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Key Points

• Activated B cell–like
DLBCL shows in-
creased levels of PD11

TIM31 TILs with im-
paired functions.

• These exhausted PD11

TIM31 TILs can be
functionally reactivated
after blocking PD1 or
TIM3.

In diffuse large B-cell lymphoma (DLBCL), tumor-infiltrating T lymphocytes (TILs) are

involved in therapeutic responses. However, tumor-specific TILs can be dysfunctional, with

impaired effector functions. Various mechanisms are involved in this exhaustion, and the

increased expression of programmed cell death receptor 1 (PD1) and TIM3 on dysfunctional

cells suggests their involvement. However, conflicting data have been published regarding

their expression or coexpression in DLBCL. We evaluated the presence and phenotype of

CD41 and CD81 TILs in freshly collected tumor tissues in DLBCL and compared the results

with those in follicular lymphoma, classical Hodgkin lymphoma, and nonmalignant reactive

lymphadenopathy. We found that TILs expressing both PD1 and TIM3 were expanded in

DLBCL, particularly in the activated B cell–like subgroup. Isolated PD11TIM31 TILs

exhibited a transcriptomic signature related to T-cell exhaustion associated with a reduction

in cytokine production, both compromising the antitumor immune response. However,

these cells expressed high levels of cytotoxic molecules. In line with this, stimulated PD11

TIM31 TILs from DLBCL patients exhibited reduced proliferation and impaired secretion of

interferon-g, but these functions were restored by the blockade of PD1 or TIM3. In summary,

the PD11TIM31 TIL population is expanded and exhausted in DLBCL but can be

reinvigorated with appropriate therapies.

Introduction

Diffuse large B-cell lymphoma (DLBCL) is the most common and most aggressive type of B-cell
lymphoma and constitutes a heterogeneous group of tumors with several entities. In particular,
2 subtypes, germinal center B cell–like (GC) and activated B cell–like (ABC) DLBCL, have displayed
different outcomes after immunochemotherapy in some, but not all, studies.1,2 Despite limited and short
response rates in relapsed or refractory DLBCL after anti–programmed cell death receptor 1 (PD1)
treatment alone,3 therapeutic regimens combining PD1/PD ligand 1 (PD-L1) pathway blockade and
rituximab chemotherapy are currently under investigation in several ongoing trials. However, correlative
data from clinical trials point to the role of tumor-infiltrating T lymphocytes (TILs) for therapeutic efficacy.
CD81 TILs may have reduced efficacy in the context of T cell–mediated immunotherapy, including
chimeric antigen receptor (CAR) T-cell therapy, through the loss of various effector functions, such as
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cytolytic capacity, proliferative capacity, and production of the
cytokines interferon-g (IFN-g), tumor necrosis factor-a (TNF-a), and
interleukin-2 (IL-2).4-7

CD81 TILs that upregulate PD1 expression display an exhausted
phenotype.8 PD1 is a surrogate marker of T-cell exhaustion and acts
by negatively regulating T-cell receptor (TCR) and CD28 signaling
and decreasing proliferation and cytokine secretion of T cells upon
engagement with its ligands (PD-L1 and PD-L2).9,10 Accumulated
data indicate that PD1 and PD-L1 are highly expressed in the tumor
microenvironment and are robust prognostic markers in various
tumors.11-16 In DLBCL, conflicting results have been published, and
increased PD1 expression in circulating T cells has been associated
with poor outcomes in patients.17,18 In contrast, high PD-L1
expression on tumor cells and high levels of plasma-soluble PD-
L1 have been associated with poor outcomes.19-22 Finally, PD1
expression alone is not sufficient to characterize exhausted
T cells.23 Among other molecules, TIM3 represents another well-
characterized marker associated with T-cell exhaustion. TIM3 is
a member of the T-cell immunoglobulin and mucin domain family of
proteins and is expressed on T cells and innate immune cells, where
it has been shown to suppress responses after its engagement.24

Like PD1, TIM3 serves as an inhibitory immune checkpoint receptor
and is a marker of dysfunction in T cells infiltrating tumors in both
mice and humans.25,26 High expression levels of TIM3 on CD81

