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Bone marrow (BM) niche-derived signals are critical for facilitating engraftment after hemato-

poietic stem cell (HSC) transplantation (HSCT). HSCT is required for restoration of hematopoie-

sis in patients with inherited BM failure syndromes (iBMFSs). Shwachman-Diamond syndrome

(SDS) is a rare iBMFS associated with mutations in SBDS. Previous studies have demonstrated

that SBDS deficiency in osteolineage niche cells causes BM dysfunction that promotes leukemia

development. However, it is unknown whether BM niche defects caused by SBDS deficiency

also impair efficient engraftment of healthy donor HSC after HSCT, a hypothesis that could

explain morbidity noted after clinical HSCT for patients with SDS. Here, we report a mouse

model with inducible Sbds deletion in hematopoietic and osteolineage cells. Primary and sec-

ondary BM transplantation (BMT) studies demonstrated that SBDS deficiency within BM

niches caused poor donor hematopoietic recovery and specifically poor HSC engraftment after

myeloablative BMT. We have also identified multiple molecular and cellular defects within

niche populations that are driven by SBDS deficiency and are accentuated by or develop spe-

cifically after myeloablative conditioning. These abnormalities include altered frequencies of

multiple niche cell subsets, including mesenchymal lineage cells, macrophages, and endothelial

cells; disruption of growth factor signaling, chemokine pathway activation, and adhesion mole-

cule expression; and p53 pathway activation and signals involved in cell cycle arrest. Taken

together, this study demonstrates that SBDS deficiency profoundly impacts recipient hemato-

poietic niche function in the setting of HSCT, suggesting that novel therapeutic strategies tar-

geting host niches could improve clinical HSCT outcomes for patients with SDS.

Introduction

Maintenance of hematopoietic stem cells (HSC) and downstream regulation of hematopoiesis rely upon
tightly orchestrated signals generated from specialized bone marrow (BM) microenvironments known as
niches. Studies over the past 2 decades have identified multiple BM niche cells that regulate HSC
homeostasis, including mesenchymal stem cells (MSCs), osteolineage cells (OCs), endothelial cells
(ECs), adipocytes, macrophages, megakaryocytes, and Schwann cells.1,2 These niche-derived signals
not only are important for homeostatic hematopoiesis but also play critical roles in facilitating engraftment
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Key Points

� Induction of Sbds
deficiency in recipient
BM niche cells
impairs efficient
engraftment of healthy
donor HSC after
transplantation.

� SBDS deficiency
impairs multiple
cellular signaling
pathways in post-
myeloablation marrow
niches critical for
restoration of
hematopoiesis.
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after HSC transplantation (HSCT). Murine models in which selected
niche components are disrupted demonstrate impaired donor HSC
engraftment after HSCT.3,4

Inherited BM failure syndromes (iBMFS) are caused by germline
genetic mutations in genes long known to have cell autonomous
impacts on HSC and progenitor (HSPC) function. Patients with
iBMFS require HSCT for cure of BM failure (BMF) or hematopoietic
lineage deficiency, or for prevention/treatment of myelodysplastic
syndrome (MDS). Recently, studies using animal models of human
iBMFSs have demonstrated that hematopoietic dysfunction may
arise as a result of nonautonomous mechanisms resulting from
impacts of the underlying germline mutation within BM niche cell
populations.5-9 Our group has previously demonstrated that BM
niche capacity to engraft healthy donor HSC after transplantation is
impaired in some iBMFSs because of mutation effects within niche
cells or preexistence of BMF.4,10

SDS is a rare iBMFS caused in most cases by biallelic loss-of-func-
tion mutations in genes associated with ribosome maturation, includ-
ing SBDS (.90% of cases), DNAJC21, and EFL1, or by
heterozygous mutations in SRP54.11-15 In addition to exocrine pan-
creatic dysfunction, patients with SDS develop hematopoietic
abnormalities, including BM hypocellularity, neutropenia, and variable
thrombocytopenia. Approximately 20% to 25% of patients will
develop severe cytopenias associated with BM aplasia, and 36% of
patients will develop MDS/leukemia by age 30,16,17 both requiring
HSCT for cure. Unfortunately, HSCT for SDS is associated with sig-
nificant rates of complications, including graft dysfunction, overt
graft failure in up to 10% of patients,18 conditioning-associated
organ failure, and, for patients with MDS/leukemia, high relapse risk
estimated at 20% to 30%.19-21

Skeletal dysplasia and osteopenia are also frequent manifestations
of SDS,22 suggesting that bone and OC dysfunction may be linked
to hematopoietic dysfunction. Testing this hypothesis, previous stud-
ies in mouse models have shown that SBDS deficiency in osteoline-
age niche cells, but not hematopoietic cells, results in BM
dysfunction, including myelodysplasia.5,6,23 No murine models or
clinical data to date address whether SBDS deficiency causes BM
niche dysfunction that contributes to poor donor engraftment out-
comes after HSCT.

