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Interferon g (IFNg) is an essential and pleiotropic activator of human monocytes, but

little is known about the changes in cellular metabolism required for IFNg-induced

activation. We sought to elucidate the mechanisms by which IFNg reprograms monocyte

metabolism to support its immunologic activities. We found that IFNg increased oxygen

consumption rates (OCR) in monocytes, indicative of reactive oxygen species generation

by both mitochondria and nicotinamide adenine dinucleotide phosphate (NADPH)

oxidase. Transcriptional profiling revealed that this oxidative phenotype was driven by

IFNg-induced reprogramming of NAD1 metabolism, which is dependent on nicotinamide

phosphoribosyltransferase (NAMPT)-mediated NAD1 salvage to generate NADH and

NADPH for oxidation by mitochondrial complex I and NADPH oxidase, respectively.

Consistent with this pathway, monocytes from patients with gain-of-function mutations

in STAT1 demonstrated higher-than-normal OCR, whereas chemical or genetic disruption

of mitochondrial complex I (rotenone treatment or Leigh syndrome patient monocytes)

or NADPH oxidase (diphenyleneiodonium treatment or chronic granulomatous disease

[CGD] patient monocytes) reduced OCR. Interestingly, inhibition of NAMPT in healthy

monocytes completely abrogated the IFNg-induced oxygen consumption, comparable

to levels observed in CGD monocytes. These data identify an IFNg-induced,

NAMPT-dependent, NAD1 salvage pathway that is critical for IFNg activation of

human monocytes.

Introduction

Interferon g (IFNg) is an essential activator of macrophages, inducing proinflammatory cytokines,
augmenting intracellular microbial killing and stimulating the production of microbicidal and signal-
propagating reactive oxygen/nitrogen species.1,2 IFNg is dysregulated in myriad diseases. Functional IFNg
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Key Points

� IFNg induces a highly
oxidative metabolic
phenotype with high
rates of oxygen
consumption by both
mitochondria and
NADPH oxidase.

� IFNg induces a
NAMPT-dependent,
NAD1 salvage
pathway that is
required for complete
induction of the
respiratory burst in
human monocytes.
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deficiency is caused by genetic mutations in IFNg or its receptor or
by acquired neutralizing anti-IFNg autoantibodies, impairing control of
intracellular bacteria and causing systemic immune dysregulation.3-11

Conversely, states of excessive IFNg activity, such as signal trans-
ducer and activator of transcription 1 (STAT1) gain of function
(GOF), have inflammatory complications.12-16 The effects of IFNg on
macrophages are pleiotropic and likely energetically expensive, requir-
ing metabolic reprogramming to support this increased demand.

Much work has focused on the early metabolic changes in macro-
phages in response to lipopolysaccharide (LPS), known as the
Warburg effect (aerobic glycolysis),17-21 but fewer data exist for
metabolic responses to other stimuli. Cameron et al demonstrated
that M1 (classically activated macrophages) depend on the nicotin-
amide adenine dinucleotide (NAD[H]) salvage pathway to sustain
aerobic glycolysis and their M1 phenotype following stimulation with
LPS or LPS plus IFNg.22 However, the metabolic reprogramming in
human monocytes and macrophages induced by IFNg alone is not
well characterized.

IFNg is known to regulate phagocyte activation through metabolic
adaptations that produce reactive oxygen species (ROS).23-27

Superoxide generation through oxidation of phosphorylated nicotin-
amide adenine dinucleotide phosphate (NADPH) by the NADPH
oxidase complex is known as the respiratory burst.28 The same
NAD1 salvage pathways that were identified as critical for maintain-
ing aerobic glycolysis in LPS-stimulated macrophages also supply
the intracellular NAD1 required to produce NADP(H) to support
NADPH oxidase superoxide production.29 Therefore, we hypothe-
sized that IFNg-mediated activation of the respiratory burst might
also depend on NAD1 salvage pathways.

We used primary human monocytes to characterize the metabolic
reprograming that occurs in response to stimulation with IFNg. We
identified an IFNg-induced, nicotinamide phosphoribosyltransferase
(NAMPT)-dependent pathway of NAD1 salvage that is required for
the highly oxidative metabolic phenotype induced by IFNg. We used
primary monocytes from healthy donors and patients with genetic
defects in various steps of this pathway as well as chemical inhibi-
tors to demonstrate that IFNg augments NAD1 biosynthesis and
reduction/oxidation (redox) metabolism to increase oxygen con-
sumption. Our findings suggest that the IFNg-induced respiratory
burst in monocytes is dependent on NAMPT-mediated NAD1

salvage. This metabolic pathway may include novel targets for thera-
peutic modulation of monocyte activation.

