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Key Points

•Mesothelin is aberrantly
expressed in over one
third of childhood and
young adult AML and
not expressed on normal
hematopoietic cells.

•Mesothelin is success-
fully targeted in vitro
and in xenograft models
of MSLN1 AML with
ADCs.

In an effort to identify acute myeloid leukemia (AML)-restricted targets for therapeutic

development in AML, we analyzed the transcriptomes of 2051 children and young adults

with AML and compared the expression profile with normal marrow specimens.

This analysis identified a large cohort of AML-restricted genes with high expression in

AML, but low to no expression in normal hematopoiesis. Mesothelin (MSLN), a known

therapeutic target in solid tumors, was shown to be highly overexpressed in 36% of the

AML cohort (range, 5-1077.6 transcripts per million [TPM]) and virtually absent in

normal marrow (range, 0.1-10.7 TPM). We verified MSLN transcript expression by

quantitative reverse transcription polymerase chain reaction, confirmed cell surface

protein expression on leukemic blasts by multidimensional flow cytometry, and

demonstrated that MSLN expression was associated with promoter hypomethylation.

MSLN was highly expressed in patients with KMT2A rearrangements (P , .001), core-

binding factor fusions [inv(16)/t(16;16), P , .001; t(8;21), P , .001], and extramedullary

disease (P 5 .001). We also demonstrated the presence of soluble MSLN in diagnostic

serum specimens using an MSLN-directed enzyme-linked immunosorbent assay.

In vitro and in vivo preclinical efficacy of the MSLN-directed antibody-drug conjugates

(ADCs) anetumab ravtansine and anti-MSLN–DGN462 were evaluated in MSLN1

leukemia cell lines in vitro and in vivo, as well as in patient-derived xenografts.

Treatment with ADCs resulted in potent target-dependent cytotoxicity in MSLN1 AML.

In this study, we demonstrate that MSLN is expressed in a significant proportion of

patients with AML and holds significant promise as a diagnostic and therapeutic target

in AML, and that MSLN-directed therapeutic strategies, including ADCs, warrant

further clinical investigation.
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Introduction

Curative treatment of acute myeloid leukemia (AML) remains
challenging, despite intensive cytotoxic chemotherapy and hema-
topoietic stem cell transplant.1 Targeted and immunotherapeutic
strategies, including antibody-drug conjugates (ADCs) and adop-
tive cellular therapies, hold great promise as potent targeted
treatments to improve survival and reduce treatment-related toxicity.
Utilization of these therapeutic strategies in AML is in its infancy and
has been limited by shared expression of many potential target
surface antigens on hematopoietic cells.

Large-scale discovery-phase next-generation sequencing efforts in
AML, including the collaborative National Cancer Institute/Child-
ren’s Oncology Group (COG) Therapeutically Applicable Research
to Generate Effective Treatments (TARGET) AML Initiative and The
Cancer Genome Atlas (TCGA), evaluating childhood and adult
AML patient cohorts, respectively, fueled the identification of target
candidates.2-5 Building on the transcriptome analysis, we identified
mesothelin (MSLN) to be a highly and uniquely expressed cell
surface protein. MSLN is well known as a cell surface marker in
numerous solid tumors, including mesothelioma and ovarian,
colorectal, and pancreatic adenocarcinomas; it is widely consid-
ered a significant potential therapeutic target and is undergoing
evaluation in clinical trials.6-9

In nondiseased states, MSLN is expressed in a circumscribed set of
tissues, including mesothelial cells lining the pleura, pericardium,
and peritoneum. MSLN’s role is unknown, but it is hypothesized
to be involved in cell adhesion in healthy and malignant cells. This
is supported by the association of MSLN overexpression with
increased metastases in various MSLN-overexpressing (MSLN1)
tumors.10-12 Notably, MSLN-knockout mice exhibit normal growth,
reproduction, and blood counts.13 Elevated surface expression in
tumors and apparent dispensable function in normal tissues make
MSLN an attractive potential therapeutic target, with a variety of
agents (ADCs, immunotoxins, vaccines, and chimeric antigen
receptor T cells) currently in development. Clinical trials of MSLN-
targeted agents have not demonstrated toxicities attributable to on-
target/off-tumor effects.14-18

MSLN has attracted attention as a potential disease marker in its
membrane-bound and soluble forms. The precursor product of
MSLN anchored at the cell surface undergoes posttranslational
modifications, including protease cleavage, yielding 3 main
products: (1) cell surface MSLN, the glycosylphosphatidylinositol-
anchored N-terminal portion, (2) soluble MSLN, released from
glycosylphosphatidylinositol into the extracellular space, and (3)
megakaryocyte-potentiating factor (MPF), the soluble C-terminal
portion that has no clear function.19,20 Patients with MSLN
expression detected on solid tumors often have elevated blood
levels of soluble MSLN. Mesomark, an enzyme-linked immunosor-
bent assay (ELISA)–based blood test, utilizes serum MSLN as
a diagnostic marker and is approved by the US Food and Drug
Administration for mesothelioma diagnosis and monitoring.21,22

In this study, we describe MSLN as a novel cell surface marker in
AML across the age spectrum and the clinical characteristics
associated with MSLN overexpression, as well as demonstrate
successful therapeutic targeting with MSLN-targeted ADCs in vitro
and in vivo.

