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Molecular and cytogenetic studies are essential for diagnosis and prognosis in patients with

myelodysplastic syndromes (MDSs). Cell-free DNA (cfDNA) analysis has been reported to be a

reliable noninvasive approach for detecting molecular abnormalities in MDS; however, there

is limited information about cytogenetic alterations and monitoring in cfDNA. We assessed

the molecular and cytogenetic profile of a cohort of 70 patients with MDS by next-generation

sequencing (NGS) of cfDNA and compared the results to sequencing of paired bone marrow

(BM) DNA. Sequencing of BM DNA and cfDNA showed a comparable mutational profile

(92.1% concordance), and variant allele frequencies (VAFs) strongly correlated between both

sample types. Of note, SF3B1 mutations were detected with significantly higher VAFs in

cfDNA than in BM DNA. NGS and microarrays were highly concordant in detecting

chromosomal alterations although with lower sensitivity than karyotype and fluorescence in

situ hybridization. Nevertheless, all cytogenetic aberrations detected by NGS in BM DNA

were also detected in cfDNA. In addition, we monitored molecular and cytogenetic

alterations and observed an excellent correlation between the VAFs of mutations in BM DNA

and cfDNA across multiple matched time points. A decrease in the cfDNA VAFs was detected

in patients responding to therapy, but not in nonresponding patients. Of note, cfDNA analysis

also showed cytogenetic evolution in 2 nonresponsive cases. In summary, although further

studies with larger cohorts are needed, our results support the analysis of cfDNA as a

promising strategy for performing molecular characterization, detection of chromosomal

aberrations and monitoring of patients with MDS.

Introduction

Myelodysplastic syndromes (MDSs) are hematopoietic stem cell disorders characterized by dysplasia
and ineffective hematopoiesis driven by somatically acquired genomic alterations. Molecular studies and
conventional cytogenetics are essential in MDS for establishing a correct diagnosis and setting up
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Key Points

� Cell-free DNA mirrors
the molecular profile
of bone marrow cells
in MDS.

� The analysis of cfDNA
is a promising method
to characterize and
monitor molecular and
cytogenetic abnormali-
ties present in MDS.
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accurate risk stratification.1 Routinely, these analyses are performed
in bone marrow (BM) samples (in particular, cytogenetic analyses),
as it is difficult to obtain metaphases from peripheral blood (PB)
samples.2

In recent years, it has been demonstrated that molecular profiling
can be performed robustly using cell-free DNA (cfDNA) analysis in
solid tumors and lymphomas. cfDNA molecules are short DNA frag-
ments present in plasma samples that are mainly released by imma-
ture hematopoietic and bone marrow (BM) cells.3-6 As MDSs are
characterized by an excessive apoptosis in BM,7,8 so an increased
release of cfDNA into plasma is expected in these patients. Indeed,
several groups have reported that it is possible to identify the
genetic alterations in MDS by analyzing cfDNA.9-12

However, there is limited information regarding the detection of cyto-
genetic alterations in patients with MDS by cfDNA analysis. To this
end, we have designed a targeted gene panel to detect in a single
test both molecular and cytogenetic alterations by next-generation
sequencing (NGS) and have investigated its potential use with cfDNA
in comparison with BM samples in a cohort of patients with MDS.

Patients and methods

Patients

BM aspirates and PB samples were prospectively collected from
70 patients with newly diagnosed MDS or patients who received
only erythropoietin with the following diagnoses: MDS with single-
lineage dysplasia (SLD; n 5 1), MDS with multilineage dysplasia
(MLD; n 5 35), MDS with ring sideroblasts (RS)-SLD (n 5 5),
MDS-RS-MLD (n 5 17), MDS with isolated del(5q) (n 5 2), MDS
with excess blasts (EB)-1 (n 5 6), MDS-EB-2 (n 5 2), and MDS-
unclassifiable (MDS-U; n 5 2; Table 1). The revised International
Prognostic Scoring System (IPSS-R) score was calculated for each
patient.13 We analyzed PB samples from an additional 21 healthy
control subjects and 18 patients with acute myeloid leukemia (AML;
supplemental Table 1). The study was approved by the Parc de Salut
Mar Clinical Research Ethics Committee (CEIm, 2016/6768/I) and
was conducted according to the biomedical research guidelines of
the Declaration of Helsinki.