Methods

Human monocyte collection, isolation, and

stimulation

All patients and healthy volunteers signed onto approved National
Institutes of Health protocols. The study was conducted in accor-
dance with the Declaration of Helsinki. Peripheral blood was col-
lected in sodium heparin tubes. Peripheral blood mononuclear cells
were isolated by density gradient centrifugation using Lymphocyte
Separation Medium (Corning, catalog #MT25072CI). CD141 selec-
tion was performed using magnetic beads (Miltenyi Biotec CD14
MicroBeads, catalog #130-050-201) following the manufacturer’s
protocol. CD141 monocytes were plated at 105/50 mL per well in
Seahorse XF96 V3 PS cell culture microplates (Agilent, 101085-
004) in serum-free media. After 3 hours, 50 mL of complete media

with 20% (23) fetal bovine serum was added, and cells were rested
overnight. Cells were then stimulated with media alone, IFNg (1000
U/mL; Actimmune, NDC number 75987-111-10), and/or select inhib-
itors: rotenone (Sigma, #R8875), FK866 (Selleckchem, #S2799),
diphenyleneiodonium (DPI) (Sigma, #D2926), Rotenone and
Antimycin A, oligomycin, or trifluoromethoxy carbonylcyanide
phenylhydrazone (FCCP) (Agilent Seahorse Mito Stress Test,
#103015-100).

Seahorse metabolic rate assays

Oxygen consumption rates (OCR), indicative of mitochondrial res-
piration, and extracellular acidification rates (ECAR), indicative of
glycolysis, were measured using the Seahorse Bioscience Extracel-
lular Flux Analyzer (XFe96; Seahorse Bioscience Inc., North Billerica,
MA). Prior to measurements, culture medium was removed and
replaced with 180mL pH-ready Seahorse Assay Media (Agilent,
catalog #103575-100) and incubated in the absence of CO2 for
1 hour in the Biotek Cytation1 while preassay brightfield images
were collected. For the Mito Stress Test, cells were sequentially
treated with oligomycin (2 mM), FCCP (0.5mM), and rotenone1
antimycin A (0.5 mM). OCR and ECAR were measured in a stan-
dard, 6-minute cycle. For the Glycolysis Stress Test, cells were
sequentially treated with glucose (10 mM), oligomycin (1 mM), and
2-deoxyglucose (50 mM). For our modified assay, cells were treated
with phorbol myristate acetate (PMA) (100 mM), then, in some
cases, rotenone and antimycin A (0.5mM).

All OCR and ECAR values were normalized by staining cells with
2 mg/mL Hoechst 33342 (ThermoFisher Scientific) for 30 minutes
while performing postassay brightfield imaging. Cells were then
imaged and counted using the Biotek Cytation1. Cell counts were
calculated by cell imaging software (Agilent) and imported into
Wave (Agilent) using the normalization function. OCR values were
normalized to cell count data.

RNA-Seq

RNA sequencing (RNA-Seq) was performed on RNA isolated from
primary CD141 monocytes from 4 normal donors following differen-
tiation with macrophage colony stimulating factor (30 ng/mL) for 5
days and subsequent stimulation with recombinant human IFNg
(100 ng/mL) for 24 hours.

Total RNA sample integrity was assessed using automated capillary
electrophoresis on a Fragment Analyzer (Agilent) using the HS
RNA Kit (15NT). For all samples RNA quality number . 8.0, total
RNA amount of .75 ng was used as input for library preparation
using the TruSeq Stranded mRNA Library Preparation Kit (Illumina).
Sequencing libraries were quantified by real-time polymerase chain
reaction using the KAPA Library Quantification Complete kit
(Roche) and assessed for size distribution, absence of free adapt-
ers, and adapter dimers on a Fragment Analyzer. Sequencing
libraries were pooled and sequenced on a HiSeq 3000 System
(Illumina) using a HiSeq 3000/4000 PE Cluster Kit and SBS Kit
(150 cycles) with run conditions of paired-end reads at 75 bp
length.

