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CD3-engaging bispecific antibodies (BsAbs) have emerged as powerful therapeutic

approaches by their ability to redirect T cells to eliminate tumor cells in a major

histocompatibility complex–independent manner. However, how we can potentiate the

efficacy of BsAbs remains largely unknown. To address this question, we investigated

immunological mechanisms of action of a BsAb cotargeting CD3 and B-cell maturation

antigen (BCMA) in syngeneic preclinical myeloma models. Treatment with the CD3/BCMA

BsAb stimulated multiple CD3-expressing T-cell subsets and natural killer (NK) cells in

the myeloma bone marrow (BM), highlighting its broad immunostimulatory effect.

Notably, the BsAb-mediated immunostimulatory and antitumor effects were abrogated

in mice lacking invariant NKT (iNKT) cells. Mechanistically, activation of iNKT cells

and interleukin-12 production from dendritic cells (DCs) were crucial upstream events

for triggering effective antitumor immunity by the BsAb. Myeloma progression was

associated with a reduced number of BM iNKT cells. Importantly, the therapeutic efficacy

of a single dose of CD3/BCMA BsAb was remarkably augmented by restoring iNKT cell

activity, using adoptive transfer of a-galactosylceramide-loaded DCs. Together, these

results reveal iNKT cells as critical players in the antitumor activity of CD3 engaging

BsAbs and have important translational implications.

Introduction

As off-the-shelf agents, CD3-engaging bispecific antibodies (BsAbs) have emerged as powerful therapeu-
tic modalities. In multiple myeloma (MM), CD3-engaging BsAbs against B-cell maturation antigen (BCMA)
or other tumor antigens are being widely studied in clinical trials.1,2 These BsAbs enable cytotoxic T cells
to recognize and eliminate tumor cells, regardless of T-cell receptor specificity.3-5 However, given that
only a fraction of patients derive long-term benefits, new strategies are warranted to achieve deep and
durable clinical responses. Despite advances in antibody engineering technologies, the exact immunologi-
cal mechanism of action of CD3-engaging BsAbs remains to be fully elucidated. Using syngeneic preclini-
cal myeloma models, we addressed this major knowledge gap to design rational combination therapies.

Methods

The Vk14451 and 5TGM1 myeloma models were maintained as previously described.6-8 C57BL/6 wild-
type (WT), C57BL/KaLwRij, and genetically modified mouse strains were bred and maintained in-house.
Mice were challenged IV with 2 3 106 Vk14451 cells or 5TGM1 cells stably transfected with BCMA
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Key Points

� The activation of iNKT
cells and interleukin-
12 production are
required for the
optimal efficacy of a
CD3/BCMA bispecific
antibody.

� Restoring iNKT cell
activity can improve
the therapeutic
efficacy of the CD3/
BCMA bispecific
antibody.
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Figure 1. iNKT cells are critically necessary for antimyeloma immunity elicited by the CD3/BCMA BsAb. (A) The expression level of BCMA on Vk14451 myeloma

cells. FMO indicates the fluorescence minus one controls. (B) CellTrace Violet (CTV)–labeled T cells were cocultured with Vk14451 cells for 3 days in the presence of

indicated concentrations of the CD3/BCMA BsAb. CD8 T-cell proliferation. (C) Expression levels of BCMA on parental 5TGM1 cells and 5TGM1-BCMA cells . (D) Cell

viability of 5TGM1 and 5TGM1-BCMA cells 2 days after coculture with T cells in the presence of indicated concentrations of the CD3/BCMA BsAb. (E) The experimental

design. (F) Expression levels of CD69 in T cell subsets in the BM from naïve and tumor-bearing mice. (G-H) Flow cytometry showed the frequencies of CD8 T cells

and NK cells expressing CD69 and CD107a (G) and IFN-g (H) in the myeloma BM (n 5 4). (I) WT mice and Ja182/2 mice were challenged with Vk14451 cells, and

treated with a single dose of CD3/BCMA BsAb. WT mice were pretreated with anti-CD8b or anti-CD4–depleting mAb 3 days before BsAb treatment. Violin plots

showing the number of BM tumor cells 2 weeks after treatment with the BsAb. The middle lines indicate the median values. Results are pooled from 2 experiments