T cells have been associated with tumor progression and poor
outcomes.17,27,28 TIM3 expression is closely associated with PD1
expression on TILs, and PD11TIM31 TILs have been described as
being more exhausted than their TIM32 counterparts.29,30 The
CD41 T-cell subset, which is critical to CD81 T-cell function and
antitumor responses, also expresses these inhibitory receptors.31,32

Combination therapies based on blockade of both TIM3 and PD1
exhibited synergistic effects in restoring T-cell responses in vitro
and antitumor responses in preclinical animal models.26

Herein, using viable tumor cell suspensions, we sought to
accurately assess the level of TIL infiltration in DLBCL, determine
the phenotype and gene expression profile of these cells by
comparing PD11TIM31 and PD12TIM32 compartments in CD41

and CD81 T cells, and evaluate their functional capacities in terms
of proliferation and production of IFN-g. We found enrichment in
exhausted T cells in ABC DLBCL tumors, and we demonstrated
in vitro that these cells could be reactivated functionally after the
blockade of PD1 or TIM3.

Materials and methods

Patients

Fresh biopsy samples were collected at diagnosis from DLBCL
patients (n 5 25), all classified according to the World Health
Organization (Table 1).33 In addition, follicular lymphoma (FL;
n 5 15), classical Hodgkin lymphoma (cHL; n 5 10), and reactive
lymphadenopathy (rLN) samples (n5 7) were analyzed as controls.
DLBCL cases were considered to be de novo cases, because there
was no history of FL or FL histological features. The DLBCL cell of
origin was determined by immunohistochemistry using the Hans
algorithm (n 5 21)34 or molecular analysis using the previously
described reverse transcriptase multiplex ligation-dependent probe
amplification technique (n 5 4).35 All patients provided informed
consent according to the principles of the Declaration of Helsinki
and the French National Cancer Institute ethics committee

recommendations, and the study was approved by the ethics board
of the Paoli-Calmette Institute.

Cell isolation, cell sorting, and surface and

intracellular staining

Sample tissues were mechanically disrupted (GentleMACS;
Miltenyi Biotec) to obtain dissociated mononuclear cells, which
were frozen for further analysis.

For functional analyses, T cells were obtained from lymphoma
tissues by negative selection (StemCell Technologies). To isolate
TIM31PD11, TIM32PD12, and TIM32PD11 T cells, purified
intratumoral T cells were labeled with CD2, CD56, PD1, TIM3,
and a viability marker (Live/Dead Aqua stain; Life Technologies),
and were sorted on the FACSAria platform (BD Biosciences;
supplemental Table 1A).

For NanoString analysis, cells were stained with CD3, CD4, CD8,
CD45RO, PD1, and TIM3 (supplemental Table 1). The CD31

CD45RO1DAPI2 population and PD12TIM32CD41, PD11TIM31

CD41, PD12TIM32 CD81, or PD11TIM31 CD81 population were
sorted.

Cells were surface stained (detailed in the data supplement;
supplemental Table 1), and data were acquired on an LSRII (BD
Biosciences) and analyzed using FACSDiva and FlowJo software.

Intracellular cytokine secretion

After stimulation (detailed in the data supplement), cells were
surface stained with CD3 BV605, CD4 BV650, CD8 Alexa-
Fluor700, PD1 BV421, and/or TIM3 PE antibodies and Live/Dead
Aqua stain before fixation/permeabilization with the BD Cytofix/
Cytosperm kit. Cells were washed and stained with intracellular
molecular antibodies (mAbs) specific for IL-2, TNF-a, IFN-g, and
granzyme B.

Table 1. DLBCL patient characteristics (n 5 25)

n (%)

Age, y

Average 66

Range 29-83

Sex

Male 11 (44)

Female 14 (56)

IPI

0-1 7 (37)*

2-3 8 (42)*

4-5 4 (21)*

Cell of origin

GC 9 (36)

Non-GC 14 (56)

Unknown 2 (8)

IPI, International Prognostic Index.
*Percentage for cases with known data.
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CellTrace labeling and T-cell proliferation assays

Mononuclear cells and sorted T-cell subsets were stained with the
CellTrace violet cell proliferation kit (Life Technologies; detailed in
the data supplement). Proliferation was evaluated by the percent-
age of CellTracedim cells. Supernatants of cocultures were
collected, and IFN-g was further measured by enzyme-linked
immunosorbent assay (BD Biosciences).