Methods

Patients

Diagnostic samples were collected from 2051 pediatric patients
with de novo AML (ages 1 week to 29.59 years) who were enrolled
in COG trials (supplemental Methods), the details of which were
described previously.1,23-25 Clinical karyotyping and polymerase
chain reaction (PCR)–based molecular testing for NPM1, WT1,
FLT3-internal tandem duplication (ITD), and CEBPa were
available for 2007 patients (95%). Paired diagnostic relapse
samples were available for 263 patients. RNA sequencing
(RNA-Seq) data for adult de novo AML patients was obtained
from the TCGA database (n 5 200, age, 18.2-88.5 years) and
the BEAT AML trial (n 5 210; ages 21-85 years; supplemental
Methods).26,27 Diagnostic samples from 43 adult patients with
de novo AML (age, 18-59 years) were obtained in collaboration
with the MD Anderson Cancer Center (MDACC; supplemental
Methods). The institutional review boards of all participating
institutions approved the clinical and research protocols. The
study was conducted in accordance with the Declaration of
Helsinki.

Genomic characterization

Transcriptome sequencing (RNA-Seq) was performed on diagnos-
tic bone marrow (n5 1411) or peripheral blood (PB; n5 260) from
1671 AML patients, as well as on normal bone marrow (NBM;
n 5 69) controls and CD341 cells (n 5 17) collected from PB
following granulocyte colony-stimulating factor stimulation, as
previously described.2 Gene expression is expressed in tran-
scripts per million (TPM). Within this cohort, subsets were further
analyzed by targeted capture sequencing (n 5 529), microRNA
(miRNA) sequencing (n 5 1227) with an Illumina Hi-Seq 2000,
and DNA methylation analysis (n 5 525) with an Infinium Human-
Methylation27 or HumanMethylation450 BeadChip Kit (Illumina), as
previously described.2

Quantitative reverse transcription PCR

MSLN transcript levels were quantified by quantitative reverse
transcription PCR (qRT-PCR) from diagnostic samples for 619
pediatric AML, 41 adult AML (MDACC), and 16 NBM specimens
(supplemental Methods).

Sandwich ELISA for soluble MSLN and MPF

Soluble MSLN and MPF were measured in serum collected at
diagnosis from 336 pediatric and 43 adult AML patients (at
MDACC) by sandwich ELISA, using a Human Mesothelin ELISA
MAX Deluxe Kit (BioLegend).

Flow cytometry for cell surface MSLN

Multidimensional flow cytometry (MDF) was performed on di-
agnostic samples from 158 pediatric and 43 adult AML patients,
and MSLN expression using mean fluorescence intensity (MFI) of
the myeloid progenitor population was determined using previously
described methods.28 The anti-MSLN antibody was synthesized at
Fred Hutchinson Cancer Research Center (FHCRC; supplemental
Methods) and conjugated to the fluorochrome phycoerythrin
(Caprico Biotechnologies).
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MSLN1 and MSLN2 cell lines

Four MSLN2 leukemia cell lines, K562 and Kasumi-1 (American
Type Culture Collection) and Me-1 and MV4;11 (DSMZ), as well as
1 MSLN1 AML cell line, Nomo-1 (DSMZ), were purchased and
used for MSLN expression and cytotoxicity assays.29 MSLN1 solid
tumor lines H226 and PANC-1 (provided by Phil Greenberg,
FHCRC) and OCVAR-3 (American Type Culture Collection) were
used as positive controls in expression assays.29 Additional leukemia
cell lines were created by lentiviral transduction of MSLN into
K562 (K562-MSLN1), Kasumi-1 (Kasumi-1–MSLN1), Me-1 (Me-
1–MSLN1), and MV4;11 (MV4;11-MSLN1), as well as CRISPR
Nomo-1 MSLN knockout (Nomo-1–MSLNKO). They were sorted
with a BD FACSAria II to obtain homogeneous populations
(supplemental Methods).

In vitro cytotoxicity assays with ADCs

Three compounds were tested in vitro for MSLN-dependent
cytotoxicity: (1) anetumab ravtansine (AR; Bayer Pharmaceuticals),
an anti-MSLN antibody conjugated to payload DM4; (2) isotype
control irrelevant monoclonal antibody conjugated to the same
linker-payload as 1 (IC-AR; Bayer Pharmaceuticals); and (3)
anti-MSLN–DGN462, an anti-MSLN monoclonal antibody con-
jugated to the DNA alkylating agent consisting of an indolino-
benzodiazepine dimer (IBD; provided by ImmunoGen). In vitro
cytotoxicity assays of AR and IC-AR were performed in MSLN1

and parental cell lines treated with ADCs (0.01 pM to 1 mM)
in the presence of 20% human AB serum (Corning) and no
azide/low endotoxin Fc receptor blocking agent (BD Pharmingen) for
30 minutes, washed twice with sterile phosphate-buffered saline,
resuspended in fresh media per repository guidelines, incubated
for 72 hours in duplicate, and then assessed using a Cell Titer-Glo
Luminescent Cell Viability Assay (Promega). In vitro cytotoxicity
assays of anti-MSLN–DGN462 experiments were performed as
above and without an Fc-blocking agent.