Herein we detail development of a mouse model defined by
inducible Sbds deletion in BM hematopoietic cells and OCs.
Primary and secondary BM transplantation (BMT) studies
revealed that SBDS deficiency within BM niches results in poor
hematopoietic recovery and specifically poor donor HSC
engraftment after myeloablative BMT. We identified molecular
and cellular abnormalities driven by SBDS deficiency within
post-myeloablation niches associated with this poor engraftment
phenotype. These post-BMT conditioning niche abnormalities
include altered frequencies of mesenchymal lineage cells, mac-
rophages, and ECs and disruption of molecular signals in the
niche, including growth factor signaling, cell adhesion and hom-
ing pathways, and cell cycle/cell death pathways. Our study
reveals that BMT using traditional myeloablative conditioning is
associated with severe BM niche dysfunction in the setting of
SBDS deficiency and identifies niche pathways altered by
SBDS deficiency that are critical for efficient engraftment after
BMT.

Materials and methods

Animals and in vivo treatment

Mouse colonies were maintained under pathogen-free conditions.
All experiments were conducted following protocols approved by
Children’s Hospital of Philadelphia Institutional Animal Care and
Use Committee. Sbdsl/l mice (mice with 2 copies of the Sbdslox

allele) were generously provided by Dr. Johanna Rommens (Univer-
sity of Toronto). Other strains were either obtained from public
repositories or purchased from Jackson Laboratory and back-
crossed onto C57BL/6 background. Mx1creSbdsl/l mice were gen-
erated by crossing Mx1cre mice and Sbdsl/l mice, confirming
genotypes by polymerase chain reaction (PCR).24 To induce Sbds
deletion, polyinosinic-polycytidylic acid (pIpC, Sigma) was injected
intraperitoneally (300 mg/mouse) 3 times per week for a minimum
of 2 weeks. For green fluorescent protein (GFP)1 donor BM for
BMT, transgenic C57BL/6 mice expressing GFP under the H2K
promoter (H2K-GFP) were used. Myeloablative total body irradiation
(TBI) was performed using the X-RAD 320 (Precision X-ray) to
deliver 1100 CGy in 2 fractions at least 3 hours apart.

Single-cell preparations from bone/BM

To prepare single BM cell suspensions, BM was flushed from leg
bones, filtered (40-mm mesh) and subjected to red blood cell (RBC)
lysis. To prepare single niche cell suspensions after BM flushing,
leftover bones were cut into 1- to 2-mm pieces and digested at
37�C for 1 hour with collagenase P (Roche) or collagenase II
(Gibco). Collected supernatants were filtered through 100-mm
mesh. Cell counts were determined using a hematocytometer and
Trypan Blue (Corning).

Quantitative PCR

To measure expression of Sbds transcripts, RNA was isolated from
single cell suspensions using RNeasy Mini Kit (Qiagen). First-strand
cDNA was synthesized by SuperScript III reverse transcription
(Thermo Fisher Scientific). Quantitative PCR (qPCR) was performed
on 7500 Fast Real-Time PCR System (Applied Biosystems) with
SYBR Green PCR Master Mix (Applied Biosystems). Target-
specific primers are described in supplemental Table 1.

Flow cytometry

Flow cytometry analysis was performed on FACSCalibur or FACS-
Jazz (Becton Dickinson). Fluorophore-conjugated antibodies used
are listed in supplemental Table 2.

BMT assays

In primary BMT assays, Mx1creSbdsl/l or Sbdsl/l recipients received
1100 cGy TBI followed by 106 GFP1 BM cells from H2K-GFP
donors via retro-orbital injection. For competitive secondary BMT
assays, 1 week after primary BMT, BM was collected from bilateral
femorae/tibiae and pooled from $3 primary recipients per group.
Pooled primary recipient BM (dose: one-fourth total BM volume col-
lected from 1 primary recipient as detailed previously4,10) was
injected into irradiated (1100 cGy) wild-type (WT) secondary recipi-
ents co-transplanted with GFPneg 2 3 105 WT competitor BM
cells. Secondary recipients were assessed 3 to 24 weeks after
BMT for GFP1 cell reconstitution in peripheral blood lineages,
including RBCs, platelets, Gr11 myeloid cells, B2201 B cells, and
CD31 T cells.
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Histology and immunohistochemistry analysis

Femora and tibiae were fixed in 10% formalin and decalcified by
Regular-Cal ImmunoM (BBC Biomedicals). Samples were dehy-
drated before embedding in paraffin and cut into 5- to 6-mm sec-
tions. For general histology analysis, sections were stained with
Harris hematoxylin and eosin (Sigma-Aldrich). Immunostaining of
PPAR-g, Caspase-3, and CXCL12 was performed using primary
antibodies listed in supplemental Table 2, along with goat anti-rabbit

antibody, avidin/biotin, Vector Elite ABC kit, and DAB Substrate
(Vector Laboratory) according to manufacturer's instructions. Slides
were examined with Zeiss AxioStar Plus and Olympus DP72 micro-
scopic imaging.

Multiplex enzyme-linked immunosorbent assay

After flushing bilateral tibiae and femora in fixed volumes of
phosphate-buffered saline (same volume for each sample to
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Figure 1. Mice with inducible SBDS deficiency in hematopoietic and osteolineage niche cells develop disrupted hematopoiesis consistent with BM failure.