In situ immunofluorescence staining and analysis

of TILs

Tissue samples from 6 DLBCL, 2 rLN, and 2 FL patients obtained
on the day of surgery were frozen and stored at 280°C. Staining
for CD8, PD1, TIM3, and either Ki67 or CD20 was performed
using nonlabeled primary antibodies followed by fluorophore-
labeled secondary antibodies (detailed in the data supplement;
supplemental Table 2). Fluorescence analysis and automated cell
counts were performed as previously described.29 To evaluate
the distance between the CD81 T-cell infiltrate depending on
PD1/TIM3 phenotype and CD201 clusters, we performed tissue
segmentation based on CD20 staining. This allowed counting of
PD11TIM31 CD81 T cells according to their localization in
CD201 vs CD202 areas.

NanoString analysis

The nCounter PanCancer immune cell profiling kit (Nanostring
Technologies, Inc.) was used (detailed in the data supplement). The
analysis allowed us to compare PD11TIM31 and PD12TIM32

subsets in the CD41 or CD81 T-cell populations and determine, by
a Student t test statistic (P , .05; |fold change [FC]| . 2), the
specific gene expression pattern for each population expressed in
FC. Ingenuity pathways analysis (Ingenuity Systems) was used to
define upstream regulators.

Statistical analysis

Quantitative variables are expressed as means6 standard errors of
the mean (SEMs). Statistical analyses were performed with
GraphPad Prism 5 software using the Mann-Whitney U orWilcoxon
nonparametric test as appropriate (*P , .05, **P , .01, ***P ,
.001). For each parameter, the mean frequency of positive cells or
mean fluorescence intensity was normalized across samples. Data
were then visualized by hierarchical clustering under MeV software
(version 4.9.0). Euclidian distance was used with average linkage
clustering.

Results

In ABC DLBCL, lymphoma cells strongly

express PD-L1

We investigated by flow cytometry the expression of PD-L1 and PD-
L2 on lymphoma cells using a clonal marker in DLBCL, FL, and rLN
and most likely on normal B cells in cHL. This investigation is in line
with previous studies of primary DLBCL cells and lymphoma cell
lines.21,36 The expression of PD-L1 was significantly higher (P ,
.01) on DLBCL cells vs cells from rLN and other lymphomas,
whereas there was no significant difference in PD-L2 on B cells,
although expression in cHL and rLN tended to be higher
(Figure 1A). As in previous studies,21,36,37 we also found that
B cells taken from ABC DLBCL samples expressed significantly

more PD-L1 (P, .05) than B cells from GC DLBCL or FL samples
(Figure 1B).

In ABC DLBCL tumors, expansion of CD81 and CD41

TILs expressing inhibitor molecules and the

proliferation marker Ki67

Because of the increased number of PD-L11 B cells, we studied
the frequency of TILs and the expression of immune checkpoint
membrane proteins in tissues from DCLBL, cHL, FL, and rLN
samples. CD81 T cells were significantly increased in DLBCL
compared with other tumors and rLN (considered here as a control),
whereas the percentage of CD41 T cells was significantly lower in
DLBCL compared with other tumor types and rLN (supplemental
Figure 1). DLBCL tissues exhibited a specific phenotypic pattern
compared with rLN, cHL, and FL tissues; in particular, CD41 and
CD81 T cells expressed higher levels of inhibitory molecules on
their surface, including PD1, PD-L1, TIM3, and CD80 (Figure 2A).
Additionally, the percentages of PD11TIM31 CD41 and PD11

