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Key Points

•Glycosylation changes
on red blood cells and
in plasma have been
correlated to sickle cell
disease and sickle cell
trait.

• Samples were analyzed
with lectin and glycan
microarrays, allowing
for rapid screening, but
requiring increased
computational scrutiny.

Sickle cell disease is an inherited genetic disorder that causes anemia, pain crises, organ

infarction, and infections in 13 million people worldwide. Previous studies have revealed

changes in sialic acid levels associated with red blood cell sickling and showed that stressed

red blood cells bare surface-exposed clustered terminal mannose structures mediating

hemolysis, but detailed glycan structures and anti-glycan antibodies in sickle cell disease

remain understudied. Here, we compiled results obtained through lectin arrays, glycan

arrays, and mass spectrometry to interrogate red blood cell glycoproteins and glycan-

binding proteins found in the plasma of healthy individuals and patients with sickle cell

disease and sickle cell trait. Lectin arrays and mass spectrometry revealed an increase in

a2,6 sialylation and a decrease in a2,3 sialylation and blood group antigens displayed on red

blood cells. Increased binding of proteins to immunogenic asialo and sialyl core 1, Lewis A,

and Lewis Y structures was observed in plasma from patients with sickle cell disease,

suggesting a heightened anti-glycan immune response. Data modeling affirmed glycan

expression and plasma protein binding changes in sickle cell disease but additionally

revealed further changes in ABO blood group expression. Our data provide detailed insights

into glycan changes associated with sickle cell disease and refer glycans as potential

therapeutic targets.

Introduction

Sickle cell disease (SCD), the most common hemoglobinopathy, affects up to 100000 people in the
United States and 13 million people worldwide.1 The inheritance of a homozygous mutation from valine
to glutamic acid in the hemoglobin HbS b chain causes polymerization of deoxy sickle hemoglobin within
red blood cells (RBCs).2 In an oxygen-deprived state, RBCs take on a sickled shape and occlude blood
vessels. Individuals are afflicted with anemia, pain crises, organ infarction, and infections; however,
clinical phenotypes vary and remain unpredictable. Additionally, a heterozygous mutation results in the
sickle cell trait (SCT), with predominantly silent features.3

SCD requires a multifaceted approach for long-term treatment.4,5 Current SCD therapies remain
limited, usually comprising hydroxyurea therapy,6 and increasingly gene therapy and stem cell
transplants to correct hemoglobin mutations.7,8 However, the repertoire of potential therapeutic
targets continues to grow.9-11 For example, rivipansel, a glycomimetic pan selectin antagonist,
which targeted E-selectin, showed reduced resolution times of vaso-occlusive episodes12 but
ultimately failed to meet its treatment goals.13
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Glycans (carbohydrates), biologically diverse cell surface mole-
cules,14 are often overlooked as potential mediators of vaso-
occlusive crises in SCD.15 Sialic acid (SA; the ultimate “do not eat
me” signal) containing glycan motifs on both N- and O-linked
glycans contributes to diverse aspects of immunity, cell–cell
interactions, and cell signaling.16 For example, siglecs drive B-cell
development and humoral response using sialyl-glycan recognition
by their receptors to modulate immune response.17,18 Another
sialyl-glycan motif, sialyl-Lewis X, binds selectins and promotes
leukocyte trafficking to lymph nodes and sites of inflammation.19,20

Changes in sialylation and fucosylation are well documented in
chronic inflammation.21,22 Although changes in SA levels are
associated with RBC sickling, there are conflicting reports of
decreased23 and increased24,25 sialylation compared with healthy
individuals. This aberrant glycan clustering and exposure of cryptic
antigens and new epitopes in sickling RBCs results in antibody
formation and cell destruction.26-28 For example, the anti-Galili
(galactose-a-1,3-galactose [a-Gal]) immunoglobulin G (IgG) is
increased in SCD, promoting macrophage phagocytosis of sickled
RBCs.29 Although the inflammatory milieu in SCD is expected to
increase antibody formation globally,30,31 little is known with regard
to specific glycan motifs and resultant antibodies present in this
disease.

