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Key Points

• The weighted expres-
sions of 7 coding and 3
noncoding genes is
strongly associated
with relapse in CN-AML
patients.

• The 10-gene signature
is independent from
mutations known to as-
sociate with outcome in
AML patients.

Although ;80% of adult patients with cytogenetically normal acute myeloid leukemia

(CN-AML) achieve a complete remission (CR), more than half of them relapse. Better

identification of patients who are likely to relapse can help to inform clinical decisions. We

performed RNA sequencing on pretreatment samples from 268 adults with de novo CN-AML

who were younger than 60 years of age and achieved a CR after induction treatment with

standard “713” chemotherapy. After filtering for genes whose expressions were associated

with genemutations known to impact outcome (ie, CEBPA,NPM1, and FLT3-internal tandem

duplication [FLT3-ITD]), we identified a 10-gene signature that was strongly predictive of

patient relapse (area under the receiver operating characteristics curve [AUC], 0.81). The

signature consisted of 7 coding genes (GAS6, PSD3, PLCB4, DEXI, JMY, NRP1, C10orf55) and

3 long noncoding RNAs. In multivariable analysis, the 10-gene signature was strongly

associated with relapse (P , .001), after adjustment for the FLT3-ITD, CEBPA, and NPM1

mutational status. Validation of the expression signature in an independent patient set from

The Cancer Genome Atlas showed the signature’s strong predictive value, with AUC 5 0.78.

Implementation of the 10-gene signature into clinical prognostic stratification could be

useful for identifying patients who are likely to relapse.

Introduction

A major obstacle to improved survival of patients with acute myeloid leukemia (AML) is disease relapse
after achievement of complete remission (CR). Prognostic stratification using molecular and cytogenetic
markers is useful for the early identification of patients who are likely to be refractory to standard
induction chemotherapy regimens and/or have a higher risk for relapse; thus, it is being used for making
informed clinical decisions. The 2017 European LeukemiaNet (ELN) genetic risk classification is widely
accepted as the standard method for prognostic stratification of AML patients.1 However, the 2017 ELN
classification includes only selected gene mutations and cytogenetic abnormalities and does not take
into account gene expression data.1

Genomic alterations underlying disease in AML patients are heterogeneous, including diverse
transcriptional profiles.2,3 Previous studies have demonstrated that the use of differential expression of
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single genes and, more recently, gene expression signatures, are
effective tools for risk stratification of AML patients.2-10 Herein, we
sought to explore the association between gene expression and
disease relapse in first CR in adult patients younger than 60 years of
age who were diagnosed with cytogenetically normal acute myeloid
leukemia (CN-AML).

Methods

Total transcriptome RNA sequencing (RNAseq) was performed
using pretreatment blood or bone marrow samples from 268 adult
CN-AML patients younger than 60 years who were similarly treated
with intensive chemotherapy on Cancer and Leukemia Group B
(CALGB) (now part of Alliance for Clinical Trials in Oncology [Alliance])
therapeutic trials, including CALGB 10503 (ClinicalTrials.gov Identifier:
NCT00416598), CALGB 10603 (NCT00651261), and CALGB
19808 (NCT00006363) (see supplemental Data) and achieved
a CR. The patient cohort did not include patients with AML secondary
to antecedent hematologic disorder or patients with therapy-related
AML. Targeted sequencing of 80 cancer- and leukemia-associated
genes, as well as detection of FLT3-internal tandem duplication
(FLT3-ITD) and CEBPA mutations, were performed previously on all
patients.11-13 Pretreatment cytogenetic analyses were performed in
the CALGB/Alliance-approved institutional laboratories. The pres-
ence of a normal karyotype was determined by examination of $20
metaphase cells obtained from short-term (24- and/or 48-hour)
unstimulated cultures of bone marrow samples and confirmed by
central karyotype review in each case.14

RNAseq reads were aligned to hg38 using HISAT2,15 and gene
counts were obtained using featureCounts.16 Normalization was
performed with DeSeq2,17 which divides counts by sample-specific
size factors determined by the median ratio of gene counts relative
to geometric mean per gene. Hierarchical clustering was performed
using the hclust function in the R (v4.0.1) stats package with
Ward’s method, performed on a distance matrix computed using
the ClassDiscovery R package with the absolute Pearson metric.18

Random forest models were generated with the randomForest R
package, performing 100 iterations with n 5 501 and default
mtry.19 Expression between groups was assessed using a negative
binomial model with DeSeq2 or random forests, as indicated after
removing genes with low expression (normalized counts , 10) and
low variability (standard deviation , 10). Predictive ability of the
random forest model was optimized by first determining the
importance of all 539 genes and then iterating through different
numbers of genes (n 5 2-20, 25, 30, 35, 40, 45, 50, 75, 100, 200,
500), starting with the most important, to determine the number that
produces the highest area under the receiver operating character-
istics curve (AUC). Multivariable logistic and proportional hazards
regression models used a backward selection technique to build
the final models for relapse and disease-free survival (DFS) that
included relapse prediction score, clinical variables, mutation status,
and indicated gene expressions associated with relapse at a level of
P , .2 from univariable analyses.