Sequenced reads (100 bp, paired-end) were mapped to the human
genome hg19 (GRCh38) using Bowtie 2.2.630 and Tophat 2.2.1.31

Uniquely mapped reads were retained, and raw counts that fell in
coding regions were calculated and normalized using reads per kilo-
base per million mapped reads using given gene lengths from the

3822 McCANN et al 28 JUNE 2022 • VOLUME 6, NUMBER 12

D
ow

nloaded from
 http://ashpublications.net/bloodadvances/article-pdf/6/12/3821/1904388/advancesadv2021005776.pdf by guest on 28 M

ay 2024



University of California, Santa Cruz genome browser. Quantile nor-
malization was applied to all samples,32 and data were log2-trans-
formed. Nonexpressed and weakly expressed genes, defined as
having ,1 read per million in 4 of the samples,33 were removed
prior to subsequent analyses, resulting in a count table of 13873
genes. Limma (Bioconductor package) was used to conduct
differential expression analyses.34 The voom module was used to
transform data based on observational level weights derived from
the mean-variance relationship prior to statistical modeling.35

Pairwise contrasts were done within limma to identify differentially
expressed genes between conditions. Genes with a Benjamini-
Hochberg multiple-testing adjusted P value of ,.05 were defined
as differentially expressed.

Volcano plot was generated using GraphPad Prism9 software.
Metabolic genes involved in NAD(P)H metabolism and related
pathways were extracted from the Kyoto Encyclopedia of Genes
and Genomes pathway database. Metabolic genes that over-
lapped with RNA-Seq data are shown in heat maps generated
using the web tool ClustVis.36 Unbiased assessment of the meta-
bolic pathways transcriptionally regulated by IFNg was performed
using the ERGOTM 2. 0 analysis platform (Ingenbio, Chicago, IL).

Statistical analyses

Statistical analyses were performed using GraphPad Prism9 soft-
ware. Data are expressed as mean 6 standard error of the mean,
and P values were calculated using 1-way analysis of variance
(ANOVA) with Tukey’s multiple comparisons test or 2-way ANOVA
with Sidak’s multiple comparisons test unless otherwise indicated.
A confidence interval of 95% was used for all statistical tests. Sam-
ple sizes were determined based on the experiment type and stan-
dard practice in the field.

Results

IFNg increases monocyte OCR

Although much is known about IFNg-mediated transcriptional
regulation, the metabolic processes that support IFNg-mediated
activation of primary human monocytes remain poorly understood.
Therefore, we assessed cellular OCR and ECAR to quantify cellular
oxygen metabolism and glycolysis, respectively.

Consistent with studies describing an immediate switch to glycoly-
sis in murine bone marrow–derived macrophage’s response to
LPS,37-39 we found that LPS and the combination of LPS plus IFNg
robustly increased ECAR (glycolysis) in primary human monocytes
within 20 minutes of stimulation. IFNg alone had no immediate
effect on ECAR (Figure 1A) and none of the stimuli caused signifi-
cant changes in OCR within 1 hour of stimulation (Figure 1B).

Wang et al reported that the metabolic program of murine bone
marrow–derived macrophages stimulated with IFNg for 24 hours
was primarily characterized by increased glycolysis, without changes
in OCR.40 To compare our findings in human monocytes to previ-
ously published data in murine macrophages, we used the same
assays to measure OCR and ECAR in primary human monocytes
cultured with media alone (M[0]), IFNg (M[IFNg]), LPS (M[LPS]), or
LPS1IFNg (M[LPS plus IFNg]) for 24 hours. Although our data
demonstrated an increase in ECAR in response to IFNg (Figure
1C), there was also a significant increase in OCR in response to
IFNg (P , .0001) (Figure 1D), which may represent a metabolic

phenotype unique to human monocytes. We also found that the
effects of IFNg on monocyte OCR were time dependent, with
the greatest effects at 24 hours poststimulation (supplemental
Figure 1A-B).

We then modified the standardized Seahorse assays to assess how
IFNg reprograms monocyte metabolism during a 24-hour stimulation
period to prime cells metabolically to respond to the robust activat-
ing stimulus, PMA. Basal measurements of ECAR and OCR were
collected, then PMA (100 ng/mL) was injected, and the real-time
metabolic responses were monitored. M(IFNg) monocytes demon-
strated a trend toward increased PMA-stimulated ECAR (Figure 1E)
and a significant increase in both basal (P 5 .003) and PMA-
stimulated (P , .0001) OCR (Figure 1F-G). These findings demon-
strate that primary human monocyte metabolism is reprogrammed
by IFNg, which has modest effects on ECAR and significantly
increases OCR.

IFNg-induced oxygen consumption is dependent on

NAMPT-mediated NAD1 salvage

Wu et al reported increased OCR and fatty acid oxidation in
response to type I interferons in plasmacytoid dendritic cells.41

Therefore, we first compared metabolic responses to IFNg (type II
interferon) to IFNa and IFNb (type I interferons). We found that
IFNa and IFNb induced significantly less basal and PMA-stimulated
OCR (�1.5-fold increase) than IFNg, (two- to threefold increase;
Figure 2A). These data suggest a distinct metabolic effect of IFNg
that drives oxygen consumption.

