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functional defects that predispose to bacterial infections
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Key Points

•CLL represses the an-
tibacterial function of
neutrophils and increases
bacterial infections.

• Progression of CLL
reduces expression of
CD62L and CXCR4 by
neutrophils and is as-
sociated with impaired
migration.

Patients with chronic lymphocytic leukemia (CLL) typically suffer from frequent and severe

bacterial infections. Although it is well known that neutrophils are critical innate immune

cells facilitating the early defense, the underlying phenotypical and functional changes in

neutrophils during CLL remain largely elusive. Using a murine adoptive transfer model of

CLL, we demonstrate aggravated bacterial burden in CLL-bearing mice upon a urinary tract

infection with uropathogenic Escherichia coli. Bioinformatic analyses of the neutrophil

proteome revealed increased expression of proteins associated with interferon signaling

and decreased protein expression associated with granule composition and neutrophil

migration. Functional experiments validated these findings by showing reduced levels of

myeloperoxidase and acidification of neutrophil granules after ex vivo phagocytosis of

bacteria. Pathway enrichment analysis indicated decreased expression of molecules critical

for neutrophil recruitment, and migration of neutrophils into the infected urinary bladder

was significantly reduced. These altered migratory properties of neutrophils were also

associated with reduced expression of CD62L and CXCR4 and correlated with an increased

incidence of infections in patients with CLL. In conclusion, this study describes a molecular

signature of neutrophils through proteomic, bioinformatic, and functional analyses that are

linked to a reduced migratory ability, potentially leading to increased bacterial infections in

patients with CLL.

Introduction

Chronic lymphocytic leukemia (CLL), an indolent B-cell non-Hodgkin lymphoma (B-NHL), is the most
frequent leukemia in the Western hemisphere.1 The disease is characterized by the massive outgrowth
of CD51 B cells, which accumulate primarily in the bone marrow (BM), blood, and lymph nodes.2 While
the majority of patients with CLL experience an indolent course with unspecific symptoms, such as
fatigue and fever, the clonal expansion of B cells leads to an immunocompromised state predisposing
patients to bacterial infections for largely unknown reasons.3-13 Frequent and infections often lead to the
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initial diagnosis of CLL,14 and infection-related complications hamper
adherence to chemo- or immunotherapy and pose a major threat,
resulting in high morbidity and mortality rates in patients with CLL.12,13

Urinary tract infections (UTIs) are one of the most common
and nosocomial infections, with the vast majority being caused
by uropathogenic Escherichia coli (UPEC).15,16 This pathogen
invades the outer urothelial lining of the urinary bladder,17 and
increased frequency and incidence has been observed in patients
with CLL.18 Neutrophils are the most critical responders in acute
infections of the urinary bladder. They infiltrate the infected urinary
bladder and cross the basement membrane of the infected
urothelium through matrix metalloproteinase 9 (MMP9).19-21 At
bacterial foci, neutrophils phagocytose UPEC,22 and the absence
of neutrophils in UTI leads to aggravated disease courses,
recurrence, and tissue damage.21,23 In patients with CLL, there is
conflicting data on the functional repertoire of neutrophils,24-29 and
it remains elusive whether a particular molecular phenotype and
functional defect of neutrophils predispose patients to increased
risk of infections.

This study shows an increased bacterial burden in the UPEC-
infected urinary bladder of CLL-bearing mice. Enrichment analysis,
STRING (Search Tool for the Retrieval of Interacting Genes/
Proteins) protein interaction, and a random forest classifier (RFC)
revealed many alterations in the phenotype and function of
neutrophils in CLL. We observed increased interferon (IFN)
signaling, reduced expression of granule proteins, and impaired
migration of neutrophils in CLL-bearing mice. Conclusively, a combi-
nation of bioinformatic and functional analyses identified a particular
molecular signature of neutrophils in CLL with potential biomarker
and target molecules.

Methods

Mice and CLL induction

Recipient mice were bred and maintained under specific-
pathogen–free conditions at the animal facilities of the University
Clinic Essen. Donor mice were bred and maintained at the animal
facilities of the German Cancer Research Center in Heidelberg.
Female C57BL/6 mice (8-12 weeks of age) were injected IV with
2 3 107 syngeneic splenocytes from C57BL/6 donor mice, which
were transplanted with leukemic Em-TCL1 cells as previously
described.30-33 The CLL burden in mice was determined by the
percentage of CD51 CD191 B cells in the blood by flow cytometry
(FC). In order to study the susceptibility to UTIs, CLL mice with
20% CD51 CD191 B cells in the blood were used throughout the
study. Animal experiments were approved by the local animal review
board of the government (Bezirksregierung Ko ̈ln, Landesamt fur̈
Natur, Umwelt und Verbraucherschutz NRW, Recklinghausen,
Germany) as documented in file references 84-02.04.2015.A211
and 81-02.04.2018.A058.