To address this knowledge gap and identify potential new
therapeutic targets, we analyzed plasma and RBCs using a combi-
nation of lectin and glycan microarrays and mass spectrometry and
integrated this glycan and antibody data using statistical modeling.
Our data show that SCD RBCs have the following: (1) increased
a2,6 sialylation; (2) decreased a2,3 sialylation and blood group
antigen expression; and (3) increased glycan binding by plasma
proteins in SCD to immunogenic asialo and sialyl core 1, Lewis A,
and Lewis Y structures, suggesting a heightened anti-glycan immune
response. Computational modeling (MixOmics) affirms changes in
glycan expression and glycan-binding protein (GBP) binding,
including immunoglobulins, of immunogenic glycan structures in
SCD, but reveals additional changes, including ABO blood group
expression.

Methods

Sample collection and demographics

Whole blood was prospectively obtained with an institutional review
board–approved protocol as deidentified residual samples.

Data were collected from a total 50 blood group O and 37 group A
African Americans with demographics distributed as in Table 1.
SCT samples were collected from donors positive by SICKLEDEX
(Somagen Diagnostics, Edmonton, Canada).32 Hemoglobin levels
were between 12.5 and 20.0 g/dL for healthy and SCT samples as
per guidelines of blood donation (see https://www.accessdata.fda.
gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr5630.10). SCD
samples were acquired before transfusion, and hemoglobin levels
were between 0.8 and 2.0 g/dL determined using a Sysmex 2000v.
Samples were separated and run based on blood group and
disease state, as previous research concluded that sex was not
a significant contributor to differential glycosylation.33

Whole blood was collected in EDTA and separated by centrifuga-
tion (3500g, 10 minutes) to remove plasma. All whole blood
samples were processed 7 days after collection. Based on previous

validation, this allowed for uniformity of sample age without
significant loss in glycosylation (supplemental Table 1). Plasma
was further centrifuged to remove residual RBC cells and fibrinogen
(10 000 rpm, 20 minutes) and stored at 220°C.

RBC preparation

The RBC fraction was further processed using a Ficoll-Paque (GE
Healthcare) separation and a dextran gradient to purify erythro-
cytes.34 Six percent dextran was mixed (1 part) with 1 part RBCs
and 2 parts Dulbecco’s phosphate-buffered saline (PBS; Gibco/
Thermo Fisher Scientific). Erythrocytes were allowed to sediment at
room temperature for 15 minutes. The supernatant was removed,
and RBC ghosts were obtained as described in Anani et al.33,35

Patient HbS cells were morphologically counted using a Sysmex
2000v to guarantee a population of 60% or greater.

RBC sample preparation for lectin arrays

To reduce nonspecific binding, lipids were removed from RBCs
with a triton extraction buffer.36 Extraction buffer (500 mL) was
added to the RBC pellet, incubated at 4°Cwith rotation (30 minutes),
and centrifuged (16000g, 15 minutes at 4°C), and supernatant
collected for analysis.

Protein quantification was performed, and 0.125 mg/mL labeled
protein was incubated on a GlycoTechnica LecChip microarray as
previously described in Anani et al.33 The array was scanned at
532 nm with a GlycoStation 2200 (GlycoTechnica), and fluores-
cence values were analyzed using SignalCapture 3.0 and
GlycoStationToolsPro 3.0 (GlycoTechnica).

Plasma sample preparation for glycan arrays

The RayBiotech label-based protocol (https://www.raybiotech.
com/glycan-array-100/) for whole plasma was followed. Plasma
was diluted 1:4 in Dulbecco’s PBS and dialyzed for 3 hours in PBS
at 4°C before samples (35 mL) were biotin labeled. RayBiotech
Glycan Array 100 slides were blocked for 30 minutes before
80 mg/mL sample was incubated on the arrays with agitation for
2 hours. After washing, the array was dried by centrifugation (1000
rpm, 3 minutes) and scanned in a GenePix 4000B microarray
reader (Molecular Devices). Glycan arrays were scanned at 532 nm
(450 photomultiplier tubes [PMT], 30% power), and spots were
selected using GenePixPro 3.0 software. The median sample-specific

Table 1. Patient demographics for samples analyzed

Group O Group A

Control SCT SCD Total Control SCT SCD Total

Total 20 10 20 50 20 8 9 37

Sex

Female 14 2 9 25 8 2 7 17

Male 6 8 11 25 12 6 2 20

Age, y

15-24 3 4 1 8 2 4 1 7

25-44 6 3 12 21 9 3 5 17

45-64 9 3 7 19 6 0 3 9

651 2 0 0 2 3 1 0 4

Average age, y 45 32 40 41 45 30 39 40
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background subtracted data for each glycan was achieved by
averaging the 3 highest replicate fluorescent spot values.