In vivo treatment of MSLN1 leukemia xenografts

with AR

NSG-B2m mice (stock number #010636; The Jackson Laboratory)
were transplanted with 63 106 K562 or K562-MSLN1 cells via the
tail vein, whereas NSG-SGM3 mice (stock number #03062; The
Jackson Laboratory) were transplanted with 10 3 106 MV4;11-
MSLN1 cells to produce cell line–derived xenografts, as described
previously.30 At day 6 postinjection, mice were randomly assigned
to 4 treatment groups: AR (5 mg/kg IV, every 3 days for 3 doses),
IC-AR (5 mg/kg IV, every 3 days for 3 doses), chemotherapy
(daunorubicin, 1.5 mg/kg IV daily for 3 days1 cytarabine, 50 mg/kg
intraperitoneally daily for 5 days), and no treatment (n5 6 per group
forMSLN1 xenografts and n5 5 per group forMSLN2 xenografts).
Mice were monitored daily for humane end point criteria and
euthanized per American Veterinary Medical Association guide-
lines.30 Experiments with patient-derived xenografts (PDXs) using
an MSLN1 sample (NTPL-146) and an MSLN2 sample (DF-2) were
conducted as above utilizing NSG-SGM3 mice, with 3 3 106 cells
injected per mouse. Treatment of the PDX with AR was initiated
23 days postinjection when the percentage of human leukemia
cells in mouse PB was $0.1%, measured by MDF as previously
described.30 The mice received 1 to 3 cycles of AR or IC-AR
(supplemental Methods). Blood leukemia burden was assessed
biweekly and then at increasing intervals up to 8 weeks, as well as

at the time of euthanasia. Mouse studies were approved by the
Nemours Institutional Animal Care and Use Committee.

Statistics

Correlation of clinical characteristics and outcome with MSLN
expression was analyzed for 1038 patients treated on AAML1031
(supplemental Methods). Analyses of all in vitro and xenograft
experiments was performed with Prism 7 (GraphPad; supplemental
Methods).

Results

MSLN transcript expression in pediatric and

adult AML

Comprehensive transcriptome profiling of pediatric AML (n 5 200)
initially identified MSLN as a highly expressed gene in a subset of
patients. Subsequent transcriptome profiling of 1061 pediatric
AML samples confirmed MSLN to be overexpressed in a subset of
cases while absent from the majority of patients with AML. MSLN
transcript expression varied significantly (range, 0-1222 TPM;
median, 0.5) (Figure 1A). Defining MSLN overexpression (MSLN1

) as$5 TPM, 36% of pediatric AML cases (n5 598) wereMSLN1,
with a median expression of 66 TPM (range, 5-1077.6). MSLN
expression was virtually absent in normal hematopoiesis: median
MSLN expression was 0.3 TPM in NBM (n 5 68; range, 0.1-10.7)
and 0.24 TPM in PB CD341 cells (n 5 16; range, 0.11-2.38)
(Figure 1A). Evaluation of MSLN transcript expression in adult AML
(n 5 173) also revealed a wide range of values (0-703 TPM;
median, 0.5 TPM). The prevalence of MSLN1 AML was 14% (n 5
25; median, 127 TPM). MSLN expression in adult AML was
significantly higher than in NBM (P , .0001). MSLN expression
levels in pediatric and adult AML were significantly higher compared
with normal hematopoietic samples (P , .001; supplemental
Figure 2). Given the overexpression of MSLN in solid tumors, we
compared MSLN expression in AML with MSLN1 solid tumors
and found substantial overlap in the MSLN expression range
(Figure 1B).We further evaluated expression ofMSLN at relapse by
analyzing matched diagnostic and relapse specimens from 139
patients with 20% blasts at both time points. We demonstrated
a concordance rate of 90%; among MSLN1 patients at diagnosis,
76% retained MSLN expression at relapse, whereas only 4% of
MSLN2 patients at diagnosis acquiredMSLN expression at relapse
(Figure 1C).

Verification of MSLN transcript expression by qRT-PCR demon-
strated that it ranged from 0 to 3993 copies per 1000 copies of
GUSB in pediatric AML (n 5 619), whereas it ranged from 0 to
1388 copies per 1000 copies of GUSB in adult AML (n 5 41) and
from 0.5 to 3.7 copies per 1000 copies of GUSB in NBM (n 5 16)
(supplemental Figure 2). MSLN expression values by qRT-PCR
and RNA-Seq demonstrated a strong correlation (Spearman
nonparametric r 5 10.86; P , .0001). When defining MSLN
positivity as $50 copies of MSLN per 1000 copies of GUSB,
29% (n 5 180) of pediatric AML cases and 29% (n 5 12) of
adult AML cases were MSLN1.