TIM31 CD81 T cells were increased in DLBCL samples compared
with other tissues (P , .05; Figure 2B). Interestingly, both the
CD41 and CD81 PD11TIM31 subsets were significantly increased
in ABC DLBCL tumors compared with GC DLBCL and FL. Finally,
tumor infiltration by PD11TIM31 CD41 correlated with that by
PD11TIM31 CD81 T cells, independently of DLBCL subtype
(Figure 2C). In contrast with cells from GC DLBCL or FL, PD11

TIM31 TILs accumulated in the tumor microenvironment of ABC
DLBCL tumors, and these cells exhibited increased HLA-DR and
Ki67 expression (Figure 2A). Immunofluorescence microscopic
analysis revealed that ;1% to 7% of the Ki671 cells were PD11

CD81 TILs (Figure 2D; supplemental Table 3).

In DLBCL, PD11TIM31 CD81 TILs localize inside

CD201 B-cell clusters

We investigated the localization of T and B cells within lymphoma-
involved lymph nodes. Frozen tissues from 6 DLBCL (GC, n 5 3;
ABC, n5 3), 2 FL, and 2 rLN patients were examined using 5-color
multiplex immunofluorescence for PD11TIM32 and PD11TIM31

CD81 T cells and CD201 cells. Both DLBCL and rLN were highly
infiltrated by CD81 T cells, with average CD81/CD201 ratios of
1:18 and 1:6, respectively, whereas FL tissues were less infiltrated
(1:71; supplemental Table 3). In DLBCL tissues, CD81 T cells
sometimes expressed both PD1 and TIM3, with a high variability
between patients in the examined tissues and with no observed
differences between ABC and GC DLBCL subtypes. The median
frequency of PD11TIM31 cells in the CD81 T cell subset was 15%;
this frequency fell to 2% for rLN and FL (Figure 3; supplemental
Figure 2A; supplemental Table 3). In DLBCL, PD11TIM31 CD81

T cells were observed inside CD201 B-cell clusters, whereas in
rLN, we found PD11CD81 (usually TIM32) T cells at the periphery
of CD201 B-cell clusters (Figure 3; supplemental Figure 2B).

PD11TIM31 TIL characterization by

transcriptome analysis

To define the molecular signature of dysfunctional PD11TIM31 TILs
in DLBCL, we profiled their gene expression and compared them
with PD12TIM32 T-cell counterparts. We conducted this compar-
ison for the CD41 and CD81 T-cell populations of 3 patients with
DLBCL. The expression of 138 (18.2%) of 760 genes changed
significantly (P , .05; |FC| . 2), with 40 upregulated and
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98 downregulated genes in PD11TIM31 cells compared with
PD12TIM32 cells. Only 16 of 138 genes were specific for the
CD41 or CD81 T-cell population, including 11 (68%) down-
regulated genes and 1 upregulated gene (PDCD1) in the CD41

T-cell population and 4 upregulated genes in the CD81 T-cell
population (Figure 4A). The list of the top-10 upregulated genes in
PD11TIM31 cells included: (1) chemokine ligands, including
CCL3, CCL4, and CCL3L1, all 3 of which were located near to
one another at the q arm of chromosome 17, and CXCL13,
a molecule involved in the follicle homing of secondary lymphoid
organs, which had the highest score;(2) cytotoxicity molecules
granzyme B, A, and H, IFN-g, and perforin; and (3) molecules
involved in immune suppression, such as IL10 (Figure 4B). Besides
PD1 and TIM3, multiple cell-surface inhibitors, including LAG3,
TIGIT, TNFRSF9 (CD137), and CTLA4, were expressed. Down-
regulation of IL7R, CCR7, and TCF7 suggests a transition from