Mass spectrometry of RBCs

Sample preparation for glycan analysis. Lipid extracted
RBCs were prepared for mass spectrometry from erythrocyte
ghosts, as prepared above. Proteins were reduced with 5 mM
final concentration of tris(2-carboxyethyl) phosphine at 37°C for
45 minutes and alkylated with a 10 mM final concentration of
iodoacetamide for 45 minutes in the dark at room temperature,
followed by Qubit analysis for protein quantitation (Thermo Fisher
Scientific).

N- and O-glycan release. Protein (25 mg) was immobilized on
a polyvinylidene difluoride membrane with subsequent N- and O-
glycan release as previously described.37,38 Membrane spots were
excised and washed in wells of a flat bottom polypropylene 96-well
plate. N-glycans were released from the membrane-bound protein
using 2 U PNGase F (Promega) with overnight incubation (37°C).
Following N-glycan removal, 500 mM NaBH4 in a 50 mM KOH
solution was added to the membrane spots for 16 hours to release
reduced O-linked glycans by reductive b-elimination. Released N-
glycans were reduced (1 M NaBH4 in 50 mM KOH solution) for
3 hours (50°C), after which the reaction was neutralized with
equimolar glacial acetic acid. Both N- andO-glycans were desalted
and enriched offline using strong cation exchange resin (Dowex
50WX8 [200-400 mesh], Millipore Sigma) followed by porous
graphitic carbon (PGC) solid phase extraction micro-columns
(Thermo Fisher Scientific).

N- and O-glycan data acquisition. Samples were dissolved in
65 mL of 10 mM NH4HCO3 containing 1 mL of dextran ladder
internal standard (26 ng, centrifuged to remove particulates),39 and
then 60 mL of resulting solution was transferred to autosampler
vials. Samples were randomized before injection. An internal
standard-only sample was analyzed between each replicate block
to verify no carryover. PGC-liquid chromatography-electrospray
ionization- mass spectrometry/mass spectrometry (PGC-LC-ESI-
MS/MS) experiments were performed using a nanoLC-2D high-
performance liquid chromatography system (Eksigent) interfaced
with an LTQ Orbitrap Velos mass spectrometer (Thermo Fisher
Scientific). Glycans were separated on a PGC-LC column (3 mm,
100 mm 3 0.18 mm, Hypercarb, Thermo Fisher Scientific)
maintained at 80°C for N-glycans and 40°C for O-glycans. To
enhance ionization and improve detection of low intensity glycans,
postcolumn make-up flow consisting of 100% methanol was used.

Glycan data analysis and library construction. Normalized
retention time by dextran ladder was determined as described
previously using Skyline, and proprietary raw files were converted to
an open and vendor neutral file format, mzML, using Proteowizard
v3.0.8725.39,40 MS2 scans, required for confirmation of glycan
composition and structure, were filtered to include only precursor
masses consistent with probable human glycan compositions
(searched within 20-ppm error with GlycoMod).41,42

Glycan quantitation. Skyline v4.2.1.19095 was used for all
glycan analysis as we previously described,37,43 and 99.999% of
the isotopic envelope with a centroid mass accuracy value of 20
ppm was used for peak integration for glycan structure measure-
ments. Peak picking was largely automated based on explicit
retention time, and integration bounds were manually supervised.

Peak areas for each measured glycan structure were exported and
normalized to relative signal in Microsoft Excel. Glycan structure
relative signal was calculated for the specific glycan structure’s
peak area as a percentage of the total peak area for all glycan
structures measured for each sample.