Cell surface MSLN expression in AML

Prospective screening of diagnostic specimens from 138 consec-
utive AML patients for MSLN expression by MDF detected surface
expression on the blasts in 29% (n5 40) of patients. Heterogeneity
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of MSLN expression was similar to that observed for other archetypal
AML cell surface antigens (eg, CD117, CD33, CD123; Figure 1D).
Evaluation of NBM samples demonstrated the absence of any
detectable MSLN. In all MSLN1 cases, MSLN expression was
confined to the leukemic blasts and was absent from normal
hematopoietic cells (Figure 2). Median MFI was 34.7 (range, 9.28-
498) in the MSLN1 cohort vs 5.84 (range, 2.32-14.15) in the
MSLN2 cohort (P , .0001; supplemental Figure 2). Among the
MSLN1 cohort, expression was heterogeneous across a subset of
cases (38%; n 5 15), with 30% to 70% of the blast population
expressing MSLN.

Evaluation of soluble MSLN in AML

We evaluated the diagnostic serum of 337 pediatric patients and
43 adult patients to determine the presence and levels of
serum-soluble MSLN (ss-MSLN) in AML. Using the Mesomark
positivity cutoff $ 1.5 nM, which has been established for
MSLN1 solid tumors, 25% of pediatric AML cases (n5 86) and
33% of adult AML cases (n 5 14) had high levels of ss-MSLN
(Figure 3A). Comparison of ss-MSLN ELISA data with transcriptome
data in 122 pediatric AML cases found a direct correlation between
transcript and ss-MSLN expression (Spearman r 5 10.57;

P , .0001; Figure 3B). Comparison of ELISA and tran-
scriptome data for detecting MSLN1 showed a Cohen’s k of 0.76
for test agreement, and the area under the curve was 0.83
(supplemental Figure 4). ss-MSLN ELISA demonstrated a specificity
of 97% (95% confidence interval [CI], 91.0-99.7) and a sensitivity
of 75% (95% CI, 59.7-86.8) at the $1.5-nM cutoff, establishing
that elevated ss-MSLN is highly indicative of MSLN transcript
overexpression in diagnostic AML samples (supplemental Table 1).
A similar agreement between ss-MSLN ELISA and qRT-PCR
assays was observed (n 5 143; k 5 0.73; area under the curve,
0.82). These findings suggest that test performance in AML is
comparable to Mesomark in mesothelioma.

Because Mesomark is used clinically for monitoring mesothelioma
patients during therapy, we tested the ability of ss-MSLN to indicate
disease remission at the end of induction (EOI) chemotherapy. In
a cohort of 39 pediatric MSLN1 AML patients with paired serum
samples at diagnosis and EOI chemotherapy, 38 (97%) were
negative for soluble MSLN at EOI chemotherapy (Figure 3C), with
37 of those patients being measurable residual disease (MRD)
negative. Among the subset with paired ss-MSLN and outcome
data (n 5 29), the 3 patients with soluble MSLN . 1 nM at EOI
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Figure 1. MSLN expression in pediatric and adult AML. (A) MSLN transcript expression was detected in a subset of pediatric AML cases (n 5 1031) but was absent

in NBM (n 5 68) and CD341 PB cells (n 5 16), as determined by RNA-Seq. (B) MSLN expression in pediatric (TARGET cohort) and adult (TCGA and BEAT AML) AML

patients compared with several MSLN1 solid tumors in patients from the TCGA cohort. (C) Concordance of MSLN transcript expression, positive vs negative, at diagnostic

and relapse time points, according to karyotype (KMT2A-R, CBF, other, and normal karyotype). (D) Percentage of cells above autofluorescence, representing the percentage

positivity on blasts, for some archetypal surface antigens in AML that are considered immunotherapeutic targets (CD117, CD33, CD123) and MSLN, showing similar distribu-

tion of heterogeneity of expression.
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Figure 2. Cell surface MSLN expression in AML. (A) Flow plots from a 5-year-old with MSLN1 AML with predominantly CD342/MSLN1 leukemia. First plot

with CD45/side scatter (SSC) distribution showing leukemic blasts (bright green), normal monocytes (dark green), myeloid cells (blue), and normal lymphocytes

(gray). In the second plot, AML is shown in bright green, monocytes are dark green, and CD341 cells are red. The AML is predominantly CD342 but both CD342

and CD341 subset express MSLN. The third plot is gated on CD341 cells, with CD341/MSLN1 leukemic blasts in yellow and CD341 normal progenitor cells in

red. The fourth, fifth, and sixth plots show normal myeloid cells (blue), normal monocytes (green), and normal lymphocytes (gray), respectively, none of which

express MSLN. (B) Flow plots from a 12-year-old with MSLN1/CD341 AML. First plot with CD45/SSC distribution showing leukemic blasts (red), a few normal

monocytes (green), and normal lymphocytes (gray). In the second plot the CD341 blasts demonstrate MSLN expression. Third plot confirms the myeloid nature of