Murine UTI model

The synthesis of GFP-expressing UPEC34 and the in vivo UTI model
were described in previous studies.21,35 UPEC strain 536 (O6:K15:
H31) was derived from a UTI patient.36 GFP-expressing E coli 536
were cultured for 3 hours at 37°C in LB medium. Bacteria were
harvested via centrifugation and suspended in sterile phosphate-
buffered saline (PBS). Subsequently, animals were infected via
transurethral inoculation of 53 108 UPEC using a soft polyethylene

catheter as previously described.21 In order to study the suscep-
tibility to infections, CLL mice with 20%CD51CD191B cells in the
blood were used.

FC analysis

Murine blood was collected via cardiac puncture, and bladders
were harvested. Human blood samples were collected in citrate
vacutainers in accordance with the local ethics committee at the
University Hospital Essen (reference number 14-6080-BO). After
red blood cell lysis, blood samples from mice and humans were
processed for subsequent antibody staining. Single-cell suspen-
sions from bladders were obtained by enzymatic digestion in
RPMI1640 (10% heat-inactivated fetal calf serum, 1 mM L-gluta-
mine, 100 mg/mL penicillin/streptomycin, 0.5 mg/mL collagenase,
and 100 mg/mL DNase I) for 45 minutes at 37°C. For cell surface
staining, cell suspensions were incubated for 20 minutes at 4°C
with antibodies. For a list of antibodies, please see Table 1. FC
measurement was performed on a BD LSR Fortessa II or BD Aria III,
and data were analyzed with FlowJo 10 software.

Immunofluorescence of urinary bladder

Murine urinary bladders were stained for immunofluorescence as
described previously.20,37-41 Mice were euthanized 21 hours post-
UPEC infection, and bladders were harvested. Bladders were fixed
in PLP buffer (pH 7.4, 0.05 M phosphate buffer containing 0.1 M
L-lysine, 2 mg/mL sodium periodate, and paraformaldehyde with
a final wt/vol concentration of 4%) overnight at 4°C and equilibrated
in 30% sucrose for 24 hours. Subsequently, bladders were
embedded in Tissue-Tek OCT and cryo-conserved in n-hexane
and dry ice at 280°C. Cryosections were rehydrated with PBT
(PBS1 0.05% Triton X-100), and Fc receptors were blocked (PBT,
1% bovine serum albumin, 1 hour). Sections were stained with
antibodies in blocking buffer and imaged with a Zeiss AxioObser-
verZ1. The cellular density and bacterial burden in UTIs were
analyzed using ImageJ and R. An intensity threshold was used to
generate masks for each fluorescent channel, and the binary
information for cellular and nuclear signals was coregistered.
Automated analysis of cell densities was performed by a Java-
based algorithm. Using ImageJ, overlapping mask regions were
employed to identify cells, which were marked with a point at the
center of the 49,6-diamidino-2-phenylindole (DAPI)1 cell nucleus.
The bladder tissue was segmented into lumen, urothelium, and
connective tissue by employing the EpCAM-1 signal, and cell
densities were calculated.

Neutrophil cell isolation

Neutrophils were isolated in a 2-step approach: (1) negative
isolation of neutrophils via magnetic-activated cell sorting (MACS;
Neutrophil Isolation Kit; Miltenyi) with CD19 MACS beads to
increase the magnetic labeling of CLL B cells and (2) cell sorting via
Ly6G. Sorted Ly6G1 neutrophils were centrifuged, and dry pellets
were shock-frozen and stored at 280°C.

Sample preparation and liquid chromatography with

tandem mass spectrometry (LC-MS/MS) analysis

Cell-sorted neutrophils were lysed in 50 mM ammonium bicarbon-
ate buffer containing 0.1% RapiGest Surfactant. The samples were
reduced with 20 mM dithiothreitol for 30 min at 60°C and
subsequently alkylated with 15 mM iodoacetamide for 30 minutes
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at room temperature protected from light. Proteins were digested
using 22.5 ng trypsin per sample overnight. The digestion was
stopped by adding 0.5% trifluoroacetic acid, and precipitated
RapiGest was removed by centrifugation. Peptides were dried in
vacuo and analyzed as described before.42 Briefly, 350 ng peptides
in a volume of 15 mL 0.1% trifluoroacetic acid was subjected to
an Orbitrap Elite mass spectrometer coupled to an Ultimate
3000 RSLCnano system. The peptides were preconcentrated for
7 minutes on a trap column (Acclaim PepMap 100, 300 mm 3 5
mm, C18, 100 Å, flow rate 30 mL/min) and subsequently separated
on an analytical column (Acclaim PepMap RSLC, 75 mm 3 50 cm,
nano Viper, C18, 2 mm, 100 Å) by a gradient from 5% to 40%
solvent B over 98 minutes (flow rate 400 nL/min; column oven
temperature 60°C). Full-scan MS spectra were acquired in the
Orbitrap analyzer, and the 20 most abundant peptides were
selected for MS/MS analysis (data-dependent acquisition). Tandem
spectra were measured in the linear ion trap following peptide
fragmentation by collision-induced dissociation.