(A) Mx1CreSbdsExc mice were generated by crossing Mx1Cre1 mice with Sbdsl/l mice to generate Mx1Cre1Sbdsl/l mice. Cre expression and Sbds deletion were induced in

hematopoietic and Mx1-inducible niche cells by pIpC treatment to create Mx1Cre1SbdsExc mice. (B) After 4 weeks of pIpC treatment, qPCR demonstrated reduced Sbds

mRNA expression in flushed BM cells compared with pIpC-treated Sbdsl/l controls. (C) Compared with pIpC-treated control Sbdsl/l mice (n 5 7), Mx1CreSbdsExc mice

(n 5 12) developed reduced platelet counts and an increased peripheral blood myeloid/lymphoid (M/L) cell ratio, consistent with stress hematopoiesis. (D) Representative

dot plots showing decreased percentages of lin-Sca11cKit1 (LSK) cells and CD48-CD1501 long-term HSC (LT-HSC) in total BM of Mx1CreSbdsExc vs control mice after

4 weeks of pIpC treatment. (E) Mx1CreSbdsExc BM (n 5 2) shows severe reduction in percentages of LSK and LT-HSC compared with control BM (n 5 4). *P , .05;

***P , .001; Student t test.
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enable same dilution comparisons), samples were centrifuged
at 400 3 g for 5 minutes and BM plasma supernatants were
separated. Cell fractions were lysed in phosphate-buffered
saline containing 1% Nonidet-P40 (US Biological) and prote-
ase inhibitor (Roche). Lysates underwent 3 freeze-thaw
cycles followed by centrifugation at 12 000 3 g for 5 minutes.
BM niche cell lysates were prepared after CD451 leukocyte
depletion using anti-CD45 Microbeads (Miltenyi Biotec).
Expression levels of 80 niche proteins were detected by
Mouse Cytokine Array Q4 Kit, Mouse Cytokine Array Q5 Kit,
and custom-designed Quantibody Mouse Array Kits
(RayBiotech).

RNA-seq and bioinformatics analysis

After nonadherent BM was removed by flushing, leg bones were
digested by collagenase. The cell suspension from digested bones
was pooled together with the BM fraction after CD451 leukocyte
depletion at baseline or after irradiation for RNA-sequencing (seq)
analysis. The RNA was extracted from isolated BM and niche cell
fractions using RNeasy Mini Kit (Qiagen), and DNA was removed
using RNase-Free DNase Set (Qiagen). RNA-seq was performed
by BGI Genomics (Hong Kong) on a BGISEQ-500 sequencer. Kal-
listo was used to perform pseudo-alignment and generated read
counts defined as transcripts per million.25 Differential gene expres-
sion was analyzed by Deseq2.26 Gene set enrichment analysis
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Figure 2. The BM niche of Mx1CreSbdsExc mice exhibits impaired capacity to engraft donor HSC after BMT. (A) Schematic of studies. Mx1CreSbdsExc mice and

Sbdsl/l controls received BMT of 106 whole BM from GFP1 donor mice at 24 hours after receiving 1100 cGy of TBI. Donor engraftment in primary BMT recipients was

assessed 1 week after primary BMT using histologic analysis and competitive secondary transplantation assays, in which defined volumes (25% of BM volume collected

from bilateral hindleg bones) of whole BM from Mx1CreSbdsExc or Sbdsl/l control primary recipients were transplanted with 2 3 105 WT competitor (GFPneg) whole BM

cells into irradiated WT secondary recipients. (B) Cumulative survival curves showed increased mortality among Mx1CreSbdsExc recipients (n 5 10) after BMT compared

with controls (n 5 8). ***P , .001; log-rank test. (C) Impaired donor engraftment was seen in Mx1CreSbdsExc primary recipients by hematoxylin and eosin staining at 1 week

after BMT. Scale bar: 200 mm. (D) In competitive secondary BMT studies, donor engraftment efficiency in Mx1CreSbdsExc or control (Sbdsl/l) primary recipients (n 5 4 mice

per group) was assessed by competitive secondary BMT assay. HSC and hematopoietic progenitor engraftment in primary recipient Mx1CreSbdsExc mice was significantly

impaired, as indicated by lower GFP1 reconstitution of secondary recipients (n 5 14 mice per group) receiving Mx1CreSbdsExc vs control primary recipient BM in all blood

lineages, including RBCs, platelets, Gr11myeloid cells, B2201 B cells, CD31 T cells, and total white blood cells (WBC). *P , .05; **P , .01; ***P , .001; x-squared test.
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Figure 3. SBDS deficiency in BM niche cells results in decreased OPCs and increased adipocytes in BM after TBI. (A) Representative dot plots show gating

strategies used to define CD31-CD511Sca-1- OPCs in CD45-TER119- BM stromal cells. (B) Mx1CreSbdsExc mice (n 5 5) show reduced percentages of OPCs in

CD45-TER119- BM stromal cells compared with controls (n 5 6) at 24 hours after 1100 cGy TBI. (C) RNA-seq analysis demonstrating changes of mRNA expression in

genes critical for osteoblast differentiation in BM stromal cells of irradiated (24 hours after 1100 cGy TBI) Mx1CreSBDSExc vs control mice (n 5 5 mice per group). A posi-

tive log-fold change in this plot indicates higher expression in Mx1CreSBDSExc stromal cells. (D) qPCR confirms higher expression of the terminal osteoblast marker Spp1