a central memory to an exhausted or effector phenotype. The
decreased expression of signaling membrane receptors (IL11RA,
IL18R1, IL4R, IL5RA, and IL7R) and the downregulation of several
genes encoding cytokines, including IL2, IL22, IL4, IL5, IL13, and
IL12B, suggests loss of functionality via reduced cytokine signaling.
Gene changes related to PD11TIM31 cells also affected transcrip-
tion factors, with the upregulation of IRF8, EOMES, and IRF4,
whereas RORA, RORC, GATA3, and STAT4 were downregulated,
as were IFN response factors. We next analyzed the potential
upstream regulators driving the significant changes in the data set.
Prediction of downregulated upstream factors in PD11TIM31 cells
revealed TNF (with the highest score) and then TNFRSF1A, IL1A,
and PTGS2; the expression of these 4 genes tended to be
repressed in our data set (Figure 4C). In contrast, predictions of
upregulated upstream factors identified the 2 transcription factors
TBX21 and RUNX3 (Figure 4C).
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Figure 1. Lymphoma B cells from ABC DLBCL strongly

express PD-L1. (A) Representative histograms of PD-L1 and

PD-L2 expression on isotype-restricted clonal B cells, except for

cHL (top), and percentage of B cells expressing PD-L1 or

PD-L2 in DLBCL (n 5 23), FL (n 5 15), cHL (n 5 10), and

rLN (n 5 7) samples (bottom). (B) Percentage of PD-L11

lymphoma cells in GC DLBCL (n 5 9), ABC DLBCL (n 5 12),

and FL (n 5 15) samples. *P , .05, **P , .01, ***P , .001

by Mann-Whitney nonparametric U test.
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Figure 2. PD11 TIM31 CD41 T cells and PD11 TIM31 CD81 T cells are enriched in ABC DLBCL tissues. (A) Representative histograms of PD1, PD-L1, PD-L2, TIM3,

and CD80 expression on CD81 T cells from 1 rLN and 1 DLBCL sample (left). PD1, PD-L1, PD-L2, BTLA, HVEM, CD80, TIM3, HLA-DR, and Ki67 expression on CD41 and

CD81 T cells in DLBCL (n 5 25), FL (n 5 15), cHL (n 5 10), and rLN (n 5 7) samples (right). The percentage of Ki671 cells and median fluorescence intensity (MFI) for

other markers were normalized and hierarchically clustered using Tmev software. (B) Percentage of CD41 and CD81 T cells expressing PD1 and TIM3 in DLBCL (n 5 25), FL

(n 5 15), cHL (n 5 10), and rLN (n 5 7) samples. (C) Percentage of PD11TIM31 CD81 T cells and PD11TIM31 CD41 T cells in GC DLBCL (n 5 9), ABC DLBCL (n 5
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ABC, red; unknown, green). (D) Representative mIHC staining in a DLBCL sample (magnification 3100). Yellow arrows show a CD81 (blue), PD11 (red), TIM31 (green) cell

that expresses Ki67 (white). *P , .05, **P , .01, ****P , .0001 by Mann-Whitney nonparametric U test.
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Altered functional responses of PD11TIM31 TILs

in DLBCL

We next wanted to evaluate the functional capacities of TILs
isolated from DLBCL tumors. Proliferative capacity of and cytokine
production by CD81 and CD41 T cells from 13 DLBCL samples in
response to TCR stimulation were assessed in vitro. We compared
results with those obtained for a control group comprising cells from
3 rLN, 6 cHL, and 3 FL samples. CD81 and CD41 T cells from
DLBCL samples proliferated and secreted IFN-g significantly less in
response to CD3/CD28 stimulation than those from the control
group (Figure 5A). Interestingly, these functional losses were
proportional to the percentage of tumor-infiltrating PD11TIM31

T cells, particularly for the CD81 T-cell subset (Figure 5B;
supplemental Figure 3A). The decrease in cell proliferation
correlated with the diminished IFN-g secretion, suggesting that
both functions were reduced in parallel upon TCR activation
(Figure 5C). A 5 times higher dose of anti-CD3 and anti-CD28
mAbs produced similar results (supplemental Figure 3A-B). We
then tested T-cell activation by PMA and ionomycin and
measured the capacity of PD11TIM31 TILs to secrete IL-2,
TNF-a, IFN-g, and granzyme B. In the CD81 T-cell population, we
found an inverse correlation between IL-2 or TNF-a production
and the percentage of tumor-infiltrating PD11TIM31 CD81