PB and BM processing and DNA isolation

BM aspirates were collected, and BM DNA was extracted with
MagAttract DNA Blood Mini M48 Kit (Qiagen, Hilden, Germany).
PB samples were collected in K3EDTA tubes and processed in the
first 4 hours to isolate plasma (supplemental Figure 1). cfDNA was
isolated automatically by using QIAsymphony SP (QIAsymphony
DSP Virus/Pathogen Kit; Qiagen) and quantified with Qubit 3.0
(Thermo Fisher Scientific, Eugene, OR). The purity of the cfDNA
was assessed by electrophoresis (4200 TapeStation system; Agi-
lent, Santa Clara, CA) to discount the presence of genomic DNA.
All the cfDNA samples analyzed in this project were free of genomic
DNA contamination.

NGS

Genomic characterization was performed in paired samples of BM
DNA and cfDNA by NGS in all patients. Libraries were prepared by
using a custom panel that included 48 myeloid-associated genes
(ASXL1, ATM, BCOR, BCORL1, CALR, CBL, CEBPA, CHEK2,
CSF3R, CSNK1A1, CUX1, DDX41, DLEU7, DNMT3A, EGR1,

ETV6, EZH2, FLT3, GATA2, IDH1, IDH2, JAK2, KIT, KMT2A,
KRAS, MPL, NF1, NPM1, NRAS, PHF6, PPM1D, PRPF8,
PTPN11, RAD21, RUNX1, SETBP1, SF3B1, SH2B3, SRSF2,
STAG2, TET2, TNFSF11, TP53, TP53RK, TP53TG5, U2AF1,
WT1, and ZRSR2) and genomic regions localized at the most
frequently altered chromosomes in MDS (QIAseq Custom DNA
Panels; Qiagen). Genomic regions included in the NGS panel are
included in supplemental Table 2. Unique molecular identifiers were
incorporated before targeted amplification, to tag individual DNA
molecules. Libraries were sequenced with a 30003 minimum read
depth in MiSeq/NextSeq (Illumina, San Diego, CA).

The GeneGlobe Data Analysis Center (Qiagen) was used for
FASTQ trimming, alignment, and variant calling (smCounter2).14

Variants were annotated and classified by Illumina VariantStudio 3.0
software and were visualized with Integrative Genomics Viewer
(IGV) v2.11 software. Only pathogenic and likely pathogenic var-
iants with a variant allele frequency (VAF) .2% were considered.

Copy number variant analysis was performed by NGS to detect
cytogenetic alterations in both cfDNA and BM DNA. Samples from
healthy individuals (n 5 2-4) were included in all sequencing runs
and used as coverage controls. Gene coverage was compared with
each sample by GeneGlobe Data Analysis Center, to identify
regions affected by copy number variants, where the normalized
coverage is significantly different from the controls.15

Chromosomal microarrays

Cytoscan 750K Cytogenetic Solution (Thermo Fisher Scientific)
was used to obtain a genetic gain, loss, and regions of homozygos-
ity profile according to the manufacturer’s recommendations. This
chip consists of more than 750000 markers for copy number analy-
sis with 550000 unique nonpolymorphic probes and �200000
SNPs that fully genotype with greater than 99% accuracy. Chromo-
some Analysis Suite v.4.1 (ChAS) software (Thermo Fisher Scien-
tific) and the hg38 genome version (NA36 annotations) was used
to analyze the results. Gains with a minimum of 25 altered markers
in a 150-kb region, losses with at least 35 altered markers in a
75-kb region, and regions with telomeric copy neutral loss of hetero-
zygosity (CN-LOH) greater than 10 Mb or affecting relevant genes
have been collected.

Fluorescence in situ hybridization analyses

Fluorescence in situ hybridization (FISH) was performed according
to the standard methods used in our laboratory.16 FISH was per-
formed on BM cells from cytogenetic cultures using the following
probes: Vysis CEP8, Vysis EGFR1 FISH probe kit (Abbott Molecu-
lar, Abbott Park, IL), and XL 20q12/20qter (Metasystems, Altlus-
sheim, Germany).

Statistical analysis

IBM SPSS software was used for statistical analysis. For categorical
data, comparisons of proportions were evaluated by x2 test or
Fisher’s exact test as appropriate. For continuous variables, compari-
sons were assessed by nonparametric Mann-Whitney or Wilcoxon
test when appropriate. We assessed the Spearman’s rank correla-
tion coefficient to evaluate the strength of association between 2
variables. P , .05 was considered statistically significant. Coverage
metrics were obtained from the DeCovA library.17 Variant analysis
was performed in R version 3.6.2 using the Maftools package.18
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The code used in R 3.6.2 to create the figures is displayed in supple-
mental Methods, and the files necessary to generate the figures and
full list of variants identified are shown in supplemental Data 1 to 3.