Genotyping of germline polymorphisms was performed previously
on all patients, as described, using Infinium HumanOmni1-Quad
BeadChip arrays (Illumina, San Diego, CA).20 Imputation was
performed using the haplotype reference consortium,21 and testing
for associations between germline polymorphisms and genes
expressions was done with Matrix eQTL.22

Results

We performed RNAseq on 268 adult CN-AML patients younger
than 60 years of age and then compared gene expressions
between patients who relapsed (n 5 164) and patients who
remained in CR for $3 years (n 5 104). The mutation status of 18
genes that were found to be mutated in $3% of patients and the
patients’ pretreatment characteristics, including assignment to
genetic-risk groups according to the 2017 ELN classification, are
presented in supplemental Table 1. Differential expression analysis
using a negative binomial model identified 255 genes that were
significantly differentially expressed (adjusted P value , .001 and
absolute fold change . 0.667; supplemental Table 2). Hierarchical
clustering was performed using these genes, which separated
patients into distinct groups (Figure 1). Although these patient
clusters had different rates of relapse, they were strongly associated
with mutations known to be associated with AML prognosis,
specifically mutations in NPM1, biallelic CEBPA mutations, and
FLT3-ITD (Figure 1).

To find gene expressions associatedwith relapse that are independent
from the aforementioned mutations, we filtered out genes that were
significantly differentially expressed between patients with and without
NPM1 mutations (2064 genes), biallelic CEBPA mutations (3923
genes), and FLT3-ITD (675 genes; adjusted P value , .01 and
absolute fold change . 0.667; supplemental Tables 3-5). From the
remaining 14741 genes, we used a cutoff of an absolute fold-
change difference . 0.3 and a P value , .1 to select 539 genes
that were input into a random forest model to predict CR
(supplemental Table 6). Optimization iterations determined that
the maximum predictive power was achieved using a model fit on
the expression of the following 10 genes: NRP1, PLCB4, JMY,
PSD3, DEXI, GAS6, C10orf55, AC139769.2, AC015712.2, and
AL096865.1; these genes were assigned importances from the
model based on their ability to predict relapse (Table 1). The AUC of
this model was 0.81 (Figure 2A), and the 10-gene signature
correctly classified 141 of 165 patients who relapsed and 65 of 104
patients who maintained a CR (Figure 2B). Classifying patients into
genetic-risk groups according to the 2017 ELN criteria revealed
that the 10-gene signature correctly predicted relapse in 94% of
patients in the adverse-risk group, 86% of patients in the
intermediate-risk group, and 71% of patients in the favorable-risk
group (supplemental Table 7).

The predictive relapse score for each patient generated by the
10-gene signature was input into a multivariable logistic regression
model for relapse and a Cox proportional multiple regression model
for DFS, which contained all available clinical and demographic
variables, gene mutations present in $8 patients, and expression of
ERG,BAALC,MN1,miR-155, andmiR-3151, which were previously
shown to be associated with outcome in adults with CN-AML
(supplemental Data).23-30 The logistic multivariable regression
model showed that the 10-gene predictive score was significantly
associated with the risk of patient relapse (P , .001; odds ratio,
1.79; 95% confidence interval [CI], 1.52-2.13). Biallelic CEBPA
mutations, mutation of NPM1, and FLT3-ITD also remained significant
in the same model (Table 2). In the DFS Cox proportional multiple
regression model, the 10-gene predictive score was associated with
DFS (P, .001; hazard ratio, 1.32; 95% CI, 1.22-1.43) after adjusting
for biallelic CEBPA mutations, FLT3-ITD, and MN1 expression
(Table 2). Together, these data indicate that the 10-gene signature
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Figure 1. Clustering of patients with CN-AML based on expression of 255 genes associated with relapse. Heatmap shows expressions of genes

differentially expressed between patients who relapsed and those who did not relapse for $3 years after achieving a CR. Each row of the heatmap represents

expression of a gene, and each column represents a patient. Differential expression analysis to determine the 255 genes included was performed using a negative

binomial model with the DeSeq2 R package. Shown above the heatmap is the relapse status for each patient, and the mutation statuses of genes mutated in $9

patients, as assessed by sequencing 81 genes. Six genes included in the 10-gene relapse signature that we derived in this study are indicated with arrows on the

right side of the heatmap.
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is a strong predictor of relapse in younger CN-AML patients treated
with intensive induction chemotherapy, and it adds predictive value
to mutations that are already known to predict relapse.