We determined that IFNg-induced OCR was not a result of mito-
chondrial biogenesis leading to increased total mitochondrial mass
(mitochondrial mass was significantly lower in M[IFNg] monocytes
[Figure 2B], and glucose uptake was only modestly increased
[Figure 2C]). When we inhibited the 3 primary carbon sources fuel-
ing the TCA cycle and mitochondrial oxidative metabolism (Figure
2D), we found that none of the individual inhibitors tested signifi-
cantly reduced IFNg-induced increases in OCR (Figure 2E). There-
fore, we concluded that IFNg-induced oxygen consumption was not
exclusively dependent on the oxidation of pyruvate, glutamine, or
fatty acids.

Using RNA-Seq data from IFNg-stimulated, human monocyte–derived
macrophages, unbiased assessment of the metabolic pathways
transcriptionally regulated by IFNg42 identified “NAD and NADP
metabolism” as the most significantly upregulated metabolic pathway
(Figure 3A). We found that IFNg both upregulated NAMPT, the rate-
limiting enzyme in nicotinamide (NAM)-dependent NAD1 salvage,22,43

and simultaneously downregulated nicotinamide riboside kinase
2 (NRK2) (Figure 3B), which mediates the other arm of the NAD1

salvage pathway from nicotinamide ribose (Figure 3C).

Addition of exogenous NAMPT substrate, NAM, did not augment
IFNg-induced increases in oxygen consumption (supplemental
Figure 2A), consistent with the understanding that NAMPT activity
is the rate-limiting step in NAM-dependent NAD1 salvage.44 We
also assessed the dose-dependent inhibitory effects of the NAMPT
inhibitor FK866 (APO866, Daporinad) and selected a dose of 5 nM
FK866 to minimize off-target effects (supplemental Figure 2B).

FK866 completely blocked the IFNg-induced increases in basal
and PMA-stimulated OCR. Interestingly, NAMPT inhibition prefer-
entially affected M(IFNg) monocytes (Figure 3D), likely because
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monocytes immediately following injection of media alone, LPS, IFNg, or LPS plus IFNg (n55 technical replicates). (C-D) Primary human monocytes were stimulated with

media alone, LPS, IFNg, or LPS plus IFNg for 24 hours prior to the start of the assay, then (C) ECAR was measured according to the Seahorse Glycolysis Stress Test or

(D) OCR was measured according to the Seahorse Mito Stress Test. For the Glycolysis Stress Test, cells were sequentially treated with glucose (10 mM), oligomycin

(1 mM), and 2-deoxyglucose (50 mM). For our modified assay, cells were treated with PMA (100 mM), then, in some cases, rotenone and antimycin A (0.5 mM). For the Mito
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IFNg actively downregulates NRK2 expression, making M(IFNg)
monocytes even more dependent on NAMPT for NAD1 salvage
(Figure 3B-C). Basal OCR levels in M(IFNg) monocytes were
2.2-fold higher, and PMA-stimulated OCR levels were 1.4-fold
higher, compared with M(0) monocytes. However, when FK866
was added throughout the 24-hour IFNg stimulation period, the
IFNg-induced increases in basal and PMA-stimulated OCR were
completely abrogated (Figure 3E).

Glycolysis is an NAD1-dependent pathway in which GAPDH activ-
ity depends on reduction of NAD1 to NADH.22 Consistent with this
finding, we observed an inhibition of IFNg-induced glycolysis with
NAMPT inhibition (supplemental Figure 2C).22 Although other inhibi-
tors of OCR (e.g., DPI or rotenone) cause a compensatory increase
in basal ECAR when OCR is inhibited (supplemental Figure 2D),
FK866 inhibits both ECAR and OCR. Therefore, we assessed the
viability of FK866-treated monocytes. We first demonstrated that
FK866 did not cause significant cytotoxicity at the doses used in
these experiments (supplemental Figure 2E). We next rescued the
diminished OCR and ECAR phenotypes with exogenous nicotin-
amide mononucleotide, the product of NAMPT. High doses of nico-
tinamide mononucleotide rescued both OCR and ECAR in M(IFNg)
monocytes treated with FK866, suggesting that these cells are both
viable and metabolically active (supplemental Figure 2F-G). Taken
together, these results suggest that IFNg reprograms NAD1 salvage
and renders monocytes dependent on NAMPT activity to maintain
elevated levels of basal and PMA-stimulated OCR induced by IFNg.