Results

The amount of cell-free DNA in plasma is higher in

patients with MDS than in controls

A total of 70 plasma samples from patients with MDS at diagnosis
or in the absence of any therapy were analyzed. The clinical and

biological features of patients are shown in Table 1. The amount of
total cfDNA obtained in patients with MDS (median, 58.4 ng/mL)
was significantly higher than that obtained from healthy controls
(median, 32.4 ng/mL; P 5 .023, Mann-Whitney) (Figure 1). No sig-
nificant differences were observed in cfDNA concentration among
patients with MDS when comparing by disease subtype or by risk
category according to the IPSS-R. Nevertheless, even lower risk
patients with MDS had a significantly higher cfDNA concentration
than the healthy control group (P 5 .023). On the contrary, a signifi-
cantly lower cfDNA concentration was observed in the MDS group
than that in the cohort of patients with AML (P 5 .017).

We analyzed the correlation of the concentration of cfDNA with clin-
ical and biological characteristics. A positive correlation was
observed between the amount of cfDNA and the serum lactate
dehydrogenase levels (P 5 .027; rs 5 0.273). No statistically signifi-
cant association was observed with hematological parameters
(hemoglobin, leukocytes, monocytes, platelets, or blast percentage).

cfDNA and BM DNA show an equivalent

mutational profile

Mutational profiling of BM DNA and cfDNA showed comparable
results: 187 mutations were detected in BM DNA and cfDNA, with
a 92.1% concordance (Figure 2). The most frequently mutated
genes were TET2 (45.7%), SF3B1 (37.1%), ASXL1 (21.4%),
DNMT3A (20.0%), SRSF2 (15.7%), ZRSR2 (11.4%), and U2AF1
(11.4%). A strong correlation was observed between the VAFs of
BM and cfDNA (rs 5 0.797; P , .001, Spearman; Figure 3). There
were 16 discordant mutations: 8 were detected only in cfDNA, and
8 were detected only in BM (Figure 4A). These discordant

Table 1. Clinical and biological features of study patients

Characteristic

MDS

N 5 70

Age, median (range), y 81 (54-94)

Male, n (%) 51 (72.9)

Female, n (%) 19 (27.1)

Hemoglobin, median (range), g/dL 11.75 (7.6-17.8)

WBC count, median (range), 3109/L 4.58 (1.44-12.28)

Neutrophil count, median (range), 3109/L 2.41 (0.31-7.68)

Platelet count, median (range), 3109/L 154 (28-584)

Presence PB blasts, n (%) 2 (2.86)

LDH, median (range) 292 (111-487)

BM blasts %, median (range) 2 (0-19)

RSs %, median (range) 0 (0-90)

Altered karyotype, n (%) 20 (28.6)

Very good cytogenetic IPSS-R risk group, n (%) 6 (8.6)

Good cytogenetic IPSS-R risk group, n (%) 7 (10)

Intermediate cytogenetic IPSS-R risk group, n (%) 4 (5.7)

Poor cytogenetic IPSS-R risk group, n (%) 2 (2.9)

Very poor cytogenetic IPSS-R risk group, n (%) 1 (1.4)

IPSS-R risk group

Very low, n (%) 28 (40)

Low, n (%) 31 (44.3)

Intermediate, n (%) 7 (10)

High, n (%) 2 (2.9)

Very high, n (%) 2 (2.9)

MDS subtype (WHO 2017)

MDS-SLD, n (%) 1 (1.4)

MDS-MLD, n (%) 35 (50)

MDS-RS-SLD, n (%) 5 (7.1)

MDS-RS-MLD, n (%) 17 (24.3)

MDS-del(5q), n (%) 2 (2.9)

MDS-EB-1, n (%) 6 (8.6)

MDS-EB-2, n (%) 2 (2.9)

MDS-U, n (%) 2 (2.9)

Number of patients with mutations, n (%) 66 (94.3)

Mutations per patient, median (range) 3 (0-10)

Mutated genes per patient, median (range) 2 (0-6)

cfDNA concentration, median (range), ng/plasma mL 58.4 (10.6-91.4)

EB, excess blasts; LDH, lactate dehydrogenase; MLD, multilineage dysplasia; SLD, single
lineage dysplasia; U, unclassifiable; WBC, white blood cells; WHO,World Health Organization.
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Figure 1. cfDNA concentration in healthy controls, MDS patients and AML

patients. Levels are shown (ng cfDNA/mL plasma) in plasma samples from healthy

controls and patients with MDS or AML. *P # .05; **P # .01.
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mutations presented a lower VAF (median 5.60%; range, 2.5% to
25.53%) when compared with the VAF observed in the whole
cohort (median 28.27%; range 0.74% to 98.28%; P , .001;
Figure 4B). These cases showed that the correlation between BM
DNA and cfDNA mutations may decrease when studying low-
incidence subclones.