Glycan structure assignment. MS2 scans were assigned
glycan structures based on the existence of A-, B-, C-, X-, Y-, and
Z-product ions matched using GlycoWorkBench v2.1 (available
from https://code.google.com/archive/p/glycoworkbench/, maxi-
mum of 3 glycosidic cleavages and 1 cross-ring cleavage with 0.
6-Da mass accuracy).44 For all MS/MS scans, at least 2 probable
glycan structures were used for comparative annotation to assign
the most suitable structure assignment. Diagnostic ions were
used to confirm glycan motifs as described previously.42,45 To
promote utility of the glycan structure libraries generated here
and to adhere to MIRAGE guidelines,46,47 all data and metadata
are available on Glycopost (https://glycopost.glycosmos.org/preview/
15566942915f39ca7bd7b83, PIN: 6982)48 and Panorama Public
(https://panoramaweb.org/RBCSickleGlycomics.url).49

Data analysis

Array fluorescence data were statistically analyzed as described
in Anani et al.33 Additional details are included in supplemental
Methods.

Data Integration Analysis for Biomarker discovery using Latent
variable approaches for ‘Omics studies (MixOmics or DIABLO)
creates pathway linkages between apparently disparate datasets to
find correlated probes.50,51 Data from the same RBC and plasma
samples analyzed using lectin and glycan arrays were loaded as
individual blocks, normalized as above, and annotated as healthy,
SCT, or SCD. The weighted correlations were set to 0.1 between
RBC lectin (RBCs analyzed with the lectin array) and plasma glycan
(plasma analyzed with the glycan array) data with the remaining
associations set to 0. Performance of the data were run with the
following parameters: seed 123, Mfold cross-validation, 5 folds, 10
components, and 1000 repeats. The performance was modeled as
centroids, mahalanobis, and maximum distances.52 The smallest
overall error rate was selected to choose the most influential probes
in distinguishing between cohorts. Probe selection (tuning) was run
with the following parameters: seed 123, Mfold cross-validation, 5
folds, 5 components, centroids distance, and 1000 repeats. Once
the appropriate dimensions of data and probes were selected, the
data were visualized by heat map.

Results

Lectin microarray reveals increased a2,6-sialylation

and decreased blood group related lectin binding in

SCD RBC glycoproteins

Lectins are typically used for cell typing, histochemical staining, and
glycoprotein fractionation.53 Immobilized lectins on microarrays can
rapidly screen samples for glycan changes by comparing differ-
ences in expression.54 We used GlycoTechnica lectin arrays,
containing 45 diverse lectins, to determine glycan changes in RBC
glycoprotein structures between healthy donors, SCT donors, and
SCD patients (Figure 1A). Using sparse partial least squares
discriminant analysis (sPLS-DA), lectin binding combinations
unique to each cohort were calculated and visualized with
a prediction map (Figure 1B). With 1 exception, healthy and SCD
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samples were separated easily from one another, whereas the SCT
cohort expressed glycan moieties observed in both healthy and
SCD groups, precluding a complete separation from both (see
supplemental Figure 1 for all lectin contributions).

Pairwise moderated t tests identified significant changes in lectin
binding between groups (Figure 1C). Healthy donors expressed
more terminal fucose (LTL), mannose (NPA), and galactose (ABA
and DBA) motifs compared with SCD patients. LTL (blood group
O), DBA (blood group A1), and NPA identify with blood group
expression,33 indicating blood group loss in SCD RBCs. SCD
patients expressed more a2,6 SA moieties (SNA, SSA), in addition
to terminal GalNAc (PTL-I) and complex bisecting N-linked glycans
(Calsepa) compared with healthy donors. Healthy and SCT donors
differed by increased expression of asialo-galactose (BPL) and
terminal mannose/GalNAc (UDA). The statistically significant
differences between SCT and SCD included increased terminal
GalNAc (PTL-I) and decreased a2,6-sialylation and polylactos-
amine in SCT.

Mass spectrometry confirms increased a2,6 and

reveals decreased a2,3 sialic acid on SCD

RBC glycoproteins

To fully assign a structure to a glycan, a combination of MS,
biosynthetic rules, chemical and enzymatic treatment, and retention
time is necessary.48 Healthy and SCD RBCs (3 samples each, both
blood group O) were analyzed by PGC-LC-MS to define glycan
structures. From the mixture of N-glycans released from RBCs, 118
structures were quantified over 3 orders of magnitude. These
glycans cover all major glycan classes with no clear relationship
between class and relative signal. Paucimannose, hybrid, and
complex mono-antennary classes were detected with relative
intensities less than 1%.