To independently validate the 10-gene signature in another patient
set, we used expression data from The Cancer Genome Atlas
(TCGA) for AML.31 TCGA data contained 32 CN-AML patients
younger than 60 years of age who achieved a CR, 22 of whom
relapsed in first CR.31 We calculated the 10-gene predictive
relapse score for TCGA patients and found that the model correctly
classified 20 of the 22 patients who relapsed and 7 of the 10 who
did not, with AUC 5 0.78 (Figure 2C-D).

Finally, we sought to examine the association between expression
of the genes in the 10-gene relapse signature and germline
polymorphisms to identify expression quantitative trait loci (eQTLs)
for these genes in AML. Using genotyping data from these patients,
we tested for expression associations with single nucleotide
polymorphisms (SNPs) in the same regions. Indeed, we found
evidence for eQTLs in the JMY gene and 59 of DEXI (Figure 3). In
the JMY eQTL, the sentinel SNP, rs6414979, was common (global
minor allele frequency, 0.37) and was strongly associated with JMY
expression (P 5 9.05 3 1026). Likewise, the strongest associated
SNP in the DEXI eQTL, rs3087876, was also common (global
minor allele frequency, 0.45) and was associated withDEXI expression
(P 5 4.10 3 1029) (supplemental Table 8).

Discussion

Our study identified a 10-gene expression signature present at
the time of diagnosis that can predict relapse during first CR,
independent from known prognostic markers in CN-AML. Although
identification of molecular markers that predict outcome for adult
patients with CN-AML treated with intensive chemotherapy is
a relatively well-researched area, our study is unique in that we
focused on gene expressions independent from known prognostic
mutations. It was not surprising that, in our initial differential
expression analysis comparing gene expressions between patients
who relapsed and patients who maintained CR, clustering was
driven by biallelic mutations in CEBPA and FLT3-ITDs, because
these are known to be associated with outcome in CN-AML
and have distinct expression profiles.5,32-34 Removing the genes

differentially expressed between distinct CEBPA, FLT3-ITD, and
NPM1 clusters allowed us to discover an expression signature that
was independent from these known prognostic markers.

Early genome-wide investigations of gene expression in AML
include work by Bullinger et al6 and Valk et al,5 who conducted
seminal studies using microarrays that revealed the transcrip-
tional heterogeneity between cytogenetic subsets of patients.
These studies also offered the first insights into the relevance of
transcriptional signatures for predicting patient outcome, by
describing associations between expression-defined patient clus-
ters and survival.

However, although gene-expression profiling is capable of providing
prognostic information that is independent from other genetic risk
factors,2-7 reproducibility issues have largely prevented its use in
clinical practice. Limiting factors include lack of standardization
of laboratory procedures and implementation of quality controls
among various institutions, normalization and quantification of
RNAseq data, and differences in probe content of microarrays.
Recently, strides have been made to overcome these issues by
implementing standard procedures for the use of commercially
available tests suitable for clinical use in individual patients, which
rely on highly reproducible multiplexed quantitative polymerase
chain reactions assays or, less frequently, NanoString nCounter
technology.35,36 Continued optimization and rigorous scrutiny of
these methods may lead to routine use of RNA expression in some
circumstances in the near future, similar to the currently accepted
use of protein expression, as determined by immunohistochemistry,
as diagnostic and predictive markers.

More recent work with RNAseq has been conducted to specifically
identify coding and noncoding RNA signatures predictive of outcome
in AML patients, including patients with CN-AML. The 10 genes that
make up our predictive expression signature have not been included
in any of the more notable gene expression signatures that are
predictive of AML prognosis,5,6,8,9,37,38 including a long noncoding
RNA signature described by our group.39 We speculate that this
might be due to our exclusion of genes associated with biallelic
CEBPA mutations, NPM1 mutations, and FLT3-ITDs.