SF3B1 mutations present a higher VAF in cfDNA

than in BM DNA

We compared the VAF of the detected mutations in cfDNA and BM
DNA grouped by gene and observed that VAFs of SF3B1 mutations
were significantly higher in cfDNA than in BM DNA (P 5 .016,
Wilcoxon; Figure 5A). No significant differences were observed in
the concentration of total cfDNA between the SF3B1 mutated
and the patient with the SF3B1 wild-type gene. Mutations in exon
15 of SF3B1 (K700E; NP_036565.2: p.(Lys700Glu) in all cases)
presented a tendency toward a higher VAF cfDNA/BM ratio
than mutations in other SF3B1 exons (median ratio, 1.82 vs 1.09;
P 5 .08; Figure 5B). In this context, we assessed the representation

of SF3B1 exons in cfDNA, as it has been reported that nucleosome
distribution affects DNA fragmentation, and as a consequence,
some genomic regions are overrepresented in cfDNA.5 We com-
pared the depth of coverage obtained for the exons, and we
observed a higher representation of SF3B1 exon 15 in cfDNA
libraries than in BM libraries (Figure 5C). This finding was not
observed in other SF3B1 exons, which suggests that exon 15 is
better represented in cfDNA from patients with MDS, thus
producing a higher VAF in cfDNA of the SF3B1 K700E mutation.
In line with previous studies, we observed that the percentage of
RSs in BM correlated with the VAF of SF3B1 mutations, in
both BM DNA and cfDNA (rs 5 0.684, P , .001 in BM DNA and
rs 5 0.602, P 5 .002 in cfDNA; supplemental Figure 2).

Moreover, we identified an SF3B1 K700E mutation detectable only
in cfDNA in 1 patient. In this case, the quantification of RSs was
not assessable because of the lack of cellularity in the BM aspirate,
being the analysis of cfDNA a useful noninvasive alternative to iden-
tify the presence of this pathological clone. This SF3B1 mutation
was later confirmed by NGS in a subsequent PB sample.
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Chromosomal microarray and NGS were highly

concordant for detect cytogenetic aberrations

In addition to gene mutations, we assessed the detection of cytoge-
netic alterations by NGS. Cytogenetic/FISH alterations were
detected at the time of diagnosis in 20 of 70 (28.6%) patients with
MDS (Figure 6A). Of those, 2 of 20 were infrequent alterations in
MDS and were not covered by the design of the NGS panel, and in
6 of 20, chromosome Y loss was the only alteration detected that
was also not covered by the NGS panel. So, the cohort included
cytogenetic alterations potentially detectable by our gene panel in
12 of 70 patients.

NGS analysis detected abnormalities in 10 and 70 patients with
MDS, in both BM DNA and cfDNA. Interestingly, in a patient without
analyzable metaphases in BM karyotype, del(20q) was found by
NGS and further confirmed by chromosomal microarray (CMA).
Overall, CMA and NGS were highly concordant to detect chromo-
somal aberrations although they did not reach the sensitivity
achieved by conventional cytogenetic analysis (karyotype/FISH;
Figure 6B; supplemental Figure 3). Nevertheless, as previously
stated, all cytogenetic aberrations detected by NGS in BM DNA
were also detected in cfDNA.

cfDNA is useful to predict transformation and

monitor response to treatment

Molecular and cytogenetic alterations were monitored in sequential
samples from 7 cases (median follow up, 13 months; range, 10-30).
We observed an excellent correlation between the VAFs of muta-
tions in BM and cfDNA across multiple matched time points. Both
sample types showed similar clonal dynamics irrespective of the
treatment and allowed for the monitoring of both mutations and
chromosomal aberrations (Figure 7).