T cells (supplemental Figure 3C). In contrast, increased granzyme
B production paralleled increased PD11TIM31 CD81 T-cell
infiltration (Figure 5D). Interestingly, although we did not observe
a correlation between IFN-g production and CD81 T-cell infiltration,
IFN-g production increased significantly as tumor infiltration by
PD11TIM31 CD41 T cells increased (supplemental Figure 3C).
These results were specific to DLBCL tumors, whatever the cell-of-
origin classification, and were not observed in the control group,
with the exception of a correlation between IFN-g production and
CD41 T-cell infiltration (supplemental Figure 4). Taken together,
functional analyses of TIM31PD11 T cells confirmed the tran-
scriptome profiling data by revealing impaired cytokine production;
however, these cells maintained their capacity to produce cytotoxic
granzyme B.

PD11TIM31 TILs exhibited broad markers of

exhausted phenotype

PD1 expression is rapidly upregulated upon T-cell activation and
may persist at moderate levels in healthy humans. In addition to
PD1, exhausted T cells express a range of other cell-surface
inhibitory molecules that can act in synergy. We investigated the
expression of additional functional molecules by CD81 and CD41

T-cell populations in DLBCL and compared results for the PD11

TIM31, PD11TIM32, and PD12TIM32 subsets. PD11TIM31CD81

T cells expressed the lowest levels of CD45RA, CCR7, and CD127
and had increased expression of CD27 and CD28. Taken together,
this is indicative of a dynamic phenotype, where CD81 T cells are
progressively skewed toward an effector memory phenotype
(Figure 6A). Compared with PD11TIM32 and PD12TIM32 CD81

T-cell subsets, PD11TIM31 CD81 T cells significantly upregulated
phenotypically by flow cytometry: (1) CD38, HLA-DR, and CD57
activation markers; (2) a broad range of inhibitory receptors,
including TIGIT, CD39, LAG3, CTLA-4, PD-L1, and 2B4; (3) the
transcription factor EOMES; (4) the proliferation marker Ki67; and
(5) the cytotoxic molecules perforin and granzyme B (Figure 6B).
Similar results were observed for the CD41 T-cell population and
the comparison between the PD11TIM31 and PD11TIM32/PD12

TIM32 subsets (supplemental Figure 5).

Restoration of TIL proliferation after blockade of PD1

or TIM3

TILs, particularly the PD11TIM31 CD81 T-cell subset, significantly
upregulated the expression of the nuclear protein Ki67, indicating
that cells in all phases of the cell cycle are present (Figure 2A,D).
We therefore determined the in vitro proliferative capacity of CD81

and CD41 TILs after CD3/CD28 stimulation for 5 days. In addition,
we assessed the production of IFN-g secondary to the stimulation.
Results compared PD11TIM31, PD11TIM32, and PD12TIM32

subsets based on a flow cytometric gating strategy. At the end of
the culture, PD12TIM32 cells had mostly undergone several cycles
of division (mean 6 SEM, 83.8% 6 1.5% and 60% 6 11% for
PD12TIM32 CD81 and PD12TIM32 CD41 T cells, respectively).
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PD11TIM32 subsets proliferated moderately, whereas PD11

TIM31 cells barely proliferated (mean 6 SEM, 6.6% 6 5%,
15.3% 6 6%, 2.8% 6 1.3%, and 19% 6 6.3% for PD11TIM31

CD81, PD11TIM32 CD81, PD11TIM31 CD41, and PD11TIM32

CD41 T cells, respectively; Figure 7A). In addition, only PD12

TIM32 subsets produced high levels of IFN-g (mean6 SEM, 1276
105, 148 6 61, and 1063 6 395 pg/mL for PD11TIM31, PD11