Changes in the expression of 3 of the 10 genes constituting our
gene expression signature (GAS6,40,41 PLCB4,42 and NRP143-45)
have previously been shown to associate with outcomes of patients
with AML in single-gene studies. The other coding genes in the
10-gene signature have been described to play roles in cancer as
well. Although DEXI has not been studied in leukemogenesis, the
calcium binding protein-encoding gene has been identified as
a fusion partner ofCIITA in CN-AML, suggestingDEXI is a particularly
interesting candidate for future studies.46 JMY encodes a known
cofactor of EP300, which serves as an activator of the tumor
suppressor TP53.47 PSD3 expression is associated with breast
cancer metastasis and glioma progression.48,49 The 3 noncoding
genes in the signature have not been well characterized, but our
results suggest that they merit further investigation.

Interestingly, our incorporation of genome-wide genotyping data
revealed eQTLs regulating the expression, in AML cells, of 2 of the
genes in the 10-gene signature: JMY and DEXI. These results imply
that germline polymorphisms are at least one of the many factors
that likely contribute to the expression of these genes, which are
associated with an increased likelihood of disease relapse.

Table 1. Importance of the expression of the 10 genes in the relapse

prediction signature

Gene Importance

DEXI 14.81542

C10orf55 13.75139

PSD3 13.68804

AC139769.2 13.56775

GAS6 13.0605

AC015712.2 12.65445

JMY 12.5374

PLCB4 11.54357

AL096865.1 11.15018

NRP1 10.59661

Importance based on the Gini impurity index was used for the calculation of splits during
training.
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Our findings were validated using publicly available data from
the TCGA,31 which, despite a relatively small number of patients,
showed that the 10-gene signature was strongly predictive of

relapse in adult CN-AML patients from this study. Although
corroboration of our findings in another large set of patients
with CN-AML is still desirable, we believe that addition of this
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Figure 2. Gene expression signature is predictive of relapse in patients with CN-AML. (A) Receiver operating characteristic (ROC) curve shows the sensitivity

and specificity of 10-gene expression signature for predicting relapse in 268 adult CN-AML patients younger than 60 years. (B) Predicted relapse probability for the

268 patients determined using the 10-gene signature. Each bar represents a patient, colored according to actual relapse status. (C) Predicted relapse probability for

a validation set of 32 adult patients with CN-AML younger than 60 years included in the TCGA database,31 determined using the 10-gene signature. (D) ROC curve

showing the sensitivity and specificity of the 10-gene expression signature for predicting relapse in the 32 TCGA patients with CN-AML. Maintain CR denotes CR

maintained for $3 years.

Table 2. Multivariable analyses for outcome

Variable Categories P Odds/hazards ratio (95% CI)

Logistic regression model for relapse

10-gene signature Continuous, 10% increase ,.001 1.79 (1.52-2.13)

Biallelic CEBPA mutation status Mutated vs wild-type .007 0.21 (0.07-0.66)

FLT3-ITD Present vs absent .04 2.14 (1.02-4.50)

NPM1 mutation status Mutated vs wild-type .03 0.33 (0.12-0.90)

Cox proportional hazards regression model for DFS

10-gene signature Continuous, 10% increase ,.001 1.32 (1.22-1.43)

Biallelic CEBPA mutation status Mutated vs wild-type .01 0.53 (0.32- 0.87)

FLT3-ITD Present vs absent .005 1.62 (1.16-2.26)

MN1 expression High vs low (median) .008 1.58 (1.13-2.22)
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a SNPs annotator.
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signature to the current molecular prognostication guidelines,
especially if expression of the genes constituting the novel
signature we report herein can be assessed using a clinically
suitable method, will allow more accurate prediction of relapse in
CN-AML patients who have achieved a CR.
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6. Bullinger L, Döhner K, Bair E, et al. Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med.
2004;350(16):1605-1616.

7. Radmacher MD, Marcucci G, Ruppert AS, et al. Independent confirmation of a prognostic gene-expression signature in adult acute myeloid leukemia with
a normal karyotype: a Cancer and Leukemia Group B study. Blood. 2006;108(5):1677-1683.

8. Metzeler KH, Hummel M, Bloomfield CD, et al; Cancer and Leukemia Group B; German AML Cooperative Group. An 86-probe-set gene-expression
signature predicts survival in cytogenetically normal acute myeloid leukemia. Blood. 2008;112(10):4193-4201.

9. Ng SW, Mitchell A, Kennedy JA, et al. A 17-gene stemness score for rapid determination of risk in acute leukaemia. Nature. 2016;540(7633):433-437.

10. Bill M, Nicolet D, Kohlschmidt J, et al. Mutations associated with a 17-gene leukemia stem cell score and the score’s prognostic relevance in the context
of the European LeukemiaNet classification of acute myeloid leukemia. Haematologica. 2020;105(3):721-729.
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