(Osteopontin) in BM niche cells from irradiated (24 hours after 1100 cGy TBI) Mx1CreSbdsExc mice (n 5 3) compared with controls (n 5 4). (E) ELISA demonstrating

increased osteopontin expression in BM plasma supernatants harvested from Mx1CreSBDSExc vs control mice 48 hours after 1100 cGy TBI (n 5 5 for Mx1CreSBDSExc

group and n 5 6 for control group), but similar expression in the two groups at baseline (n 5 5 for Mx1CreSBDSExc group; n 5 7 for control group). (F) GSEA plot shows

upregulation of adipogenesis-related gene expression in the BM stromal cells of irradiated (24 hours after 1100 cGy TBI) Mx1CreSBDSExc mice vs controls (n 5 5 mice per

group). The green line in the GSEA plot represents the running enrichment score (ES) for the gene set within the ranked list of genes. The value at the peak of the green

line is the final ES. The black bars in the middle of the GSEA plot represent where the genes in the gene set appear in the ranked list. NES, normalized enrichment score;

FDR, false-discovery rate. (G) Increased mRNA expression of several genes related to adipogenesis, including Pparg, Fabp4, and Adipoq, in the BM stromal cells of irradi-

ated (24 hours after 1100 cGy TBI) Mx1CreSBDSExc mice compared with controls. (H) qPCR confirmed that BM niche cells from irradiated Mx1CreSbdsExc mice (n 5 3)

exhibit higher expression of Fabp4 and Adipoq, which is critical for adipogenesis, compared with controls (n 5 4) at 24 hours after 1100 cGy TBI. (I) Hematoxylin and eosin

stains show increased adipocytes in BM from Mx1CreSBDSExc vs control mice at 48 hours after 1100 cGy TBI but not at baseline. Black arrowheads indicate adipocytes.

Scale bar: 200 mm. *P , .05; **P , .01; ***P , .001; Student t-test or DESeq2 statistical test.
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(GSEA) (Broad Institute) was performed using MSigDB C2 CP27,28

and canonical pathway gene set collection (1027 gene sets). One
thousand permutations were used to perform GSEA. GSEA plots
were generated to provide a graphical view of enrichment scores.

Statistical analysis

Most statistical analyses were performed using GraphPad Prism
7.00. Student 2-tailed t-test or x-squared tests were used to deter-
mine statistical significance of 2-group comparisons. For RNA-seq,
statistical analysis was performed using the DEseq2 package. Sta-
tistical methods for GSEA were performed with GSEA software
from Broad Institute, including enrichment score calculation, signifi-
cance level estimation, and adjustments for multiple hypothesis test-
ing.27 False-discovery rate ,0.25 and P value ,.05 were used as
significance cutoff values.

Results

SBDS deficiency within BM niche cells impairs

donor engraftment after BMT

A prior mouse model targeted Sbds deletion in Osterix-expressing
osteolineage progenitors.5,6 However, those mice only had a

4-week lifespan because of severe growth/development impairment,
preventing that model’s use for studying niche function during
HSCT. We thus attempted to target Sbds in mature OCs by cross-
ing previously described Sbdsl/l mice24 with Col1a1Cre1 mice.
However, Col1a1CreSbdsExc progeny exhibited embryonic lethality
(supplemental Figure 1). We next generated a conditional Sbds
deletion mouse model by crossing Sbdsl/l mice with Mx1Cre1 mice
and inducing Cre expression in BM hematopoietic cells and Mx1-
inducible osteolineage niche cells29 using pIpC (Figure 1A). We
first confirmed reduced, but not absent, Sbds gene expression in
unsorted whole BM and isolated BM stromal cells from Mx1Cre

SbdsExc mice 4 weeks after pIpC initiation (Figure 1B; supplemental
Figure 2A), similar to hypomorphic expression seen in clinical
SDS.30 Compared with controls, pIpC-treated Mx1CreSbdsExc mice
develop significantly decreased platelet counts and an inverted mye-
loid/lymphoid white blood cell ratio in peripheral blood (Figure 1C;
supplemental Figure 2B), indicative of stress hematopoiesis. Upon
examining BM, both lin-Sca11cKit1 (LSK) progenitors and long-
term (LT) HSC (lin-Sca11cKit1CD48-CD1501) were markedly
reduced within 4 weeks of SBDS deficiency induction by pIpC in
Mx1CreSbdsExc mice (Figure 1D-E).

100000

1000

1000

500
0

60000

20000

**

**
3000
2000

20000

10000

400
200

200

100

0 0

A B

C D

Bas
eli

ne

Pos
t-T

BI

Bas
eli

ne

Pos
t-T

BI

Bas
eli

ne

Pos
t-T

BI

pg
/m

L

pg
/m

L

pg
/m

L

Sbdsl/l 

Mx1Cre SbdsExc

2,000 4,000 14,000

Rank in ordered dataset
HitsEnrichment profile Ranking metric scores

6,000 8,000 10,000 12,0000

–0.35
–0.30
–0.25
–0.20

–0.10
–0.15

–0.05

En
ric

hm
en

t s
co

re
 (E

S) 0.00
0.05

Enrichment plot: BIOCARTA_IGF1_PATHWAY

NES: –1.87
FDR: 0.04
P: 0.02

Ra
nk

ed
 lis

t m
et

ric
 (P

re
Ra

nk
ed

)