TIM32, and PD12TIM32 T cells, respectively; Figure 7B). In
contrast, and in accordance with the above findings, intracellular
detection of IL-2, TNF-a, IFN-g, and granzyme B after PMA/
ionomycin stimulation revealed that, compared with PD12TIM32

subsets, PD11TIM31 cells decreased their IL-2 secretion but
significantly increased their IFN-g and granzyme B secretion. The
PD11TIM32 subsets were somewhat intermediate between the 2
other phenotypes (Figure 7B; supplemental Figure 6). Finally, we
blocked PD1 and/or TIM3 molecules by use of inhibitory mAbs and
tested TIL proliferation after CD3/CD28 stimulation. Proliferation of
the CD41 and CD81 T-cell populations significantly increased (P,
.05) when anti-PD1 or anti-TIM3 mAbs were added to the culture
compared with control isotype mAbs (Figure 7C). We did not
observe synergistic effects when anti-PD1 and anti-TIM3 mAbs
were combined. Finally, we reasoned that the level of infiltration by
TIM31PD11 TILs in DLBCL tumors could have an impact on the
prognosis of patients. To explore this idea, we used a public RNA

sequencing data set of 928 DLBCL samples38 and found that
patients with low expression levels for HAVCR2 (encodes TIM3)
and PDCD1 (encodes PD1) genes had significantly worse
outcomes than others (Figure 7D).

Discussion

In this study, we performed a systematic analysis to define the
phenotype and functional capacities of CD81 and CD41 infiltrating
T cells in DLBCL tumors. To this end, we analyzed cell suspensions
obtained from tumor biopsies and compared DLBCL with FL, cHL,
and rLN tissues. The comparison of PD-L1 expression by B cells in
the various tumor tissues revealed that PD-L1 was significantly
higher in B cells from DLBCL, particularly in B cells from the ABC
subtype, as previously described in patient studies39,40 and in
accordance with a mouse model of ABC DLBCL where tumors
contained PD-L11 B cells associated with a tumor microenviron-
ment enriched for CD81 T cells at the expense of CD41, as in our
study (supplemental Figure 1)41.

In contrast to GC DLBCL, in ABC DLBCL, CD81 and CD41 T-cell
populations showed high expression of the proliferation marker
Ki67, associated with an increase in HLA-DR and regulatory surface
proteins, such as PD1 and TIM3. Thus, although the percentage of
CD41 T cells was ultimately decreased in DLBCL, in ABC DLBCL,
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both CD81 and CD41 T-cell compartments presented PD11

TIM31 cells with an activated phenotype and similar transcriptomes.
The PD11TIM31 cells increased their expression of the cytotoxic
molecules, such as granzymes, IFN-g, and perforin, but also
chemokine ligands, particularly CXCL13, a molecule involved in
the homing of CXCR51 T and B cells to follicles of secondary
organs. This later finding is consistent with immunofluorescence
experiments and the enrichment of PD11TIM31 CD81 T cells in
CD201 B-cell clusters, in accordance with the recruitment of
CXCR51CD81 effector T cells in tumors.42 Collectively, our
findings suggest that in ABC DLBCL, the tumor microenvironment
exhibits all the features of an operative cellular immune response.
However, the response differs from patient to patient, in accor-
dance with previously described T cell–inflamed and
non–T cell–inflamed phenotypes in solid tumors where increased
TILs are associated with the former.43-45 The T cell–inflamed subset
of tumors was dominated by T-cell markers and chemokines that
likely mediated effector T-cell recruitment, increasing antitumor
T-cell response, which is consistent with the fact that patients with
DLBCL expressing high levels of HAVCR2 (encodes TIM3) and
PDCD1 (encodes PD1) have better clinical outcomes than low
expressors (Figure 7D).

Gene expression profiling revealed that PD11TIM31 T cells
presented decreased expression of TCF7, which encodes
the transcription factor TCF1. TIM31TCF12 CD81 T cells

corresponded to terminally exhausted TILs that lost the capacity to
respond to PD1 blockade.46,47 Functional investigations con-
firmed that the decline in IL-2 production (as well as TNF-a and
IFN-g) correlated with an increase in PD11TIM31 T-cell infiltration.
In parallel, the PD11TIM31 cells lost their proliferative capacity
after CD3/CD28 stimulation, despite the fact that they expressed
the proliferative marker Ki67. In contrast, bioinformatic prediction
of upregulated upstream regulators identified an imprint of
TBX21/T-bet and RUNX3 in these cells, 2 transcription factors
described, respectively, as related to functionally efficient or
reactivable TILs and as supporting the expression of crucial tissue-
residency genes while suppressing genes associated with tissue
egress and recirculation.48,49 This finding suggests that PD11