STAT1 is required for IFNg-induced oxygen

consumption and regulates oxygen consumption

via mitochondrial complex I

To further elucidate the signaling pathways that mediate IFNg-
induced increases in OCR and the physiologic relevance of our
assay, we assessed 2 patients with STAT1 GOF mutations (Table 1)
and observed higher basal OCR (P 5 .192) and significantly higher
PMA-stimulated OCR (P 5 .027) in M(IFNg) monocytes. Though
not significant, basal OCR levels in M(0) STAT1 GOF patient
monocytes were higher than basal OCR levels in M(IFNg) healthy
control monocytes (Figure 4A). We also observed that expression
of genes involved in NAD1 salvage (NAMPT, P2RX7, and CD38)
were elevated in monocytes from a STAT1 GOF patient, and subse-
quently reduced to normal or below normal levels, after the patient
was treated with the JAK inhibitor ruxolitinib (supplemental

Figure 3A-C). These data show that STAT1 mediates IFNg-induced
increases in OCR and likely acts through modulation of NAD1

salvage gene expression.

The primary connection between NAD1 metabolism and cellular
oxygen consumption is mediated by mitochondrial complex I
(NADH ubiquinone oxidoreductase), where NADH is oxidized,
regenerating NAD1 for use in vital cellular reactions and initiating
mitochondrial electron transport. Mitochondrial oxygen consump-
tion occurs as a product of electron transport by 2 mechanisms:
(1) production of water as molecular oxygen acts as the final
electron acceptor and (2) electron leak, primarily from complexes
I and III, which can generate superoxide.45-52 Treatment with the
chemical inhibitor of mitochondrial complex I, rotenone, through-
out the 24-hour IFNg stimulation period abrogated IFNg-induced
increase in OCR (Figure 4B).

In addition to chemical inhibition of mitochondrial complex I, we
also assessed primary monocytes from a patient with a clinical
diagnosis of Leigh syndrome, caused by mitochondrial MT-ND1
(m.3697 G.A; Table 1), resulting in reduced function of mito-
chondrial complex I.53-56 Because this gene is maternally inher-
ited, we assessed the proband’s father as an unaffected healthy
control. One of the hallmarks of mutations in mitochondrial DNA
is heteroplasmy, in which an individual may possess both wild-
type and mutant mitochondrial DNA in the same cell,57 the bal-
ance of which determines mitochondrial function and cellular
health. The proband was homoplasmic (100%) for m.3697
G.A, whereas her sibling was 80% heteroplasmic. As expected,
the proband had significantly lower basal and PMA-stimulated
OCR than her unaffected father, whereas her sibling had an
intermediate level of OCR (supplemental Figure 3D-F). Therefore,
both chemical and genetic disruptions of mitochondrial complex I
inhibit IFNg-induced OCR.

PMA-stimulated OCR measure NADPH

oxidase activity

Besides oxidation by mitochondrial complex I, NAD(H) can also
be converted into NADP(H) by cytosolic and mitochondrial
NAD1 kinases43,58 or the mitochondrial enzyme nicotinamide
nucleotide transhydrogenase, which transfers a hydride ion from
NADH to NADP1.59,60 Oxidation of NADPH by the NADPH oxi-
dase is the primary source of superoxide production during the
respiratory burst, required for effective clearance of some

Figure 2 (continued) IFNg-induced increases in OCR are unique to type II interferon and not dependent on total mitochondrial mass, glucose uptake, or

substrate-specific catabolism. (A) Real-time changes OCR measured by Seahorse following treatment with media alone or high (50 ng/mL) or low (5 ng/mL) dose of

IFNg, IFNa, or IFNb for 24 hours prior to the start of the assay. Basal OCR was measured, then PMA (100 ng/mL) was injected during the assay, and OCR was monitored

(n55 technical replicates). Data in panel A are representative tracings, with bar graphs indicating basal and PMA-stimulated OCR of 3 independent experiments.

(B-C) Primary human monocytes were stimulated with media alone, LPS, IFNg, or LPS plus IFNg prior to the start of the assay, then (B) total mitochondrial mass was

measured using MitoTracker Green staining, and (C) glucose uptake was measured using 2-NBDG by flow cytometry, and the geometric mean fluorescent intensities are

indicated in the bar graphs. Data in panels B-C were analyzed by 1-way ANOVA with Dunnett’s multiple comparisons test. Error bars are mean 6 standard error of the

mean. *P , .05, **P , .01, ***P , .001, ****P , .0001. (D) Schematic representation of the primary mitochondrial fuel sources and their respective inhibitors used in panel

E. Primary human monocytes were stimulated with or without IFNg and in the presence of absence of metabolic inhibitors according to the Mito Fuel Flex Test protocol;

healthy control monocytes were left untreated or treated with etomoxir (4 mM), UK5099 (2 mM), or Bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide (3 mM) through-

out the 24-hour IFNg-stimulation period. Oxygen consumption was assessed by Seahorse assay according to a modified Mito Fuel Flex Test protocol (Agilent, 103260-100).