0
–5

5

–10

10

Lo
g 2Fo

ldC
ha

ng
e

Lo
g 2Fo

ldC
ha

ng
e

0

0

–2.0

–1.5

–1.0

0.0

IGF-1 downstream
signals

IGF-1 pathway
factors

–0.5

*

***
***

**
1
2

2

–2

20

40
4

***
***

***

60

** *

*

24 hours post-TBI

24 hours post-TBI

24 hours post-TBI

IGF-1 IGFBP-2 IGFBP-3

6

lgf
bp

2

lgf
bp

3
lgf

bp
2

lgf
bp

3
Fo

s
Fo

s
Ju

n

Map
k3

Shc
1

Raf1Raf1 lgf
1rlgf

1
lgf

1r

Re
lat

ive
 e

xp
re

ss
ion Sbdsl/l 

Mx1Cre SbdsExc

Zero cross at 7425

Sbdsl/l control

Mx1Cre SbdsExc

* *

Figure 4. SBDS deficiency within BM niche cells diminishes gene expression downstream of IGF-1 signaling. (A) Protein expression of IGF-1, IGFBP-2, and

IGFBP-3 in BM supernatants harvested from Mx1CreSBDSExc and control mice at baseline and 48 hours after 1100 cGy TBI (n $ 5 per group). *P , .05; **P , .01; Stu-
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We next assessed whether SBDS deficiency within BM niche cell
populations impacts capacity of pIpC-treated Mx1CreSbdsExc mice
to engraft healthy donor BM and specifically LT-HSC during BMT.
We transplanted GFP1 WT donor BM into pIpC-treated
Mx1CreSbdsExc mice and Sbdsl/l controls at 24 hours after 1100
cGy myeloablative TBI (Figure 2A). Most (90%) Mx1CreSbdsExc

BMT recipients died by day 9 after primary BMT, whereas all control
recipients survived (Figure 2B). Inadequate engraftment appeared

to be the cause of death in the Mx1CreSbdsExc recipients, demon-
strated by the persistence of BM aplasia by histology (Figure 2C)
and low BM cell counts (supplemental Figure 2C) at 1 week after
BMT, compared with restored BM cellularity seen in control recipi-
ents. To test whether BM niche deficits caused by SBDS deficiency
specifically impact engraftment of LT-HSC after BMT, we next per-
formed competitive secondary BMT in which BM was harvested
from Mx1CreSbdsExc and control primary BMT recipients at 7 days
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Figure 5. SBDS deficiency induces altered BM niche expression of chemokines and selectins after TBI that favor inflammatory cell recruitment. (A) CXCL1,
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after the primary BMT and transplanted with a fixed dose of compet-
itor WT BM into WT secondary recipients. Secondary recipients of
Mx1CreSbdsExc vs littermate control primary recipient BM demon-
strated decreased LT GFP1 reconstitution of peripheral blood line-
ages from 6 to 24 weeks after secondary BMT as well as
decreased trilineage GFP1 BM hematopoiesis, indicating that
engraftment of both hematopoietic progenitors and HSC was
severely impaired in Mx1CreSbdsExc vs littermate control primary
recipients (Figure 2D; supplemental Figure 2D).

SBDS deficiency alters BM niche cellular

composition and niche cell gene expression in

response to myeloablative TBI

To define mechanisms by which SBDS deficiency in BM niches
impairs HSCT donor engraftment, we compared niche cell popula-
tions and niche gene expression in Mx1CreSbdsExc mice vs Sbdsl/l

controls after myeloablative TBI (experiment schema in supplemental
Figure 3). We first investigated MSC-derived stromal compartments
that contribute to BMF and MDS in other models,5,6,8 finding that
BM of irradiated Mx1CreSbdsExc mice contains reduced osteoproge-
nitor cells (OPCs; CD45-TER119-CD31-CD511Sca-1-) compared

with controls (Figure 3A-B), although the OPC percentage was not
significantly altered at baseline (supplemental Figure 4A). Percen-
tages of MSC (CD45-TER119-CD31-CD511Sca-11) were similar
between the two groups (data not shown). RNA-seq analysis
revealed that BM stromal cells from irradiated Mx1Cre

SbdsExc mice and controls expressed similar levels of Runx2
(Figure 3C), which encodes the transcription factor that initially indu-
ces osteogenic differentiation of MSC. However, SBDS-deficient
BM niche cells expressed higher levels of early osteoblast markers,
including Sp7 (Osterix) and Alpl (alkaline phosphatase), as well as
terminal osteoblast markers, including Dmp1 and Spp1 (Osteopon-
tin) (Figure 3C-D), suggesting that terminal osteoblast maturation
and function may not be impaired by induced SBDS deficiency.
Enzyme-linked immunosorbent assay (ELISA) confirmed increased
BM osteopontin expression in irradiated Mx1CreSbdsExc mice
(Figure 3E). These results suggest that while signals driving osteoli-
neage commitment of MSC remain intact and in some cases are
upregulated in SBDS-deficient niches in response to myeloablative
TBI, the ability to maintain populations of immature osteolineage-
committed progenitor cells after TBI is severely impaired by SBDS
deficiency, through either increased terminal differentiation or
impaired survival.
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GSEA demonstrated that Sbds deletion in post-TBI BM niche cells
caused upregulation in gene expression associated with adipogene-
sis, including upregulation of Pparg, Fabp4, and Adipoq (Figure 3F-H;
supplemental Table 3). Notably, GSEA did not detect alteration of
adipogenesis pathways in Mx1CreSbdsExc mice at baseline (supple-
mental Figure 4B), suggesting that TBI induced a proadipogenic
state in Mx1CreSbdsExc mice. Indeed, we identified increased adipo-
cytes in BM sections of Mx1CreSbdsExc mice at 48 hours after TBI
but not at baseline (Figure 3I). Most adipocytes in irradiated
Mx1CreSbdsExc BM are PPAR-g-positive (supplemental Figure 4C).
Because previous studies have implicated BM adipocytes as the
negative regulators of HSC engraftment,31 increased adipogenic
differentiation of BM niche MSC may contribute to poor niche-
mediated donor engraftment resulting from SBDS deficiency.