Protein identification and data analysis

Peptides were identified using Proteome Discoverer Software
(v.1.4.1.14). The mass spectra were searched against UniProtKB/
Swiss-Prot database (release 2016_05, 551 193 entries) restricted
toMus musculus using the Mascot search engine (v.2.5). The mass
tolerance was set to 5 ppm for precursor ions and 0.4 Da for
fragment ions. One tryptic miscleavage was considered as well as
chemical modifications of methionine (oxidation) and cysteine
(propionamide). The percolator function, implemented in proteome
discoverer, was used to estimate peptide confidence, and only
peptides that passed a false discovery rate (FDR) ,1% (FDR-
adjusted P, .01) were considered for analysis. Ion intensity–based
label-free quantification was performed using Progenesis QI for
proteomics. To account for retention time shifts, LC-MS runs were
aligned to one run automatically chosen by the software. A master
list of features considering retention time and m/z was generated
considering peptide ions with minimum 3 isotopic peaks and
charges states 12, 13, and 14. The peptide identifications
(peptides spectrum matches) from Proteome Discoverer were
imported into the software and matched to the respective features.
The protein abundances were calculated considering the normal-
ized ion intensities of all nonconflicting peptides of a protein.
Normalized protein intensities were further analyzed using R.

Table 1. Key resource table

Reagent or resource Source

Identifier,

catalog/stock no.

Antibodies

CD5 eBioscience 45-0051-82

CD16 human BD Bioscience 557744

CD19 BioLegend 115539, 115507

CD45 BioLegend 103154

CD62L BioLegend 104437

CD62L human BD Bioscience 560440

CD66b human Beckmann Coulter IM0531U

Chicken anti-GFP Aves GFP-1020

CXCR4 BioLegend 146511

CXCR4 human BioLegend 306506

ICAM-1 BioLegend 116105

ICAM-1 human eBioscience 17-0549-42

Ly6G BioLegend 127607

Reagents

2-Iodacetamide Merck 8.047.440.025

Ammonium hydrogen carbonate PanReac
AppliChem

A35830500

Bovine serum albumin GE Healthcare K45-001

Collagenase Sigma-Aldrich C2674

DAPI Life Technologies D1306

Dithiothreitol PanReac
AppliChem

A11010025

DNase I Sigma-Aldrich D4513-1VL

Isoflurane Abbott NA

LB medium Carl Roth GmbH X64.

L-lysine Sigma-Aldrich L5626

Neutrophil isolation kit Miltenyi Biotec 130-097-658

Paraformaldehyde Sigma-Aldrich P6148

PBS Life Technologies 18912-014

pHrodo Green E coli BioParticles
Conjugate for Phagocytosis

Thermo Fisher
Scientific

P35366

Phosphate buffer Sigma-Aldrich 71500

[NaH2PO4 1 Na2HPO4] Carl Roth GmbH P030.1

RapiGest SF surfactant Waters 186001861

Sodium periodate (NaIO4) Carl Roth GmbH 2603.1

Sucrose Carl Roth GmbH 9097.1

Tissue-Tek OCT Sakura 4583

Trifluoroacetic acid VWR 85.049.001

Triton X-100 Carl Roth GmbH 3051.4

Trypsin Serva 37286

Experimental models: mouse strains

C57BL/6 J Jackson
Laboratories

000664

UPEC strain 536gfp (O6:K15:H31) Engel et al34 doi:10.1128/IAI.
00881-06

Table 1. (continued)

Reagent or resource Source

Identifier,

catalog/stock no.

Software

Adobe Illustrator CC 2020 Adobe RRID:SCR_010279

Fiji ImageJ RRID:SCR_003070

FlowJo 10 FlowJo RRID:SCR_008520

GSEA, version 4.0.3 Broad Institute RRID:SCR_003199

GraphPad Prism 8 GraphPad Software RRID:SCR_002798

R Project for Statistical Computing,
version 3.5.1

https://cran.r-
project.org/

RRID:SCR_001905

ZEN Digital Imaging for Light
Microscopy, ZEN 2012

Zeiss RRID:SCR_013672

NA, not available.
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Pathway enrichment analysis and STRING

Gene set enrichment analysis (GSEA) was performed using the
molecular signature database (MSigDB v7.1). STRING was used to
analyze protein-protein interactions of the significant proteins (FDR-
corrected P , .01) of blood neutrophils in CLL vs non-CLL.