Basal OCR measurements were captured after the 24-hour stimulation. PMA (100 ng/mL) was injected during the assay, and PMA-stimulated OCR measurement were

collected. Rotenone and antimycin A were then injected, and OCR measurements were collected. For data in panels A and E, n 5 5 technical replicates, and the tracings

are representative of 3 independent experiments. TCA, tricarboxylic acid.
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pathogens by phagocytes. Patients with chronic granulomatous
disease (CGD) have genetic defects in 1 of 6 NADPH oxidase
components and characteristically present with recurrent
infections and immune dysregulation including granulomatous
inflammation.61-63 Therefore, we assessed 4 patients with loss-
of-function mutations in various NADPH oxidase genes (Table 1).
Interestingly, when compared with healthy controls, CGD patient
cells demonstrated no increase in OCR in response to PMA
stimulation. Although basal OCR levels (in M[0] and M[IFNg]
monocytes) were similar to those of healthy controls, there was no
PMA-stimulated increase in OCR (Figure 5A), suggesting that the
PMA-stimulated increases in OCR measured by our assay repre-
sented superoxide production by the NADPH oxidase complex.

We also tested a chemical inhibitor of NADPH oxidase, DPI.64

Like CGD patient monocytes, healthy control monocytes treated

with DPI showed no increase in OCR in response to PMA. DPI
treatment also reduced basal OCR levels (Figure 5B), which was
consistent with reports of off-target effects of DPI, including inhi-
bition of mitochondrial complex I, which has a structure similar to
NADPH oxidase.65-67 Recognizing that the PMA-stimulated OCR
in our assay represented NADPH oxidase-dependent oxygen
consumption further clarified the mechanism by which IFNg acts
to augment the monocyte respiratory burst.23,24,26,68-70 It also
demonstrated that the reduction in PMA-stimulated OCR
observed with NAMPT inhibition caused a diminished IFNg-
induced respiratory burst, comparable to that of CGD (Figure 5C).
Our findings in CGD patient monocytes (and with chemical inhibition
of NADPH oxidase) demonstrate that the measured OCR values are
indicative of cellular ROS production. As opposed to conventional
methods of ROS detection, which measure the reactive oxygen
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product, this method approximates ROS production based on the
consumption of molecular oxygen in the context of ROS-promoting
(or ROS-inhibiting) conditions.

IFNg coordinately regulates transcription of multiple

pathways to promote both NAM-dependent and

-independent NAD salvage

In addition to NAMPT, we also found that IFNg transcriptionally
regulated several other genes that promote NAD(H) import and
reduction/oxidation. IFNg induced P2RX7, which forms an adeno-
sine triphosphate (ATP)-gated pore that can import extracellular
NADH, and CD38, an NAD1 consuming ectoenzyme that converts
extracellular NAD1 into NAM, the membrane permeable substrate
for NAMPT (Figure 6A-B). IFNg also downregulated PDK4, an
inhibitor of pyruvate dehydrogenase (PDH), which could allow for
increased PDH activity, potentially increasing flux through the TCA
cycle and NAD1 reduction (Figure 6B; supplemental Figure 5A).
Furthermore, NADPH oxidase complex genes were upregulated by
IFNg, whereas nuclear-encoded mitochondrial complex I genes
were mostly downregulated (supplemental Figure 4A-B). Minhas et al
demonstrated a role for de novo NAD1 biosynthesis in the immuno-
logic activity of resting human macrophages but did not assess
metabolic changes in response to IFNg.71 We found that genes
involved in de novo and Preiss-Handler pathways of NAD1

Table 1. Patients assayed for metabolic dysregulation

Patient diagnosis

Patient

age (y)

Patient

sex (M/F)

Gene

affected

Gain/loss

of function

STAT1 GOF 13 F STAT1 GOF

STAT1 GOF 34 M STAT1 GOF

Leigh syndrome 5 F MT-ND1 LOF

STAT1 GOF (6 ruxolitinib) 34 M STAT1 GOF

Leigh syndrome 10 M MT-ND1 LOF

CGD 57 F p47phox LOF

CGD 24 M gp91 LOF

CGD 38 M gp91 LOF

CGD 14 M gp91 LOF

Patients’ clinical diagnosis, age, sex, affected gene, and functional consequence of
their genetic mutation are listed as they appear in the corresponding figures.
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biosynthesis were broadly downregulated in response to IFNg (sup-
plemental Figure 4C), as opposed to genes involved in NAD1

salvage.