CD341/heterogenous CD1171 abnormal blasts (red), and normal lymphocytes (gray). The fourth plot confirms myeloid nature of the CD341/CD331 blasts (red),

with lymphocytes (gray). (C) Flow plots from a 17-year-old patient with MSLN1/CD341 AML. First plot with CD45/SSC distribution showing leukemic blasts

(red), and few normal myeloid and normal lymphocytes (orange and gray, respectivly). Second plot shows heterogeneous MSLN expression on abnormal CD341

myeloblasts (red) and normal lymphocytes (gray). The third plot confirms the myeloid nature of CD341/CD1171 abnormal blasts (red) and normal lymphocytes

(gray). (D) Normal CD341 progenitor cells from an 18-year-old are negative for MSLN expression. The first plot shows CD341 cells with early progenitors with

bright CD341/dim CD381 expression in yellow, the second plot shows the characteristic position of these early progenitors (yellow) by CD45 and SSC,

and the third plot shows there is no MSLN expression on any normal CD341 cells, either early progenitors (yellow) or uncommitted progenitors (red). APC,

allophycocyanin; FITC, fluorescein isothiocyanate; Lymph, lymphocytes; Meso, mesothelin; Mono, monocytes; PE, phycoerythrin; PerCP, peridinin-chlorophyll-

protein complex; Prog, progenitors.
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chemotherapy ultimately relapsed, despite their MRD-negative
remission status at EOI chemotherapy.

Biologic and clinical correlates of MSLN expression

in AML

Using the cutoff of $5 TPM for MSLN1 AML and ,5 TPM for
MSLN2 AML, we analyzed 1038 pediatric patients enrolled on
AAML1031 to evaluate the association between MSLN expression
and clinical characteristics and outcome.MSLN expression was not
associated with sex, ethnicity, or the number of white blood cells or
peripheral blasts at diagnosis. However, MSLN expression was
associated with age and was strongly associated with cytogenetic
and molecular subgroups (Table 1). MSLN1 disease was detected
in 62% of patients with KMT2A rearrangements (KMT2A-R;
P , .001) and in 72% of those with core binding factor (CBF)
AML [88% with inv(16)/t(16;16) and 60% with t(8;21); P , .001
for each group; Table 1]. MSLN1 expression was significantly
associated with extramedullary disease (EMD), with EMD occur-
ring in 27.8% of MSLN1 patients vs 18.8% of MSLN2 patients
(P 5 .001; Table 1). Evaluation of CBF and KMT2A-R patients did
not demonstrate any significant differences in EMD according to
MSLN expression (supplemental Table 2). MSLN expression was
rare or absent among FLT3-ITD, NPM1, and CEBPa-mutated AML
(Table 1). In a multivariable analysis, there was no association
between MSLN and overall survival or event-free survival (P5 .384
and .412, respectively). Analysis of KMT2A-R and CBF subgroups
also did not demonstrate any association betweenMSLN expression
and outcome (supplemental Table 3). Given the association between
MSLN1 AML and EMD, we evaluated relapsed/refractory cases
(n 5 486) and found that, among the MSLN1 cohort (n 5 169),
40.9% (n5 69) had$1 site of EMD compared with 18.7% ofMSLN2

patients (60/317; P , .001).

In an effort to explore the underlying mechanism ofMSLN expression
in AML, we interrogated the available genome, epigenome, and
transcriptome data (TARGET and TCGA) comparing those with
and withoutMSLN transcript expression. Available miRNA data from

patients with and without MSLN did not identify any miRNAs whose
expression correlated with MSLN transcript expression. Evaluation
of the DNA methylation data from those with MSLN expression
demonstrated an inverse association between MSLN promoter
methylation and MSLN transcript expression levels (Pearson’s
r 5 20.645; P , .001; supplemental Figure 5), demonstrating that
MSLN expression in AMLmay be the result of epigenomic alterations
in AML. Analysis of a cohort of TCGA patients (n 5 155) did not
find any association between mutations of genes involved in
DNAmethylation (DNMT3A, IDH1/2, TET1/2) andMSLN expression
(P . .2 for all).