TIM31 TILs in DLBCL remain functionally reactivable. Indeed, our
TCR activation assays showed an increase in granzyme B and
IFN-g production proportional, respectively, to the increase of
PD11TIM31 CD81 and CD41 TILs (Figure 5D). Overall, our data
are consistent with the fact that DLBCL exhibits a dynamic tumor-
specific response, which needs to be reactivated through the
restoration of the proliferative capacity of terminal differentiated
PD11TIM31 TILs.

Mechanisms by which antibody blockade of PD1 reinvigorates
T cells are not fully understood; however, a specific subpopulation
of exhausted CD81 TILs retain polyfunctionality and respond to
anti-PD1 therapy.46 However, in refractory/relapsed DLBCL, only
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low response rates to anti-PD1 monotherapy have been observed in
unselected patients.50 Recurrent genetic alterations may facilitate
escape from immune surveillance, including, for example, gene
inactivation of b2-microglobulin and CD58 or, in ABC DLBCL, loss
of major histocompatibility complex II expression.51,52 However, in
ABC DLBCL, the presence of PD-L11 B cells associated with
PD11 TILs supports the rationale behind current ongoing therapeutic
strategies combining anti-PD1 mAbs with anti-CD20–based chemo-
therapy (registered at www.clinicaltrials.gov as #NCT02541565,
#NCT03259529, and #NCT03366272). The combination of
immune checkpoint blockers with small molecules (eg, inhibition
of BTK) or with immunomodulatory imide drugs may also improve
antitumor immune response.53 In our study, CD41 and CD81 TILs
restored their proliferative response to CD3/CD28 stimulation after
PD1 or TIM3 blockade. Thus, the immune response, although
blunted, can be restored by different pathways, and this reactivation
occurs for both CD81 and CD41 TILs.

Even taking into account the small sample size, among the striking
information from our study is the fact that PD1 and TIM3 pathways
seemed to be independent, meaning they are not synergistic.
Therefore, different T-cell subsets with different requirements are
operating in lymphoma. The most straightforward conclusion is that
both pathways should be targeted, with differences between
DLBCL patients that need to be identified. Additional investigations
should include single-cell transcriptome analysis, helpful in such
questions, and, of course, a greater number of samples tested and
the genetic diversity of DLBCL analyzed. Interestingly, our data can
be compared with a recent case report showing that CD81 T cells
and CAR T cells from a patient with DLBCL treated with CAR T-cell
therapy exhibited overexpression of PD1 and TIM3 before the
contraction of the CAR T-cell population.54

Our study supports the concept that successful therapies should
harness those cells that limit tumor growth, particularly T cells and
other immune cells. The extraordinary success of cancer immuno-
therapy implies that immune checkpoints hold promising therapeu-
tic potential in ABC DLBCL. Our study provides preclinical proof of
concept for the clinical evaluation of incorporating anti-PD1–based
therapy into the current anti-CD20–based modalities as combina-
tion immunotherapy for ABC DLBCL. The lack of direct synergy
between PD1 and TIM3 blockade was not really expected here in
light of current studies in solid tumors evaluating such a combina-
tion.55 Therefore, in DLBCL, further preclinical evaluation is required
for dual blockade, bearing in mind that such an approach may carry
potential risks, as has been seen with CTLA/PD1 blockade in
melanoma. Our study sheds light on another surprising feature in
DLBCL, which concerns the diversity of markers of inhibitory

pathways detected on TILs, such as TIGIT and ectonucleotidases
(CD39), and the increased expression of the CD80 marker on
CD41 and CD81 T cells, which could affect the PD1/PD-L1
functional axis.56 The intimate relationship between T cells and
lymphoma cells in ABC DLBCL demonstrates that both inhibitory
and activating pathways could be tackled to unleash immune
responses and allow adequate T-cell effector functions, with these
cells expressing high levels of cytotoxic molecules, as shown in
our study.
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