In contrast, ECs comprised a significantly lower fraction of surviving
niche cells in irradiated Mx1CreSbdsExc vs control BM (supplemental
Figure 5A-B), notable because sinusoidal EC regeneration mediated
by vascular endothelial growth factor receptor 2 (VEGFR2) signaling
is essential for HSC engraftment after HSCT.32 While VEGF-A pro-
tein levels in BM plasma supernatants were increased after TBI
compared with baseline in both groups, Mx1CreSbdsExc BM exhib-
ited a trend (P 5 .15) toward less TBI-driven increase than seen in
control BM (supplemental Figure 5C). GSEA of RNA-seq data
showed that while at baseline VEGF signaling pathway genes are
markedly upregulated in the BM of Mx1CreSbdsExc mice vs controls,
BM stromal cells of irradiated Mx1CreSbdsExc mice exhibit overall
downregulation of the VEGF signaling pathway compared with con-
trols (supplemental Figure 5D; supplemental Table 3). However,
when examining expression of individual VEGF pathway genes
within niche cells after irradiation, SBDS deficiency appears to have

a complex effect, increasing expression of genes such as Kdr, which
encodes VEGFR2, while decreasing expression of other down-
stream mediators (supplemental Figure 5E).

BM niche macrophages also critically regulate HSC maintenance.33

CD11b1F4/801Ly6G- macrophages were significantly increased in
irradiated Mx1CreSbdsExc BM niches compared with controls, in
contrast to decreased surviving granulocytes seen in Mx1Cre

SbdsExc BM 24 hours after TBI (supplemental Figure 6A-B). RNA-
seq confirmed higher expression of niche macrophage markers,
including Vcam-1, Slglec1 (CD169), and Ackr1 (CD234),33 in irra-
diated Mx1CreSbdsExc vs control niche cell populations (supplemen-
tal Figure 6C). Interestingly, despite increased expression of genes
involved in phagocytic pathways at baseline and increased fre-
quency of HSC niche macrophages after TBI in SBDS-deficient
mice, GSEA of RNA-seq revealed significantly downregulated
expression of FcgR-mediated phagocytosis pathway genes in irradi-
ated Mx1CreSbdsExc BM niches (supplemental Figure 6D; supple-
mental Table 3) compared with controls, suggesting that SBDS
deficiency alters functions of niche macrophages after TBI.

SBDS deficiency within BM niche cells diminishes

gene expression downstream of IGF-1 signaling

Our previous studies demonstrated that BM niche insulin-like
growth factor-1 receptor(IGF-1R) signaling is essential for osteoli-
neage niche cell expansion after TBI and efficient donor HSC
engraftment.34 IGF-1/IGF-2 signaling pathways in the BM micro-
environment also regulate homeostatic HSC function,35,36 as
prior studies have shown that IGFBP-2 and IGFBP-3 support
HSC survival and inhibit OPC differentiation.37-39 Compared with
controls, BM plasma supernatants from Mx1CreSbdsExc mice
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contained higher levels of IGF-1 at baseline but decreased levels
of IGF-1 after TBI (Figure 4A). Protein levels of IGFBP-2 and
IGFBP-3 were similar in Mx1CreSbdsExc mice vs controls at base-
line, but Mx1CreSbdsExc BM exhibited increased levels of IGFBP-
2 and IGFBP-3 after TBI (Figure 4A). Although baseline mRNA
expression in IGF-1 pathway genes was similar with or without
SBDS deficiency (supplemental Figure 7), RNA-seq analysis,
GSEA, and qPCR of BM niche cells from irradiated Mx1CreSbd-
sExc vs control mice demonstrated upregulated mRNA expression
of upstream IGF-1 pathway factors Igf1, Igfbp2, and Igfbp3 but
downregulated expression of downstream IGF-1 pathway signal-
ing factors (Figure 4B-D). This downregulation of downstream
IGF-1 signaling genes after TBI suggests that SBDS deficiency
may impair this survival signal critical for OPC niche functions
after HSCT.