In those cases treated with hypomethylating agents (ie, azacitidine),
a VAF decrease was detected in patients responding to therapy,
but not in nonresponding patients. Of note, cfDNA analysis also

showed cytogenetic evolution in 2 patients who did not respond to
azacitidine (del(12p) and 121) and who had to stop treatment
because of lack of response. In the patient treated with FLAG-IDA
followed by hematopoietic cell transplantation, the 5 mutations
identified at diagnosis were undetectable in cfDNA in a sample col-
lected 7 months after the HCT. One patient treated with hypoxia-
inducible factor inhibitor showed a VAF decrease in DNMT3A and
SF3B1 mutations and a concomitant increase in the RUNX1 and
SETBP1 VAFs during the follow-up and later transformed to chronic
myelomonocytic leukemia. In addition, the emergence of a mutation
in ASXL1, undetectable at diagnosis, was identified in the latest
sample available of both cfDNA and BM DNA.

Two patients who were not receiving treatment were also moni-
tored. One patient, who progressed to AML, showed a clonal
expansion of the NF1 mutant clone at the time of AML transforma-
tion. The second patient acquired a subclonal del(7q) not detected
by NGS and observed only by karyotype in 2 of 20 metaphases.
Although our cohort of patients with AML (15 of 18 were de novo
AML) presented a higher cfDNA concentration than of MDS at diag-
nosis, we did not observe an increase in the concentration of cfDNA
in the 2 patients with MDS who progressed to AML.

Discussion

In the present study, we assessed the genomic characterization of
MDS by targeted NGS of plasma cfDNA compared with BM DNA.
This is, to the best of our knowledge, the largest series of cfDNA
analyses in patients with MDS. Of note, all samples were taken at
diagnosis or before treatment, thus excluding any potentially modify-
ing effect on the results. We designed an NGS gene panel to
detect both molecular and cytogenetic alterations with a single test
and investigated its potential use in cfDNA, which would be particu-
larly useful in several cases, such as nonfit or fragile elderly patients,
patients with fibrotic or hypocellular BM, and patients with contrain-
dication or difficult-to-access BM. Our data demonstrate that the
analysis of cfDNA represents a novel strategy that would be useful
for routine testing, as cfDNA is obtained fast and easily from blood
plasma, when compared with BM aspirates or purified CD341

cells.19

In patients with solid tumors, cfDNA has been incorporated as a
noninvasive strategy to assess molecular alterations in routine clini-
cal practice. It has been reported that most of the cfDNA is
released by hematopoietic cells in health and disease.3-6 However,
patients with MDS showed a significantly higher amount of cfDNA
than healthy controls, indicating a higher release of cfDNA into PB
plasma from MDS clonal cells. Of note, even cells in lower risk
MDS contained a higher quantity of cfDNA than the control cells.
The ineffective hematopoiesis in the stem cell niche and the
increased apoptosis of BM cells in MDS8,9 is in line with this higher
shedding of cfDNA into PB. A significant correlation was observed
between the cfDNA concentration and lactate dehydrogenase val-
ues, in accordance with previous studies.12,20 However, contrary to
previous findings,12 we did not find a higher concentration of cfDNA
in IPSS-R higher risk groups than in lower risk groups. This discor-
dant observation could be explained by the lower risk IPSS-R
scores of most patients with MDS included in the study.

In our study, we observed a similar mutational profile in cfDNA and
BM DNA (93% concordance) and the VAFs of the mutations
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Figure 3. Correlation of the VAF in cfDNA and BM DNA. Scatter plot of the

187 variants detected in cfDNA and BM DNA showing the correlation between the

variant allele frequency (VAF) (rs 5 0.797, P , .001, Spearman).
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identified in both sample types correlated highly. However, some
discordant mutations were also identified in a small proportion of
patients, in some cases mutations that may have prognostic rele-
vance, such as SF3B1 mutations or mutations in damage DNA
repair genes. Cases with mutations detected in cfDNA and not in
BM DNA were all those in which plasma and BM samples had
been collected at different time points. In addition, some of these
discordant cases showed low VAFs that could reflect small clones
emerging or slowly expanding or de novo–acquired mutations.
Overall, cfDNA and BM DNA showed a high concordance,
although they may have had a worse correlation in subclonal altera-
tions, as has been reported for cfDNA in AML.21 Studies of MDS
comparing the reliability of cfDNA and total PB cellular DNA analy-
sis for detecting molecular abnormalities by NGS22,23 showed that
cfDNA analysis was a better option, as additional mutations were
detected in cfDNA and the VAFs in cfDNA were significantly
higher than those in PB DNA.22

Interestingly, the VAFs of SF3B1 mutations were significantly higher
in cfDNA than in BM DNA, especially for exon 15 SF3B1 mutations
(ie, K700E). This observation is clinically relevant, as the analysis of
cfDNA could be the best alternative for detecting these mutations,
when low-quality BM aspirates are obtained, or for detecting small
mutant clones. We identified a SF3B1 mutation in cfDNA and not
in BM DNA in a patient in whom the presence of RSs was not
assessable because of lack of cellularity in the BM aspirate. We
hypothesize that the position of the nucleosomes in exon 15 of
SF3B1 could facilitate the detection of the SF3B1 K700E mutation,
as we observed that exon 15 of SF3B1 was more represented in
cfDNA than in BM DNA.