(n 5 6-9). (J) Frequencies of live iNKT cells and CD8 T cells in the BM. (K) Frequencies of annexin V1 apoptotic cells in mice treated with the CD3/BCMA BsAb (red) or

control (blue). (L) The number of live BM iNKT cells and CD8 T cells at the indicated time points after treatment (n 5 8). (M-N) Tumor-bearing WT and Ja182/2 mice were
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(5TGM1-BCMA) and treated with a single dose of antimouse CD3/
BCMA BsAb (25 mg intraperitoneally; Bristol Myers Squibb9). All
experiments were approved by the QIMR Berghofer Medical
Research Institute Animal Ethics Committee.

Details on experimental procedures and materials are included in
the supplemental Information.

Results and discussion

The mechanism of action of CD3-engaging BsAbs has been
explained by the recognition of tumor antigen by one Ab arm and the
agonistic stimulation of CD3 on cytotoxic lymphocytes by the other
Ab arm.2 An anti-mouse CD3/BCMA BsAb triggered proliferation in
CD8 T cells cocultured with Vk14451 cells expressing endogenous
BCMA (Figure 1A-B). BsAb-induced T-cell activation and tumor cell
killing were observed after coculture with 5TGM1-BCMA cells, but
not with parental 5TGM1 cells lacking BCMA expression, thus sup-
porting the target specificity (Figure 1C-D; supplemental Figure 1).

To dissect immunological mechanisms of action in vivo, tumor-
bearing WT mice were treated with a single dose of the CD3/
BCMA BsAb 4 to 5 weeks after tumor inoculation (Figure 1E). In
response to the CD3/BCMA BsAb, multiple CD3-expressing T-cell
subsets underwent rapid activation in the myeloma bone marrow
(BM), as indicated by increased CD69 expression (Figure 1F). Nota-
bly, the BsAb triggered degranulation and interferon (IFN)-g produc-
tion, not only in CD8 T cells, but also in NK cells (Figure 1G-H).
These results suggest that treatment with the CD3/BCMA BsAb
may have broad immunostimulatory effects on effector lymphocytes.

Because multiple T-cell subsets underwent activation by the BsAb
(Figure 1F), we next sought to identify key subsets for therapeutic
effects, using depleting monoclonal Abs (mAbs) in WT mice and

invariant NKT (iNKT)-deficient Ja182/2 mice. Tumor-bearing WT
mice were treated with anti-CD8b or -CD4 mAb 3 days before
treatment with the BsAb (supplemental Figure 2), and tumor burden
was measured 2 weeks thereafter. Treatment with the BsAb
reduced tumor burden in control mice and those pretreated with
anti-CD8b mAb (Figure 1I). In contrast, the antitumor effect of the
BsAb was abrogated in the Ja182/2 mice (Figure 1I; supplemental
Figure 3). The anti-CD4–depleting mAb also had a negative impact
on the efficacy of BsAb (Figure 1I), which may be because .60%
of BM iNKT cells expressed CD4 (supplemental Figure 4). Based
on these findings, we decided to characterize iNKT cell–mediated
BsAb effector mechanisms.

iNKT cells are CD1d-restricted, innatelike T cells, bridging innate
and adaptive immunity. The cells function as early responders
against tumors, but they are known to undergo T-cell receptor
downregulation and apoptosis upon activation.10,11 Indeed, rapid
apoptosis and transient loss of BM iNKT cells were observed within
16 hours after treatment with the BsAb (Figure 1J-L), supporting
early activation of iNKT cells. Previous studies have shown that
iNKT cell–mediated antitumor functions are largely dependent on
interactions with dendritic cells (DCs), rather than iNKT
cell–mediated direct cytotoxicity.12,13 In line with this notion, BsAb-
mediated activation of NK cells and IFN-g production by CD8 T cells
and NK cells were markedly attenuated in the absence of iNKT cells
(Figure 1M-N), whereas direct iNKT cell–mediated cytotoxicity
against tumor cells was modest in vitro, even in the presence of the
BsAb (supplemental Figure 5). These results indicate that iNKT cells
act in BsAb-mediated antitumor effects by triggering downstream
activation of NK cells and CD8 T cells.