To identify glycan structures specific to SCD, we compared the
SCD RBC N-glycome to that of healthy donors (supplemental
Table 4). Of the quantified glycan structures, 14 (12%) were
significantly different (P, .05 and greater than twofold difference in
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Figure 1. Separation of healthy, SCT, and SCD RBC samples based on lectin specificity of microarrays. (A) RBC samples (ghost cells) were applied to a lectin array

(GlycoTechnica) and trends interpreted from fluorescence data. Lectins are colored based in binding specificity (for full specificities see supplemental Table 2). (B) Data were

analyzed using the centroids distance method and separated based on disease state (component contributions are listed in supplemental Figure 1). Background shading

represents the 95% confidence interval (CI). Receiver operating characteristic values are as follows: Healthy vs all 5 0.8046; SCT vs all 5 0.6153; SCD vs all 5 0.9206.

(C) Data normalized using a quantile method and with t test statistics performed showed a number of significant changes (P # .05) in lectin binding between all sample types

(95% CI bars shown; for full t test results, see supplemental Table 3). Lectin specificities and disease state preferences for each lectin are indicated.
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sickle cell/healthy average signal; Figure 2) between SCD and
healthy samples. Five glycans had a higher signal in SCD samples,
with all structures modified with a2,6 SA (ranging from 2.5- to 18-
fold differences; Figure 2). Of the 9 glycans with higher signals in
healthy donors, 3 structures are classed as hybrid-type glycans
(two- to fourfold differences), and 3e structures were confirmed to
feature a2,3 SA (two- to threefold differences; Figure 2).O-glycans
were similarly analyzed, but no significant differences were detected
between healthy and SCD RBCs (supplemental Table 5). These
results agree with those observed by lectin array, as increases in
SSA and SNA binding denote increases in a2,6 SA. Conversely,
mass spectrometry analysis points to a decrease in a2,3 SA in SCD
compared with healthy donors, supporting the increased terminal
galactose moieties identified by lectins.

Glycan microarrays identify increased binding of

proteins in SCD plasma to immunogenic

mucin-associated structures

As changes in glycan expression in RBCs between healthy donors,
SCT donors, and SCD samples were identified, we hypothesized
that these glycan changes would translate to downstream
alterations of plasma GBPs. To determine differences in GBP

binding between healthy and SCD samples, we applied plasma to
a 100-glycan microarray (Figure 3A) featuring a broad array of
blood group and Lewis antigens, milk oligosaccharides, ganglio-
sides and glycosaminoglycans, and globo-series glycolipids. These
broad glycan motifs can serve as a screening tool for GBPs,
including antibodies formed during immune responses.

Samples were well separated based on disease state using sPLS-
DA (Figure 3B). Moderated t tests of normalized data showed
significant changes in glycan binding between healthy and SCD
samples and SCT and SCD samples (P # .05; for glycan structure
numbers and identification, see supplemental Table 7).

Increased GBP binding to fucosylated glycan motifs in SCD was
observed, including 3-sialyl-3-fucosyllactose (F-SL), Lewis Y,
terminal Lewis A, and Gal-b-1,4-(Fuc-a-1,3)-GlcNAc-b-1,3-Gal-b)
(glycans #64, 71, 73 and 63, respectively). GBP binding to asialo,
a2,6-sialylated and di-sialylated (Neu5Ac-a-2,6-[Neu5Ac-a-2,3]-
Gal-b-1,3-GalNAc-b) core-1 O-glycan structures (glycans 22, 44,
and 48, respectively) was also increased in SCD samples.
Additionally, GBP binding to chitin-trisaccharide and isomaltose
was increased in SCD plasma, suggesting increased antimicrobial
immune responses. GBP binding to glycans 39 (Neu5Ac-a-2,6-
Gal-b-1,4-Glc-b), 74 (Gal-a-1,3-Gal-b-1,3-GlcNAc-b), and 26
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(tobramycin) (Figure 3C) was decreased in SCD plasma. The data
show that SCD patients have increased GBPs to immunogenic
mucin glycan motifs (Lewis A and Y, and asialo and a2,6-sialylated
core 1 structures) often associated with cancer and chronic
inflammation and suggests a heightened immune response to
aberrant glycosylation.