In view of our results, the sensitive detection of genomic alterations
in cfDNA observed in myeloid malignancies suggests that this non-
invasive tool could provide useful information in the diagnostic
workup of cases with unclear cytopenias, given that the absence of
genetic and cytogenetic alterations has demonstrated a high nega-
tive predictive value in these cases.24,25 However, the sole pres-
ence of genetic alterations should not be interpreted as unequivocal

evidence of MDS diagnosis; these alterations could represent clonal
hematopoiesis of indeterminate potential that reinforces the need to
integrate the molecular information with the patients’ morphological
studies and clinical context.26,27

Regarding the detection of cytogenetic alterations in cfDNA of
patients with MDS, our results confirm that gains or losses of
genetic material are reflected in the cfDNA, and thus we can identify
most of them by NGS, including a del(20q) in a patient without ana-
lyzable metaphases at diagnosis, which was confirmed by CMA.
This is the first study to assess the detection of cytogenetic altera-
tions in cfDNA by NGS in a cohort of patients with MDS. Other
studies have used NGS to detect these chromosomal alterations in
PB or BM samples,28 and only 1 study used cfDNA to identify the
loss of chromosome 9 in cfDNA in a patient with MDS.11

However, it should be noted that the design of the NGS panel
covered only a selected part of the genome, so those altera-
tions occurring in uncovered regions will not be detected. The
chromosome Y deletion was not included in the NGS panel
design, because it has been associated with normal aging29

and is not a defining alteration for MDS.1 As NGS comprehen-
sive molecular profiling with broad NGS-targeted panels or
even exome or whole-genome analyses are implemented in clin-
ical practice, these limitations will be overcome. We also
observed that subclonal cytogenetic alterations could be
detected only in patients by karyotype or FISH, because of the
limitations of sensitivity of NGS or CMA. We must recall that,
at present, cytogenetic techniques are still, besides morphology,
the backbone elements of MDS diagnosis. Further validation of
these results including higher risk cytogenetic subgroups
would support the value of cfDNA analysis as a useful tool to
be implemented in routine clinical practice that could improve
the identification of alterations required for accurate risk
classification.

One of the plausible applications of cfDNA is disease monitoring.
To evaluate this approach, we used NGS to analyze sequential sam-
ples from 7 patients with MDS. Previous studies had shown that
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Figure 4. Discordant mutations in BM DNA and cfDNA. (A) Discordant mutations identified in BM DNA and cfDNA. ‡Patient presented 2 mutations detected only in

cfDNA; *,†2 patients showing 2 mutations detected only in BM. The 10 remaining discordant alterations were identified in 10 different patients. (B) VAFs identified in
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the clonal dynamics of BM VAFs were mimicked by cfDNA VAFs.11

The most remarkable result when monitoring these patients was the
finding that in 2 of them who did not respond to hypomethylating
agents, NGS of cfDNA enabled us to detect the occurrence of
cytogenetic evolution.

Further studies are needed to confirm the applicability of cfDNA in
MDS; however, this less invasive technique could allow for early
detection of clinically relevant genomic changes, as it is known that
clonal dynamic acquisition during the follow-up has a significant
prognostic impact on MDS.30 The incorporation of liquid biopsy
analysis in clinical practice would enable frequent and noninvasive
assessment of fragile elderly patients and of those with hypocellular

or fibrotic BM. Moreover, cfDNA analysis could be of special inter-
est in scheduling reevaluation of BM aspirates in lower risk patients
without evidence of disease progression.

In summary, we have shown that cfDNA mirrors the molecular
profile of BM in MDS. In our cohort, enriched with lower risk
patients, cytogenetic alterations were detectable in most cases
by NGS in both BM DNA and cfDNA. Although further studies
with larger cohorts are needed to confirm these results, espe-
cially for cytogenetic alterations, our data support the analysis
of cfDNA as a promising method for characterizing and moni-
toring the molecular abnormalities present in patients with
MDS.
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