Cytotoxicity of MSLN-targeted ADCs

To assess the preclinical efficacy of MSLN-directed therapies in
AML, we conducted studies of the anti-MSLN ADC AR, as well as
a newly devised ADC (anti-MSLN–DGN462). We tested the ADCs
in cells naturally expressing MSLN1 (Nomo-1 and its CRISPR-
deleted MSLN- counterpart Nomo-1 MSLNKO), as well as in cell
lines that were engineered to express MSLN (K562-MSLN1,
Kasumi-1–MSLN1, Me-1–MSLN1, MV4;11-MSLN1) and their
MSLN parental cell lines (K562, Kasumi-1, Me-1, and MV4;11;
supplemental Table 4). Target-dependent cytotoxicity of AR was
observed in MV4;11-MSLN1 and K562-MSLN1 cells (half-maximal
inhibitory concentration [IC50] 5 1.5 nM and 3.7 nM, respectively),
with little to no cytotoxicity observed in control conditions, including
IC-AR treatment and treatment of the MSLN2 parental lines
(P , .0001, between IC50 following treatment with AR compared
with both MV4;11-MSLN1 and K562-MSLN1 cell lines; Figure 4A;
supplemental Figure 6). Three MSLN1 leukemia cell lines (Nomo-1,
Kasumi-1–MSLN1, Me-1–MSLN1) were not sensitive to AR (supple-
mental Figure 6). To examine whether MSLN targeting in leukemia
could be improved using an ADC with a DNA-damaging payload,
we evaluated the efficacy of anti-MSLN–DGN462, which demon-
strated target-dependent cytotoxicity in MV4;11-MSLN1, K562-
MSLN1, Nomo-1, Kasumi-1, and Me-1-MSLN1 cells, with IC505 50
pM, 1.2 nM, 0.27 nM, 1 nM, and 7.3 nM, respectively (Figure 4B-C;
supplemental Figure 6).
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Figure 3. Elevated ss-MSLN in patients with MSLN1
AML. (A) ss-MSLN levels at diagnosis in 337 pediatric patients and 43 adult AML patients, measured by ELISA,

comparable to Mesomark. Using a positivity threshold $1.5 nM, 25% of pediatric patients and 33% of adult AML patients were positive for soluble MSLN. (B) ss-MSLN levels

correlate with MSLN transcript levels detected by RNA-Seq (Spearman r 5 10.57; P , .0001). Thresholds of MSLN1 $1.5 nM and $5 TPM are illustrated. (C) ss-MSLN

levels in 39 AML patients who were positive for soluble MSLN at diagnosis (Dx) and had a paired serum sample collected at the EOI chemotherapy in the setting of an

MRD-negative remission.
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We further assessed the in vivo efficacy of AR in MSLN1 leukemia
in cell line–derived xenograft and PDX models of MSLN1 AML.
K562-MSLN1 xenografts treated with AR had significantly pro-
longed survival (median, 87 days) compared with IC-AR treatment,
chemotherapy treatment (daunorubicin and cytarabine), and no
treatment, with median survival times of 41, 38, and 32 days,
respectively (P , .0001; Figure 4D). In contrast, parental K562
xenografts treated with AR had similar survival compared with IC-
AR treatment or no treatment, with median survival of 39, 41, and 32
days, respectively (supplemental Figure 6). MV4;11-MSLN1

xenografts treated with AR uniformly had prolonged survival .
340 days, whereas those treated with IC-AR or left untreated had
a median survival of 72 and 38 days, respectively, with symptomatic
leukemia co-occurring with increasing blood leukemia burden
(P , .0001; Figure 4E). Additionally, MV4;11-MSLN1 xenografts
treated with AR had ,1% peripheral leukemia burden throughout
the prolonged posttreatment monitoring period (Figure 4F). Treat-
ment of the MSLN1 PDX NTPL-146 with AR resulted in a median
survival of 82 days compared with 32 days (P 5 .0018) for mice
treated with 2 cycles of IC-AR and 132 vs 33 days, respectively, for
mice treated with 3 cycles of IC-AR (P 5 .0069; Figure 4G;
supplemental Figure 6). In contrast, treatment of the MSLN2 PDX
DF-2 with AR and IC-AR resulted in identical median survivals of

12 days for 1 treatment cycle (P 5 1.0) and 4 days for 2 cycles
(P 5 .173; Figure 4H).

Discussion

Utilizing large-scale next-generation sequencing efforts, we identi-
fied MSLN, a known targetable cell surface protein in solid tumors,
to be a highly overexpressed AML-restricted transcript in a signif-
icant proportion of AML, regardless of age. We verified expression
by qRT-PCR, MDF, and a plasma-soluble MSLN assay. Given the
high expression in AML with low/absent expression in normal
hematopoiesis and paucity of expression in most other tissues,
MSLN is an ideal therapeutic target in AML because leukemic cells
may be targeted with virtually no hematopoietic toxicity. We
demonstrated proof-of-principle target-dependent killing of MSLN1

leukemia in vitro and in vivo, with a significant survival benefit
in MSLN1 AML xenografts using AR, which is under clinical
investigation in solid tumors. We further demonstrated that MSLN
targeting with ADCs might be improved in AML by utilizing
a DNA-damaging payload.