BM niche SBDS deficiency during myeloablative TBI

induces chemokine and adhesion molecule

expression that favors inflammatory cell homing

and impairs HSPC trafficking to BM

Chemokines and adhesion molecules play critical roles in donor
HSC homing and retention within BM niches after HSCT. Hypothe-
sizing that engraftment deficits in Mx1CreSbdsExc mice may be due
to impaired chemokine and adhesion molecule pathways, we tested
the effect of SBDS deficiency on 20 BM chemokines levels before
and after TBI using multiplex ELISA (Figure 5A-B; supplemental
Table 4). Although baseline chemokine levels were not altered by
SBDS deficiency, 48 hours after irradiation, Mx1CreSbdsExc vs con-
trol BM demonstrated markedly reduced levels of 4 chemokines,
including CXCL1, CXCL9, CXCL12, and CCL22, and elevated
expression of 3 proinflammatory chemokines: CXCL13, CCL3, and
CCL9 (Figure 5A-B). The upregulation of proinflammatory chemo-
kines, particularly CCL3, in BM of irradiated Mx1CreSbdsExc mice
may drive recruitment of proinflammatory macrophages and promote
an inflammatory state that impairs normal hematopoiesis.40-43 Nota-
bly, CXCL12 plays well-described critical roles driving engraftment
of CXCR4-expressing donor HSC within BM niches after HSCT.
CXCL12 is expressed by several cell populations within the marrow
niche,2 including OCs and ECs that were reduced in Mx1Cre

SbdsExc BM after TBI (Figure 3; supplemental Figure 5). We
assessed localization of BM CXCL12 expression changes caused
by SBDS deficiency after TBI using immunohistochemistry
(Figure 5C). Control mice exhibited foci of high CXCL12 levels,
colocalizing with large cells possessing the morphologic appearance
of megakaryocytes, which are CXCL12-responsive niche cells that
survive TBI for several days and promote engraftment after BMT.4 In
contrast, these clusters of high CXCL12 expression were absent in
Mx1CreSbdsExc BM (Figure 5C), correlating with a trend toward
reduction in surviving megakaryocytes in post-TBI Mx1CreSbdsExc

BM (Figure 5D; P 5 .06). Reduced CXCL1 expression in post-TBI
Mx1CreSbdsExc BM may also contribute to engraftment deficits. In a
zebrafish model, CXCR1 ligands (of which mouse CXCL1 is a
homolog44) play key supportive roles promoting donor HSPC
engraftment.45,46

Endothelial expression of selectins also regulates HSC and inflam-
matory cell homing to BM niches.2 After TBI, Mx1CreSbdsExc BM
niche cells exhibited lower P-selectin and higher E-selectin protein
and mRNA expression vs controls (Figure 5E-F). Because

P-selectin expression on BM ECs is critical for constitutive HSPC
homing47 but endothelial E-selectin promotes homing of inflamma-
tory cells and increases HSC proliferation at the expense of self-
renewal,48 dysregulated selectin expression in BM niche cells
caused by SBDS deficiency may synergize with alterations in che-
mokine expression (Figure 5A-B) to promote inflammatory cell
recruitment to BM at the expense of hematopoietic engraftment.

BM niche cells from Mx1CreSbdsExc mice

demonstrate dysregulated ribosomal protein gene

expression and P53 pathway activation after TBI

Multiple studies have demonstrated that aberrant p53 activation
caused by ribosomal protein mutations is a critical driver of lineage-
specific cell dysfunction in SDS and other ribosomopathies.6,49

GSEA detected an overall downregulation in expression of genes crit-
ical for ribosomal biogenesis and protein translation in Mx1CreSbdsExc

vs BM niche cells after myeloablative TBI (Figure 6A) but not in uni-
rradiated BM stromal cells (supplemental Figure 8A). However,
expression differences caused by SBDS deficiency in individual ribo-
somal genes after irradiation were in most cases not statistically sig-
nificant (supplemental Figure 8B-C). Increased activation of p53
signaling pathways and upregulated expression of p53 target genes
were seen in BM niche cells from Mx1CreSbdsExc vs control mice
after TBI (Figure 6B-D; supplemental Table 3). In contrast, GSEA did
not reach statistical significance comparing overall p53 pathway
expression activation in unirradiated Mx1CreSbdsExc vs control niche
cells at baseline (supplemental Figure 8D). SBDS deficiency caused
downregulation of genes involved in G1/S transition and DNA synthe-
sis in S-phase in the BM niche of Mx1CreSbdsExc mice both after
radiation and at baseline (supplemental Figure 8E-F). These results
suggest that baseline impairment in cell cycle transition within SBDS-
deficient BM niche cells is exacerbated by ribosomal dysfunction-
induced upregulation of p53 pathways after myeloablative
conditioning. Higher percentages of apoptotic cells (Caspase-31)
were also seen in the irradiated Mx1CreSbdsExc BM niche environment
48 hours after TBI (supplemental Figure 8G). Thus, cell cycle arrest
and increased apoptosis within stromal cell populations may conse-
quently impair niche capacity to efficiently engraft HSC after BMT.

Discussion

Although BMF in iBMFSs has long been attributed to HSPC-intrinsic
impacts of causative germline gene mutations, increasing evidence
suggests that impacts of these mutations on cells comprising BM
microenvironmental niches also contribute to BMF.4-9 Because SDS
and other iBMFSs require HSCT to cure hematologic aspects of
these diseases and because cytotoxic conditioning may exacerbate
niche dysfunction caused by iBMFS-associated gene mutations, it is
critical to understand pathophysiologic mechanisms by which BM
niche capacity to engraft donor HSC is disrupted in iBMFSs.
Because gene therapy approaches and novel nongenotoxic condition-
ing approaches are under development for iBMFSs,50-52 better under-
standing of BM niche function intrinsic to certain gene mutations is
critical for identifying optimal curative therapy approaches for iBMFSs.

