-Meier curves showing

association of PFS with RAS-related pathways. Pathways KRAS.600_UP.V1_UP included synthetic lethal partners of oncogenic KRAS. Ras protein signal transduction pathway

is a series of molecular signals within the cell that are mediated by a member of the Ras superfamily of proteins switching to a GTP-bound active state. List of genes included in

respective pathways is provided below each graph. FDR, false discovery rate; mut, mutated; wt, wild type.
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Comprehensive analysis of driver genes is not feasible in such small
MRD cohorts; thus, we compared our results with a list of known driv-
ers and other MM-associated genes to better understand MRD path-
ogenesis.4-7 Our data set contained 9 MM genes from 8 patients
(supplemental Table 3), including KRAS, NRAS, DIS3, TRAF3,
SF3B1, NKFBIA, MYC, IKZF3, and BTG1. Interestingly, NRAS muta-
tions were undetectable in a recently published MRD cohort.9 In 12
patients (55%), we did not identify any mutations in the above-
mentioned genes, nor did they share some other common mutations;
however, several of those patients relapsed. Thus, the malignant char-
acteristics of plasma cells are likely caused by different mechanisms.

To uncover possible common patterns underlying the heterogenous
mutation profile in the MRD cohort, we ran pathway analysis for
each patient using 7 gene set collections, together including 7627
gene sets (supplemental Table 4). The results showed no pathways
significantly enriched and simultaneously commonly mutated among
patients (supplemental Table 5). Simple overlap with pathways typical
for MM17 revealed mutations in the MAPK18 pathway (7 patients;
32%), NF-kB18 pathway (3 patients; 14%), P53 pathway18

(0 patients), proteasome subunits19 (1 patient; 5%), and cereblon20

(2 patients; 9%) (supplemental Table 6). The most commonly
shared pathways with at least 1 affected gene are shown in supple-
mental Figures 4-11.

To depict novel genes or pathways important for our MMMRD cohort,
we performed survival analysis for genes and pathways (supplemental
Tables 7-8; supplemental Figures 12-18). Only mutations in FRMPD3
present in 2 patients were associated with shorter PFS (Figure 2B-C).
This gene is involved in signal transduction, and it was not found fre-
quently mutated in previous MM studies.3,16 Interestingly, 2 RAS
related pathways, “KRAS.600_UP.V1_UP,” including synthetic
lethal partners of oncogenic KRAS (FDR 0.015), and
“GO_RAS_PROTEIN_SIGNAL_TRANSDUCTION” (FDR 0.049),
including 4 and 6 samples, showed significant difference in PFS (Fig-
ure 1B-C). This finding is consistent with known frequent impairment
of RAS signaling in MM and offers new genes with potential applica-
bility of RAS inhibitors.21

Our ultimate goal was to identify novel genes that could be targeted
by available drugs. Therefore, we annotated the gene set with known
pharmacological information. We used The Drug-Gene Interaction
Database22 covering a broad spectrum of drugs and diseases,
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Figure 2. SNV overview of important MM MRD genes. Functional domains are shown for each gene; mutated positions are represented by colored lollipop marks (red,

single nucleotide change; blue, splice site/nonsense mutation). (A) Mutations in genes potentially useful in clinics are suggested for preclinical studies. Interacting drugs are given

on the right. (B) Genes identified as drivers without assigned treatment and gene FRMPD3 are schematically shown. (C) Kaplan-Meier curve showing gene FRMPD3 that is the

only shared gene with significant PFS association. PI, proteasome inhibitor.
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PrecisionOncology Knowledge Base23 summarizing druggablemuta-
tions, and the literature search to retrieve genes important for myeloma
drug resistance. Overall, we have generated a set of mutations in
8 drug-interacting genes with evidence of expression in plasma cells
that were mutated in 7 patients (Figure 2A; supplemental Tables 9-
11). The most interesting hit was a mutation in the PSMC6 gene
(R256Q), coding subunit of 19S proteasome complex, present in a
patient treated with bortezomib, who reached VGPR and MRD depth
10e23 and had one of the shortest PFS (18 months). Mutations in this
gene were previously found only in 4 patients in the CoMMpass
study,16 but the gene was already shown to be important in bortezo-
mib resistance.24 The effect of the specific substitution R256Q was
confirmed by in vitro functional tests (M.�S., K.G., T.J., M.Z., Z.C., and
T.�S., manuscript in preparation). Of note, mutation of the BCMA
gene, a frequent target of chimeric antigen receptor T-cell immuno-
therapy, was detected in 1 case. Mutations in this gene could be
potentially important for the binding between the BCMA epitope
and the antibody. KRAS was the only druggable gene mutated in
.1 patient (Figure 1A) and also possessed affected amino acids
exactly fitting with the positions for selective treatment (G13D,
Q61H).

In summary, we performed whole-exome analysis of somatic variants
in a pure population of sorted MM MRD samples with low A-PC infil-
tration to describe its mutation pattern and to reveal its further utiliza-
tion in clinics. A limited number of aberrant cells present at the MRD
stage and application of whole-genome amplification did not allow the
analysis of larger genomic changes than SNVs and short indels. Copy
number variant analysis revealed ambiguous results without a clear
pattern (supplemental Figure 19). In the heterogeneous spectrum of
mutated genes, we did not reveal any unifying feature of MRD clones.
In context of that, there is very interesting exposure of the mutation in
the proteasome subunit PSMC6 that, despite being scarcely mutated
in myeloma population, it was confirmed in cell lines as a bortezomib
resistance causing mutation; thus, it may still be useful for the patient’s
treatment design. The survival analysis revealed mutations in 2 RAS-
associated pathways that were linked to shorter PFS and thus can
be important for disease progression. Discovery of new genetic aber-
rations with a yet unknown role in MM opens new avenues for further
investigation in preclinical studies and can provide new targets for
treatment upon validation in the laboratory and clinics.
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