MSLN is a potentially valuable marker of disease in AML, as in solid
tumors. Detection of cell surface expression by MDF and qRT-
PCR to detect transcript overexpression have clinical potential as

Table 1. Clinical and biologic characteristics of MSLN2
and MSLN1

children and young adult patients treated on AAML1031

Characteristic MSLN2 (<5 TPM), n 5 679 MSLN1 (‡5 TPM), n 5 359 P

Males 344 (50.7) 193 (53.8) .342

Age, median (range), y 11.1 (0.04-29.5) 8.3 (0-28.3) .002

CNS disease classification

CNS1 488 (73.3) 206 (60.4) ,.001

CNS2 126 (19.1) 90 (26.4) .008

CNS3 50 (7.6) 45 (13.2) .004

Non-CNS EMD present 84 (12.4) 61 (17) .042

Any EMD (non-CNS 1 CNS3) 125 (18.8) 95 (27.8) .001

Diagnostic WBC count, median (range), 3103/mL 19.9 (0.6-918.5) 28.1 (0.6-712.7) .116

Bone marrow blasts, median (range), % 68 (0-100) 70 (0-100) .074

Peripheral blasts, median (range), % 36 (0-100) 40 (0-99) .791

CEBPa positive 62 (9.1) 0 (0) ,.001

NPM1 positive 91 (13.4) 5 (1.4) ,.001

FLT3-ITD positive 156 (23) 12 (3.3) ,.001

Cytogenetics

Normal 257 (36.9) 10 (2.8) ,.001

inv(16)/t(16;16) 12 (1.8) 89 (24.9) ,.001

t(8;21) 57 (8.5) 86 (24) ,.001

11q23/KMT2A rearrangements 87 (13) 144 (40.2) ,.001

Monosomy 5/del5q 10 (1.5) 0 (0) .018

Monosomy 7 18 (2.7) 1 (0.3) .006

Trisomy 8 50 (7.5) 13 (3.6) .015

Other abnormalities 159 (23.7) 14 (3.9) ,.001

Complete remission at end of induction I 479 (72.1) 269 (82.3) ,.001

MRD , 0.1% at end of induction I 406 (63.7) 301 (87.8) ,.001

Unless otherwise noted, data are n (%).
CNS1, no blasts identified; CNS2, blasts present on cytospin with white blood cells (WBC) ,5 or blasts present on cytospin with WBC $5 and traumatic tap; CNS3, blasts present on

cytospin with WBC $5 and atraumatic tap.
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Figure 4. In vitro and in vivo cytotoxicity of MSLN-targeted ADCs in MSLN
1
leukemia cell lines. (A) In vitro cytotoxicity of AR in MV4;11-MSLN1 cell lines and IC50

values. Controls are IC-AR and treatment of the parental (MSLN2) lines. In vitro cytotoxicity of the ADC anti-MSLN–DGN462 with an indolino-benzodiazepine dimer payload in

MV4;11-MSLN1 and MV4;11 parental cells (B) and Nomo-1 parental cells and Nomo-1–MSLNKO cells (C). (D) Kaplan-Meier survival plots of K562-MSLN1 cell–xenografted

mice treated with AR compared with IC-AR, chemotherapy (Chemo), and no treatment. (E) Kaplan-Meier survival plots of MV4;11-MSLN1 xenografted mice treated with AR,

along with controls: IC-AR (IC) and untreated. (F) PB leukemia burden was assessed in MV4;11-MSLN1 mice by flow cytometry. (G) Treatment of MSLN1 PDX NTPL-146

with AR resulted in a dose-dependent improvement in median survival with respect to untreated mice. Mice treated with AR vs IC-AR for 2 cycles (dashed lines; n 5 5 per

group) experienced a median survival of 82 days vs 32 days (P 5 .0018) and mice treated for 3 cycles (solid lines; n 5 4 per group) had a median survival of 132 days vs 33

days, respectively (P 5 .0069; n 5 4 per group). (H) Treatment of the MSLN2 PDX DF-2 with AR did not demonstrate any target-dependent efficacy compared with untreated

IC-AR mice. Mice treated with AR vs IC-AR for 1 cycle (dotted lines; n 5 4 per group) experienced an identical median survival of 4 days (P 5 1.0) and mice treated for
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diagnostic and MRD assays in MSLN1 AML. Molecular MRD
assays in AML have been shown to be powerful tools for disease
monitoring and can complement MDF-based methods to provide
superior disease detection and prognostic capability.31-33 Blood
testing for ss-MSLN, similar to Mesomark in mesothelioma,
presents a potential novel and less invasive means of therapeutic
monitoring in AML. In our study, we demonstrated good intertest
agreement of serum and transcript MSLNmeasurement for detecting
MSLN1 AML at diagnosis. We observed that ss-MSLN in MSLN1

AML generally fell into the normal range at EOI chemotherapy, in
accordance with achieving remission, suggesting that postinduction
detection of soluble MSLN may correlate with subsequent relapse.
Our findings support testing MSLN expression in prospective clinical
trials to further define optimal methods for detection and quantifica-
tion in AML.