We hypothesized that the BsAb-driven IFN-g production and activa-
tion of NK cells may be explained by the effect of interleukin-12
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Figure 1 (continued) treated with or without the CD3/BCMA BsAb, and BM CD8 T and NK cells were analyzed 16 hours after treatment. (M) Expression levels of CD69.

Green histograms indicate the untreated control. (N) Frequencies of IFN-g–producing cells. Results are pooled from 2 or 3 experiments (n 5 6-10). Data are expressed as

the mean 6 SEM (D,G-H,L-N), and differences were tested for statistical significance using an unpaired Student t test (D,G-H), a Kruskal-Wallis test with Dunn's post hoc

test (I), a Mann-Whitney U test (L), and 2-way analysis of variance with Sidak’s multiple comparison (M-N). *P , .05, **P , .01, ***P , .001, ****P , .0001.
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(IL-12), a major antitumor cytokine produced in response to cross
talk between activated iNKT cells and DCs.13-15 When BM-derived
DCs were added to iNKT-myeloma cocultures, bioactive IL-12 was
released in response to the CD3/BCMA BsAb (Figure 2A). To con-
firm the activation of DCs in a physiologically relevant manner, we
next used IL-12-YFP reporter mice. In response to the CD3/BCMA
BsAb, DC maturation and IL-12–expressing CD8a1 DCs were
observed (Figure 2B-C), providing in vivo evidence of IL-12 produc-
tion. Consistent with the fact that IL-12 can potentiate lymphocyte
activities,16,17 recombinant IL-12 markedly augmented the BsAb-
induced release of effector molecules including IFN-g and granzyme
B (Figure 2D). Notably, the BsAb-mediated release of effector mole-
cules and the antitumor effect were abrogated in mice lacking
endogenous IL-12 (Figure 2E-F). Thus, in addition to activation of
iNKT cells, IL-12 production was indispensable for optimal antitumor
responses by the CD3/BCMA BsAb.

Finally, we examined whether harnessing iNKT cells would improve
the efficacy of BsAb, given that numerical and functional defects of
iNKT cells were reported in patients with MM.10,18 Indeed, MM pro-
gression was associated with a reduced number of BM iNKT cells
(supplemental Figure 6). We next performed adoptive transfer of DCs
pulsed with a CD1d-restricted lipid agonist a-galactosylceramide
(a-GalCer), a widely used approach for expansion of iNKT cells in
mice and humans.18,19 Adoptive transfer of a-GalCer–loaded DCs
led to robust expansion of iNKT cells in myeloma BM (Figure 2G).
Strikingly, expansion of iNKT cells followed by BsAb dramatically
improved serum levels of paraprotein, leading to prolonged survival
(Figure 2H-J). The combination approach also demonstrated thera-
peutic benefits in the 5TGM1-BCMA model (Figure 2K-M).

In summary, we revealed iNKT cells as a critical player in orchestrat-
ing the immune effector mechanisms of CD3/BCMA BsAb therapy.
Our results suggest that the activation of iNKT cells and IL-12 pro-
duction by DCs are key upstream events that stimulate CD8 T cells
and NK cells. Of note, growing evidence suggests that immune-
depleting mAbs cannot eliminate tissue-resident T cells.20 Thus, in
mice pretreated with the anti-CD8b mAb, residual BM CD8 T cells
may effectively eradicate tumor cells by BsAb treatment. Therapeutic
resistance to CD3-engaging BsAbs is explained by multiple
factors such as the immunosuppressive microenvironment, T-cell

exhaustion, and antigen loss.21,22 Given that immune exhaustion sig-
natures are reported in innatelike T-cell subsets from patients with
relapsed or refractory MM,23 impaired iNKT cells may also be asso-
ciated with poor clinical responses. Adoptive transfer of DCs pulsed
with a-GalCer has been safely used to stimulate the expansion of
iNKT cells in patients with MM and other malignancies. However,
the clinical benefits of monotherapy are limited.18,19 Our findings
rationalize the use of iNKT-based immunotherapy in combination
with CD3-engaging BsAbs. Given that various approaches are
being developed to harness iNKT cell–mediated antitumor immu-
nity,10,24,25 these results have important translational implications.
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