We then used several inhibitors to determine which mitochondrial
processes were required to maintain IFNg-induced increases in
OCR (supplemental Figure 5A). Compared with inhibitors that block
both mitochondrial ATP synthesis and electron transport (rotenone,
antimycin A, and oligomycin),48-50,72,73 treatment with the mitochon-
drial ionophore FCCP, which uncouples ATP synthesis from elec-
tron transport, did not affect IFNg-induced increases in basal or
PMA-stimulated OCR (supplemental Figure 5D vs supplemental
Figure 5B-C).74 Therefore, IFNg-induced OCR is not dependent on
mitochondrial ATP production but rather on the capacity to support
electron transport. These findings suggest that IFNg coordinately
regulates a transcriptional program that increases cellular NAD(P)H
available for oxidation. The result of this oxidation likely serves to
both produce ROS and to recycle NAD(P)H between its oxidized
and reduced states for activity as cofactors in vital cellular reactions.

Discussion

Metabolic reprogramming of immune cells in response to activation
is essential for their immunologic activity,22,37,75 and disruption of
these metabolic pathways has the potential to alter immune cell
function. We investigated the metabolic reprogramming associated
with IFNg stimulation of human monocytes and identified a primary
role for IFNg in the regulation of NAD1 metabolism. This metabolic
phenotype is not observed with type I interferons and is dependent
on NAMPT. Inhibition of NAMPT with a specific chemical inhibitor,
FK866, completely abrogated the IFNg-induced increases in basal
and PMA-stimulated OCR (Figure 2D-E).

We also demonstrated that IFNg-induced increases in OCR are
dependent on both STAT1 and mitochondrial complex I.76 Patients
with STAT1 GOF mutations or MT-ND1 Leigh syndrome had
altered OCR compared with healthy controls (Figure 3A-C). PMA-
stimulated OCR levels measured in our assay represent oxygen
consumption by the NADPH oxidase complex and were completely
absent in CGD patient and DPI-treated monocytes (Figure 4A-B).
Therefore, we have identified a metabolic pathway by which IFNg-
induced NAMPT augments NAD1 salvage, which is required for
complete induction of the NADPH oxidase-mediated respiratory
burst. Further investigation is required to directly assess the immu-
nologic consequences of NAMPT inhibition. However, our data
demonstrate the functional similarity between NAMPT inhibition and
NADPH oxidase inhibition/dysfunction in monocytes, suggesting
probable overlap in the immunologic effects of these pathways.

Our data provide a more detailed understanding of how IFNg acts
to activate monocytes in health and disease. Increasing microbicidal
ROS production through an NAD(P)H-dependent mechanism may
provide the added benefit of maintaining NAD(H) and NADP(H)
availability intracellularly as cofactors for many cellular reactions,
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(A-B) OCR was measured by Seahorse in primary human monocytes treated with

media alone or IFNg for 24 hours prior to the start of the assay (n55 technical

replicates). (A) Monocytes from 4 healthy controls (black and green lines) and

4 CGD patients (red lines) were compared. (B) Monocytes were treated with (red

lines) or without (black and green lines) DPI (100 uM) in addition to IFNg or media

alone for 24 hours. All OCR values were normalized by staining cells with 2 mg/mL

Hoechst 33342 (ThermoFisher Scientific) for 30 minutes. Cells were then imaged

and counted using the Biotek Cytation1. Cell counts were calculated by cell

imaging software (Agilent) and imported into Wave (Agilent) using the

normalization function. Raw OCR values were normalized by cell counts per well.

(C) Bar graphs displaying PMA-stimulated OCR values normalized to the basal

Figure 5 (continued) OCR levels in healthy control plus medium samples run in

the same experiment (data not shown). Data are representative of at least 3

independent of experiments and were analyzed by 1-way ANOVA with Tukey’s

multiple comparisons test. Error bars are mean 6 standard error of the mean.