Overexpression of MSLN on AML blasts is unexpected, given its
virtual absence in normal hematopoietic cells and the seeming lack
of a relationship between AML and normal MSLN-expressing
mesothelial cells. Our findings build on a prior smaller series that
identified overexpression of MSLN in a subset of pediatric AML
cases.34 We found MSLN expressed on AML blasts in patients
across the age spectrum. The breadth and depth of sequencing
modalities and the large cohort size allowed comprehensive
evaluation of the association between MSLN overexpression in
pediatric AML and possible etiologies. We show that MSLN
overexpression was strongly associated with KMT2A-R and
CBF AML. Although MSLN overexpression was associated with
favorable complete remission rate, this was likely due to the
overrepresentation of CBF patients who experience favorable
responses to therapy,35 because multivariate analyses among
the CBF and KMT2A-R subgroups demonstrated that MSLN
expression was not associated with outcome. We observed
a striking association between MSLN expression and EMD, and
we hypothesize that this is due to more than just the overlap
with the KMT2A-R and CBF subtypes, which have a higher
prevalence of EMD compared with other AML subtypes.36-38

Mesothelial cells are implicated in processes of cell-cell adhesion,
loss of adhesion, and migratory properties.39-41 Further, MSLN
has been reported to be involved in cell adhesion in ovarian
carcinoma.42 Our findings suggest that further work is needed to
explore this association and potential functional implications of
MSLN in AML, because expression of MSLN may be implicated
in EMD development. We also found a strong association
between MSLN overexpression and promoter hypomethylation.
Epigenetic dysregulation is a common paradigm in AML pathophys-
iology, including effects on t(8;21) and KMT2A-R AML.43,44

Treatment with epigenetic-modifying agents has been pro-
posed to modify MSLN expression of MSLN1 solid tumors45-47;
additional work is needed to understand the regulation of
MSLN expression in AML and whether it also may be subjected
to therapeutic manipulation.

In this study, we demonstrate that AR has activity in vitro and in vivo
against MSLN1 AML. AR conferred target-dependent in vitro
cytotoxicity, as well as resulted in significant survival benefits in

MSLN1 AML xenografts, because treatment with AR resulted in
a dose-dependent improvement in median survival compared with
no treatment. Although not all MSLN1 AML cell lines were sensitive
to AR, we hypothesize that this may be due, in part, to its payload,
DM4, a tubulin inhibitor that is dependent on cell cycling for effect.
Therefore, we evaluated anti-MSLN–DGN462, which utilizes an
alkylator payload (IBD), a mechanism of action that has shown to
be effective in AML and is suggested to be uniquely effective in
quiescent malignant cells.48-52 This ADC exhibited target-
dependent cytotoxicity against a broader range of MSLN1 cell
lines compared with AR, suggesting that more optimized
payloads for AML may increase therapeutic efficacy. Although
a prior study in MSLN1 AML with an MSLN-targeted immunotoxin
failed to demonstrate efficacy,53 our studies of MSLN-targeted
ADCs support further clinical investigation of these agents in
MSLN1 AML.

We performed the first preclinical evaluation of AR in AML and
demonstrate that MSLN-targeted agents are a promising therapeu-
tic strategy. Efforts in solid tumors might be leveraged to advance
MSLN targeting in AML, because AR has been studied in early-
phase clinical trials in adults with advanced MSLN1 tumors.54,55

Phase I evaluation of AR reported low rates of serious treatment-
emergent adverse events, with rare and reversible significant
hematologic events.55 Many patients experienced stable disease
in response to AR; however, objective responses were rare.55

Although targeting of solid tumors with ADC monotherapy has
proven challenging in many instances (mediated, in part, by
expression level, access to tumor, and microenvironment), a number
of hematologic malignancies have been successfully targeted with
ADCs.55-60 Therefore, results using AR in solid tumors should not
be directly applied to AML. MSLN-directed therapies can avoid the
on-target/off-tumor toxicity observed with other immunotherapeutic
targets used in AML (ie, CD33). This shared antigen expression
among AML and normal hematopoietic cells is a dose-limiting side
effect of ADCs in AML.1,48,49,61 One potential drawback of
MSLN-targeted ADCs is that ss-MSLN could act as a sink for the
drug, preventing it from binding to MSLN on leukemic cells. To
diminish the source of soluble MSLN, clinical trials of MSLN-
targeted ADCs in AML could consider a cytoreduction phase
prior to ADC dosing. Antigen load at diagnosis due to a high white
blood cell count is a concern for ADCs; thus, they may be most
effective when administered as combination therapy in hemato-
logic malignancies.62,63 Immunotherapeutic targeting of MSLN in
AML could also include chimeric antigen receptor T cells and
T-cell receptor therapies as little off-tumor/on-target toxicity has
been detected in clinical trials utilizing these strageies in MSLN1

solid tumors.14

MSLN expression is observed across the age spectrum in AML but
is absent from normal hematopoietic precursors; the progress
made in MSLN1 solid tumors with an array of targeted and
immunotherapeutic strategies positions MSLN to be an impactful
new therapeutic target in AML. Our studies support further work to
prospectively evaluate the role of MSLN overexpression, optimal

Figure 4. (continued) 2 cycles (solid lines; n 5 5 per group) had identical median survival of 12 days, respectively (P 5 .173; n 5 4 per group). (I) Quantification of cell

surface mesothelin expression using BD Quantibrite, as measured by antibodies bound per cell in the MSLN1 ovarian cancer cell line OCVAR-3 used as positive control and

the PDX models NTPL-146 and DF2. ND, IC50 could not be determined with 95% CIs.
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detection methods, and the development of clinical trials evaluating
MSLN-directed therapeutic strategies in AML.
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