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Acute myeloid leukemia (AML) is characterized by a diverse cytogenetic and mutational landscape.1

AML subgroups defined by the World Health Organization (WHO) display characteristic gene expres-
sion signatures enabling transcriptome-based classification.2 As part of the Leucegene project, we previ-
ously reported the gene expression profiles of several AML subgroups and described a unified gene
expression signature of the RUNX1-RUNX1T1 and the rare RUNX1-CBFA2T3 AML subgroups, reveal-
ing that alterations sharing a unified gene expression profile can share similar oncogenic deregulations.3

Using a similar strategy, here we define the transcriptomic profile of AML with mutations in nucleophos-
min (NPM1), which is the most frequent WHO-defined subgroup.4 NPM1 is a nucleolar chaperone pro-
tein involved in several biological pathways, including ribosome biogenesis.5 NPM1 shuttling between
nucleus and cytoplasm is determined by motifs that include the C-terminal nucleolar localization signal
(NoLS), a bipartite nuclear localization signal, and 2 N-terminal nuclear export signals (NES).5 NPM1
mutations occur almost exclusively in exon 12, disrupting the NoLS and creating a new C-terminal NES,
resulting in NPM1 aberrant cytoplasmic localization.5 The same phenotype is observed in the presence
of rarely occurring mutations in exons 9 to 11.6-10 NPM1 mutations can be identified using immunohisto-
chemistry4 and flow cytometry,6 but sequencing-based approaches limited to 39 located exons are most
commonly performed. Adequate identification of NPM1 mutations is critical for stratification of patients
into favorable or intermediate risk groups, following on the presence or absence of concomitant FLT3
internal tandem duplications (ITDs), impacting therapeutic strategies and minimal residual disease moni-
toring.11,12 Using the NPM1 transcriptomic profile, we identified transcriptionally similar samples carrying
exon 5 (NPM1e5) mutations that also result in aberrant cytoplasmic localization of NPM1.

This study is part of the Leucegene project, approved by the Research Ethics Boards of Universit�e de
Montr�eal, Maisonneuve-Rosemont Hospital, and the Centre Hospitalier Universitaire Ste-Justine. All 430
AML samples were collected with informed consent between 2001 and 2015 according to Quebec
Leukemia Cell Bank procedures.13 Workflow for sequencing, mutation analysis, and transcripts quantifi-
cation has been described previously and is detailed in the supplementary Methods.13 Additionally Free-
bayes v1.3.1 was used for identification of mutations from RNA-sequencing,14 and FLT3-ITDs were
identified by k-mer counting.15 EPCY was used to identify differentially expressed transcripts that are pre-
dictive of NPM1 mutation status (https://github.com/iric-soft/epcy).

Using this workflow, we identified 125 samples with NPM1 mutations, all located in exon 12 (NPM1e12),
representing 29% (125/430) of the Leucegene cohort. Of these samples, 94 (75%), 10 (8%), 7 (6%),
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2 (1%), and 2 (1%) consisted of types A (TCTG), D (CCTG),
B (CATG), K (CCAG), and ZM (CAGA) mutations, respectively. The
remaining 10 samples (8%) had unique mutations (supplemental
Table 1).

We identified the most discriminative transcripts between NPM1-
mutated AML (n 5 125) and all other samples (n 5 305), corre-
sponding to 285 overexpressed and 198 underexpressed genes
(Figure 1A; supplemental Table 2). This gene expression signature
included many of the previously reported deregulated genes in
NPM1-mutated AML including overexpression of HOXA and HOXB
genes, MEIS1 and NKX2-3, as well as low expression of CD34

(Figure 1A).16 Using this signature, we identified, as expected,
strong transcriptomic similarities in samples from WHO-defined
cytogenetic or mutational subgroups, including NPM1-mutated AML
(Figure 1B). NPM1e12 samples were grouped in 3 main clusters
(clusters 3, 7, and 10 [orange bars in Figure 1B]). Interestingly, clus-
ters 7 and 10, which together were composed of 93% of
NPM1e12 samples, also contained 7 samples in which no NPM1
mutations were detected, possibly suggesting that cryptic mutations
in NPM1 could be missed by our approach (Figure 1B). Based on
this hypothesis, we queried the NPM1 complete coding sequence
in all samples directly in unmapped reads using the km algorithm15

developed by our group. This approach identified all previously
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Figure 1. Gene expression profile and clustering of NPM1-mutated AML. (A) Differentially expressed and predictive genes in NPM1e12 AML (n 5 125) compared

with control AML (n 5 305) using EPCY. Overexpressed (orange) and underexpressed (blue) genes are defined by Log 2 Fold Change (L2F) .j0.5j and NPM1e12

predictive power is defined by Matthews Correlation Coefficient (MCC) .0.2. Selected genes are labeled, and HOXA/B genes are colored separately. (B) Uniform manifold