We developed a murine model of SDS through conditional knock-
out of Sbds in Mx1-inducible hematopoietic and osteolineage niche
cells to study SBDS-deficient BM niche function during HSCT. We
demonstrated that SBDS-deficient BM niches possess reduced
capacity to engraft healthy donor HSC after transplantation. SBDS
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deficiency during myeloablative TBI led to marked alterations of BM
niche cell composition, including increased adipocytes and macro-
phages and reduced OPCs and ECs. After myeloablative TBI,
SBDS deficiency in BM niche cells disrupted IGF-1 signaling
needed for OC remodeling of endosteal niches, decreased expres-
sion of chemokines and adhesion molecules known to drive HSC
and progenitor cell homing to BM, and produced gene expression
changes associated with ribosomal dysfunction, p53 activation, and
increased cell cycle arrest in niche cells. Although future functional
studies are needed to define relative contributions of gene expres-
sion changes in each of these pathways to niche-mediated engraft-
ment deficits in this model, the diversity of pathways disrupted
suggests that targeted correction of just one of these pathways
may not be sufficient to restore donor HSC engraftment efficiency.

We used an inducible SDS mouse model to study BM niche deficits
during HSCT because constitutive Sbds knockout models, including
the Col1a1CreSbdsExc model we initially attempted, have phenotypes
too severe to allow for HSCT studies. This Mx1CreSbdsExc has limita-
tions in recapitulating human SDS, including the lack of developmen-
tal effects of SBDS deficiency, given that Cre recombinase activity
was not induced until 6 weeks of age. Mx1CreSbdsExc also did not
develop neutropenia as is seen in human SDS, although absence of
neutropenia has also been a feature of other murine SDS models.5

High mortality after receiving BMT in our SBDS-deficient mice may
be fully explained by the graft failure phenotype we identified, but it
is important to point out that we cannot exclude the possibility that
alterations in other organ function after TBI could contribute to
BMT-associated mortality in SBDS-deficient recipients.53 Whereas
reduced intensity conditioning, and not myeloablative TBI, is typically
used as conditioning for HSCT in patients with SDS,18 we chose
myeloablative TBI as HSCT conditioning to define the maximal
impact of conditioning on BM niche dysfunction in the setting of
SBDS deficiency. Deficits seen in this study will serve as a bench-
mark for planned future studies to compare relative toxicities to BM
niches induced by less intensive conditioning approaches, including
non–TBI-based approaches.

Because of low survival rates of Mx1CreSbdsExc recipients beyond
1 week after BMT, we could not determine whether poor niche
function would result in permanent graft failure or delayed engraft-
ment were the mice to survive the short-term consequences of pro-
longed aplasia, including severe anemia, bleeding, and infections.
Although rates of graft failure are significant in clinical HSCT for
SDS, most patients ultimately do engraft, suggesting that if similar
niche dysfunction exists in human SDS, supportive care enables
survival until engraftment ultimately occurs.

Previous studies demonstrated that Mx1-induced cells in BM stroma
are restricted to osteolineage progenitor cells.29 Therefore, targeting
Sbds deletion using Mx1-Cre impacts niche function through cell
autonomous function of osteolineage progenitors and nonautono-
mous effects on other niche cells. Our data indicate that
Mx1CreSbdsExc niches contain decreased OPCs after TBI but, inter-
estingly, increased expression of genes required for terminal OPC
differentiation. Although terminally differentiated osteoblasts may
negatively regulate HSC pool size through production of osteopon-
tin,47,54 immature OPCs produce CXCL12 and other factors that
promote HSC engraftment. The decrease in OCs after TBI caused
by SBDS deficiency correlated with expansion of adipocytes known

to inhibit efficient HSC engraftment,31 reduction in BM EC that may
also impair HSC engraftment,32 and increased macrophages likely
recruited through BM upregulation of proinflammatory chemokines
(CCL3) and adhesion molecules (E-selectin) that may reduce sur-
vival and self-renewal of donor HSC.48

Finally, similar to the pathogenesis of BMF in SDS,6 we found that
SBDS deficiency in BM niche cells after TBI led to increased p53
activation and cell cycle arrest gene expression. Downregulation of
ribosomal protein expression caused by SBDS deficiency in Mx1-
inducible OPCs was the likely trigger of p53 pathway upregulation.
Ribosomal dysfunction caused by SBDS deficiency may also impair
poor engraftment through reduced protein expression of niche fac-
tors, such as CXCL12, due to broadly impaired protein translation.55

Taken together, our study demonstrates that the cell autonomous
defects induced by SBDS deficiency within osteolineage niche cells
disrupt multiple cellular and molecular elements in the BM microenvi-
ronment (Figure 7), ultimately leading to reduced BM niche capacity
to engraft donor HSC during HSCT. Further studies are needed to
define the relative contribution of these multiple affected pathways
toward impaired donor engraftment and develop therapeutic strate-
gies that target these pathways to improve engraftment outcomes.
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