****P , .0001.
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including the essential antioxidant processes involving glutathione
and thioredoxin reductases.77-80 Therefore, the regulation of NAD1

metabolism by IFNg may serve to augment ROS production and
simultaneously enhance the activity of antioxidant processes
required to protect the host cell from oxidative stress.81 Consistent
with this hypothesis, we found that mitochondrial ATP synthesis
was dispensable for maintaining the IFNg-induced respiratory burst
(supplemental Figure 6D), suggesting that IFNg-induced NAD1 sal-
vage does not primarily function to supply NADH for the purpose of
ATP synthesis. Rather, increased NAD1 salvage likely supports
mitochondrial ROS (mROS) production and synthesis/recycling of
NAD(H) and NADP(H). These act as cofactors for critical oxidative
and antioxidant processes.22,29,43,82

In contrast to superoxide production by the NADPH oxidase complex,
less is known about the specific immunologic effects of mROS.
Sander and Garaude recently reviewed the multifaceted relationship
between innate immune responses and mitochondria,49,83 and Kiritsy
et al provided evidence of crosstalk between IFNg signaling and
mitochondria, demonstrating that IFNg-induced activation of antigen
presenting cells is dependent on mitochondrial complex I activity.84

Other reports suggest that mitochondrial superoxide serves a similar
microbicidal function as NADPH oxidase–derived superoxide.85 Inter-
estingly, NADPH oxidase-produced ROS has been shown to induce
mROS, and mROS can, in turn, activate NADPH oxidase.86

The NADPH oxidase complex and mitochondrial complex I (NADH
ubiquinone oxidoreductase) are not only related in their ability to
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oxidize NAD(P)H to produce ROS but also in that their substrates
are almost identical derivatives of NAD1. We now understand that
oxygen consumption by both oxidases is regulated by IFNg-induced
NAMPT activity in human monocytes. This bidirectional relationship
is likely important for both maximizing ROS production during the
respiratory burst and for effectively inducing protective antioxidant
programs through (1) recycling NAD(P)H between its oxidized and
reduced states and (2) by activating redox sensitive mitochondrial
antioxidants.86

Expression of NAMPT is precisely regulated and highly inducible in
response to inflammatory stimuli, including IFNg, compared with the
resting state.22 Impaired upregulation of NAMPT, as in the setting of
IFNg signaling defects, could therefore affect bacterial killing during
infection through its effects on superoxide production. Conversely,
sustained or dysregulated expression of NAMPT could maintain/pro-
mote excessive inflammation, causing collateral tissue damage and
chronic cellular stress. High levels of superoxide production have
been associated with chronic inflammatory diseases such as athero-
sclerosis and are less prevalent in CGD patients who do not produce
superoxide.87,88 For this reason, NADPH oxidase inhibitors have been
trialed as immunomodulators to protect against oxidative stress.89-93

Our data suggest that modulation of NAMPT activity could have a
similarly protective effect in states of chronic inflammation. By contrast,
induction of NAMPT activity could be beneficial in states of IFNg defi-
ciency to augment the respiratory burst for microbicidal purposes.94

IFNg was first trialed as a therapeutic in CGD with the aim of aug-
menting the respiratory burst. It was ultimately approved for clinical
use to reduce the frequency and severity of infections associated
with CGD but did not significantly increase superoxide production
in CGD patients.95 Although the mechanism of action of IFNg in
CGD still remains elusive, our data provide a metabolic mechanism
by which IFNg enhances NADPH oxidase superoxide production in
normal human monocytes. This may explain why this effect is not
observed in CGD patients, namely that IFNg acts to augment
NADPH upstream of the defect in CGD.

In addition to NAMPT, we identified several other IFNg-inducible
genes involved in NAD(H) salvage, some of which have important
clinical implications. P2RX7 has been associated with susceptibility to
mycobacterial infection, an infection for which increased susceptibility
is also associated with defects in IFNg signaling. The mechanism of
P2RX7-associated mycobacterial infection has not been completely
elucidated, but our data suggest it could be related to its role in regu-
lating the import of extracellular NADH.96,97 Similarly, drugs targeting
CD38, such as daratumumab,98,99 may have additional immunomodu-
latory effects through altered monocyte NAD1 metabolism.100 Finally,

the effects of IFNg on PDH via downregulation of PDK4 suggest that
metabolic diseases such as PDH deficiency likely have immunologic
manifestations that are not yet completely recognized.53

Collectively, our data identify a novel immunometabolic phenotype
of IFNg-stimulated primary human monocytes, characterized by sig-
nificantly increased oxygen consumption. We confirmed that these
metabolic changes are physiologically relevant as they are dysregu-
lated in specific patients and reproducible. Further investigation is
required to determine the specific effects of NAMPT-mediated
metabolism on IFNg-induced immunologic functions and how flux
through various NAD(H)-dependent metabolic pathways impacts
cellular function more broadly. This understanding of the metabolic
foundation of IFNg-induced monocyte activation identifies several
metabolic genes as potential causes or modifiers of immunologic
and inflammatory diseases that should be evaluated as therapeutic
targets for the modulation of IFNg-mediated monocyte activation.
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