approximation and projection (UMAP) performed on the complete log transformed Leucegene cohort (n 5 430) using the most predictive genes from supplemental Table 2

followed by principal component analysis and colored by Louvain-based clusters (left)19 or mutational/cytogenetic group (right). Barplot shows the proportion of genetic

groups per cluster; the number of samples per group is indicated in parentheses. (C) UMAP colored by NPM1 mutation type.
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annotated NPM1e12 together with 2 additional samples with 18
and 21 bp in frame insertions affecting exon 5. The 2 additional
samples, located in NPM1-enriched clusters 7 and 10, represented
0.5% (2/430) of the cohort and 1.6% (2/127) of the NPM1-
mutated subset. These mutations were previously missed because
large indels are challenging to identify in mapped RNA-sequencing
data.17 Both mutations were confirmed independently using exome
and Sanger sequencing (supplemental Figure 1), and somatic origin
was confirmed in 1 sample with available germline exome data. No
NPM1 alteration or recurrent mutation were identified in the remain-
ing 5 NPM1wt samples from clusters 7 and 10 (detailed in sup-
plemental Table 4). This indicated a partial overlap in the gene
expression signature of NPM1-mutated samples and a subset of
other AML samples (eg, high HOXA/B and low CD34 gene
expression).

Transcriptomic differences within NPM1-mutated AML were pre-
dominantly influenced by cellular identity, inferred using the French
American British classification, rather than by the NPM1 mutation
subtype (Figure 1C; supplemental Figure 2). NPM1e5 AML carried
FLT3-ITDs (n 5 2), DNMT3A R882H (n 5 2), IDH1 (n 5 1) muta-
tions, which are all also frequently associated with NPM1e12 muta-
tions (supplemental Table 3). NPM1e5 AMLs thus share the
mutational and transcriptomic landscape of exon 12 mutations.

NPM1 exon 12 mutations disrupt the balance between nucleolar/
nuclear localization and nuclear export signals. We next investigated
whether a similar imbalance was at play in novel exon 5 mutations.
Although exon 5 mutations do not impact the C-terminal nucleolar
localization signal, mutated sequences were predicted to introduce
a novel NES compared with the endogenous protein (Figure 2A).
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Figure 2. Aberrant cytoplasmic localization of NPM1e5 mutations. (A) NPM1 exon 5 protein sequences. Rectangles indicate amino acids insertions, and predicted

NES are indicated in red. (B) NPM1 localization in primary NPM1 wild-type (WT) and NPM1 mutated samples. (C) Overexpression of WT and mutated patient-specific

sequences in HEK-293t cell lines. Images were acquired on a Leica DMi8 microscope using 1003 magnification with oil immersion. Brightness and contrast were adjusted

with ImageJ.
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In line with this hypothesis, we demonstrated aberrant cytoplasmic
localization of NPM1 in primary NPM1e5 AML samples similar to
NPM1e12 AML samples (Figure 2B). We further showed that the
mutation is sufficient to cause aberrant cytoplasmic localization of
NPM1 by overexpressing patient-specific mutation sequences in
HEK-293t cell lines, in which NPM1 localization was comparable to
that observed in the primary AML cells (Figure 2C). Altogether,
these observations confirmed that the introduction of a novel NES
by NPM1e5 mutations results in aberrant cytoplasmic localization of
the mutated protein.

Martelli et al also recently reported four NPM1e5 mutations, initially
suspected in abnormal cytoplasmic localization of NPM1 in samples
without NPM1 exon 12 mutations.18 In this independent cohort,
NPM1e5 mutations were found in 0.4% of AML, a frequency similar
to that found in our study (0.5%). Interestingly, all 6 NPM1e5 muta-
tions reported to date in both cohorts are different, standing in sharp
contrast to NPM1e12 mutations in which types A, B, and D repre-
sent �90% of known mutations. Our findings reveal that NPM1e5
mutations share a unified transcriptomic signature with NPM1e12
mutations and a similar cytoplasmic localization.

In summary, our results provide additional evidence that novel
NPM1 exon 5 mutations, similar to exon 12 mutations, lead to aber-
rant cytoplasmic protein localization. We provide the first evidence
of transcriptomic similarities between these mutations and others
affecting exon 12. NPM1e5 may be missed by standard clinical
testing targeting exon 12 only, as well as with approaches that fail
to detect large indels. NPM1 mutation detection must include exon
5 screening and use adapted bioinformatic approaches. Identifica-
tion of rare NPM1 mutations, including NPM1e5, is important for
genetic risk assessment and measurable residual disease monitor-
ing. The detection of these rare mutations could also be useful for
determining the optimal treatment for these patients, such as
venetoclax-based therapies, which provide favorable responses in
NPM1-mutated AML.
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