MixOmics affirms aberrant RBC glycans and GBP

binding in SCD but additionally reveals changes in

ABO blood group expression and extra GBP

binding targets

To combine the analysis of our different data sets, we used
MixOmics (DIABLO),51 an R package that uses a multivariate
method for integration of biological datasets with a particular focus
on variable selection measured on the same biological samples.50,51

MixOmics analysis distinguished healthy and SCD samples based on
a unique combination of glycans and lectins (Figure 4) but was not

able to isolate SCT samples. Changes in glycan and lectin binding
observed with individual analyses were reaffirmed in the integrated
MixOmics analysis with the addition of new interarray associations
missed by singular analysis. The combined heat map showed (1)
higher fluorescence in 8 lectins and 13 glycans and (2) lower
fluorescence in 8 lectins and 8 glycans in SCD patients.

Sialyation changeswere again observedwith increaseda2,6 sialylation
(SSA, SNA) and decreased a2,3 sialyation (WGA, MAH) on RBCs,
distinguishing SCD patients from healthy donors. However, new
increased GPB binding to an a2,8 SA baring oligosaccharide
(Neu5Ac-a-2,8-Neu5Ac-a-2,6-Gal-b-1,4-Glc, 54), attributed to
chronic inflammation,22 was also detected by MixOmics.

Group O and A individuals display Fuca1-2Galb1-4GlcNAc and
GalNAca1-3(Fuca1-2)Galb1-4GlcNAc glycan structures, respec-
tively.55 The RBC i/I blood group system is represented by unbranched
and branched polylactosamine glycans, respectively.56-58 Lectins able
to distinguish blood group related antigens including LTL (group O)
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and both DBA and PTL-I (group A) showed decreased recognition in
SCD patients, but LEL and DSA (i/I blood group) were observed to
increase binding, suggesting terminal blood group antigen alterations
on RBCs in SCD. Notably, MixOmics detected new increases in GBP
binding to blood group A and H antigens (65 and 66) in SCD, with
a reciprocal decrease of group A– and O–specific lectin binding (LTL
and DBA) to RBCs. Additionally, decreased GBP binding to a sulfated
lactosamine structure (Gal-b-1,4-(6S)GlcNAc-b, #21) was detected,
further reinforcing the notion that blood group antigen expression
differs in SCD. Using MixOmics we also observed increases of PWM
and GNA binding and decreases of NPA binding to SCD RBCs,
suggesting alterations in mannose moieties, and decreased binding of
Galactose and GalNAc recognizing lectins (ABA, Jacalin).

GBPs showed increased recognition of immunogenic mucin-
associated glycans in SCD, including Lewis Y, Lewis A, asialo,
a2,6-sialylated and di-sialylated core 1 structures (glycans 71, 73,
22, 44, 48). GBPs binding to other fucosylated oligosaccharides

(Gal-b-1,4-[Fuc-a-1,3]-GlcNAc-b-1,3-Gal-b and F-SL) was also
increased. Decreased binding to aminoglycoside antibiotics (18,
gentamicin; 26, tobramycin; 31, neomycin) was measured, except
for kanamycin (29), which may have shown an overall increase
because of heavily increased fluorescence from a subset of 6 SCD
patients.

MixOmics analysis reiterated our findings obtained using sPLS-DA
and regular t test methods, reinforcing observations of changes in
(1) blood group expression and antibodies directed to blood group
antigens and (2) binding of GBPs to immunogenic mucin-associated
glycans, including sialyl core 1, Lewis A and Y structures, and
sialylation in SCD often associated with chronic inflammation
and cancer.

Discussion

Previous SCD research has mainly focused on differences in
receptor binding to RBCs and plasma components brought on by
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changes in glycosylation.22,59,60 However, little research has been
performed to identify the structural glycosylation changes on RBCs
and in plasma. Using a unique approach of pairing lectin and glycan
microarrays with mass spectrometry to analyze healthy, SCT, and
SCD plasma and RBCs, we found significant changes in both
glycosylation of red cells, and glycan recognition of plasma GBPs
between healthy and SCD samples.

Typically, RBCs in SCD have altered surface sialylation,25 display-
ing an uneven distribution of SA compared with healthy cells.61 We
found consistent changes in sialylation between healthy and SCD
RBCs using both lectin array and mass spectrometry. All structures
that were significantly increased in SCD samples contained a2,6-
Neu5Ac, consistent with increases in SSA and SNA lectin binding.
Mass spectrometry data suggest that a2,6-Neu5Ac is either
replacing a2,3-Neu5Ac structures or being added to terminal
galactose observed on healthy RBCs. One reason for changes in
surface SA could be because of differences in the age of circulating
RBCs. Aging RBCs see reductions of surface sialylation between
10% and 30%,61-64 and in some hemolytic anemias, decreases of
surface SA by 50% have been observed after release of RBCs into
circulation.65

Sickled RBCs are more susceptible to endothelial adhesion
because of these changes in terminal SA, leading to vaso-
occlusive episodes.66,67 E- and P-selectins are expressed on
activated endothelium and platelets.22 Sialyl-Lewis X binds
selectins and promotes leukocyte trafficking to lymph nodes and
sites of inflammation.19,20 In addition to SA modifications, selectin
binding depends on fucose and sulfated glycan decorations.59,60

Fucosylated glycans adorned the top 5 structures for which GBPs
in SCD had higher affinity, including the immunogenic Lewis Y and
Lewis A, suggesting that fucosylated structures and reciprocal
GBPs are generated in SCD. Increased fucosylation is also
observed in inflammatory conditions,21,68 such as fucosylated IgG
in rheumatoid arthritis.69,70 Thus, changes in sialylation and fucose-
containing structures on sickled RBCs could alter selectin and
RBC–ligand interactions to drive inflammation in SCD.

Overexpression of sialyl Lewis Y and sialyl Lewis A is also
associated with cancers and chronic inflammation. In support of
a heightened immune response to aberrant glycans, GBP binding
to asialo and sialyl core 1 structures (glycans 22, 44, and 48;
Figure 3C) was increased in SCD, with these glycans often
expressed on mucin-rich glycoproteins, including CD59, that help
to signal RBC hemolysis.71 Sickling of RBCs could increase the
expression of aberrant glycans resulting in lysis.72 A recent report
shows that cholesterol-dependent lysins (intermedilysin) bind to
sialyl-core 1O-glycans using CD59 to promote RBC lysis,73 further
supporting the role of O-glycans in RBC destruction. The role of
RBC glycolipid expression of antigenic glycan structures needs to
be elucidated. However, our data highlight mucin O-glycans as
potential therapeutic targets in SCD.

A limitation of our results is that, although SCD samples were
collected before transfusion, it is impossible to discern transfused
from endogenous patient RBCs because of repeat transfusions.
Transfusions can be episodic or timed, ranging from every other
week to monthly, therefore, based on an RBC lifetime of ;120
days, contributing significantly to the data acquired. Another
limitation is that we cannot correlate our results to patient treatment
regimes.

MixOmics analysis confirmed trends we observed with the lectin
and glycan arrays individually. However, it also brought to light
subtle blood group changes. Lectins known to bind both group O
and A antigens (LTL, DBA, and PTL-I) showed decreased affinity to
SCD RBCs, whereas those lectins with affinity for i/I blood group
antigens (LEL and DSA) showed increased binding. The i blood
group antigen is converted to I antigen within 18 months of birth,
and therefore an increased binding of lectins to i/I antigens
suggests more immature RBCs in SCD, which lack ABO antigens
and the complete conversion of i to I antigens.74 Previous studies
have observed that RBC maturation in individuals with hemoglo-
binopathies decreases from 3 to 1.5 days with increased reactivity
to i antibodies.75 Additionally, increased erythropoiesis, as in SCD
and thalassemia, can weaken the expression of ABO blood group
antigens.76,77 Loss of ABO antigens is also seen on the RBCs of
myeloid malignancies78 and on carcinoma tumor cells, suggesting that
ABO antigen expression change contributes to the immune response
in disease,79-81 including SCD. Because of sample size limitations, only
blood groups A and O were analyzed. Further investigation is needed
to understand the impact of SCD on blood group expression.

In conclusion, our multipronged approach shows changes to both
glycosylation on RBCs and binding of plasma proteins to aberrant
glycans in SCD. Specifically, our data showed loss of a2,3-Neu5Ac
and surprisingly revealed a reciprocal increase of a2,6-Neu5Ac on
SCDRBCs, in addition to changes in blood group antigen expression
consistent with more immature RBCs. Our data further show
increased binding of plasma GBPs to potentially immunogenic
glycans, including mucin core 1 and Lewis A and Lewis Y structures,
suggesting these glycan structures as potential therapeutic targets.
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