Machine learning

The intensity of data were normalized by dividing each data point by
the 75th percentile of the corresponding sample. Features were
selected based on P values computed with the x2 test and
corrected for multiple testing via the Benjamini-Hochberg method
post hoc.43-45 Only features with an FDR-adjusted P # .01 were
retained. With the remaining features (proteins), a RFC was
trained.44,46 Our RFC was trained with 300 trees in a 1-vs-1
manner; thus, for each class comparison, 1 RFC was trained. The
performance of the RFC was evaluated in a stratified fivefold cross-
validation.

Statistical analysis

Results are presented as mean 6 standard error of the mean
(SEM). Normality was tested with the D’Agostino-Pearson omnibus
test. Two groups were compared with the Mann-Whitney test.
Kruskal-Wallis with Dunn’s post hoc tests were used for
comparison of .2 groups. Two-way analysis of variance with post
hoc Bonferroni correction were used for longitudinal experiments.
Linear regression was used to determine the R2. Volcano plots were
generated using paired and unpaired Student t tests. Resulting P
values were adjusted to control the FDR according to Benjamini-
Hochberg. Significance and normal distribution were calculated
using R and Graph Pad Prism 8.

Results

Increased susceptibility to bacterial UTI in CLL

Patients with CLL suffer from recurrent and often severe bacterial
infections.3-13 In a CLL in vivo model, we observed a massive
expansion of CLL (CD51CD191) cells in the BM and blood
(supplemental Figure 1A-D). As patients with CLL are predisposed
to bacterial infections, the susceptibility of CLL-bearing mice to UTI
was determined.21 After inoculation of UPEC into the urinary
bladder, we detected large bacterial communities in CLL-bearing
mice (Figure 1A), and the overall bacterial burden in the lumen (P,
.0001) and urothelium (P, .01) was significantly increased in CLL-
bearing mice compared with nonleukemic controls (Figure 1B).
These data demonstrate that CLL predisposes to aggravated
bacterial infections of the urinary bladder.

Proteomics reveals impact of CLL on

neutrophil phenotype

Neutrophils are critical leukocytes that facilitate the immediate
defense response in bacterial infections.21 These cells develop in
the BM, are released into the bloodstream, and migrate into the
urinary bladder upon infection.47 Since malignant B cells heavily
accumulate in the BM and blood in CLL, we hypothesized that these
cells shape neutrophil phenotype and functionality at these sites,
subsequently predisposing to bacterial infections. Hence, we
performed a proteome analysis by using LC electrospray ionization
coupled to MS/MS on sorted neutrophils. To assess the impact of
CLL on the neutrophil proteome, a RFC was used to generate

a receiver operating characteristic curve. Using this RFC, we found
that the proteomic signature of neutrophils showed a perfect
classification of the datasets from non-CLL vs CLL-bearing mice
(Figure 2A-B). Next, we visualized the proteomic differences of
neutrophils of non-CLL and CLL-bearing mice using the fold
change and FDR-adjusted P value in a volcano plot representation
(Figure 2C-D, supplemental Tables 2 and 3). Such analysis
identified 82 proteins in the BM and 144 in the blood with
significant alterations due to differences in the protein abundancy
(FDR-adjusted P, .01; Figure 2E-F; supplemental Tables 2 and 3).
Using unsupervised multivariate analysis by a principal-component
analysis, we observed that the CLL environment has a more
significant impact on blood over BM neutrophils, as indicated by an
increased distance of the blood clusters in non-CLL vs CLL in the
first dimension (Figure 2G).

STRING and GSEA identify aberrations in neutrophil

functionality in CLL and provide targets for

therapeutic interventions

Next, we further investigated the interactions of the 144 differen-
tially expressed proteins by STRING.48 Such analysis identified
clusters for IFN signaling, ribosomes, granules, and migration
(Figure 3A; supplemental Table 4). Further analysis of the proteins
from the individual clusters indicated that the IFN-response and
ribosomal proteins were upregulated in the CLL conditions,
whereas components of granules and neutrophil migration were
mostly downregulated in CLL (Figure 3B). In particular, IFN-induced
protein with tetratricopeptide repeats 3 and IFN-stimulated gene 15
(ISG15) were significantly enriched in the IFN cluster, whereas
thrombospondin, L-selectin (CD62L/LYAM1), elastase, lysozyme,
and myeloperoxidase (MPO; PERM) were clearly downregulated in
the granules and migration cluster (Figure 3B). Subsequently, we
performed a GSEA of the neutrophil proteome to identify pathways
with classes of proteins that are over- or underrepresented in
neutrophils of CLL-bearing mice. Such analyses revealed 66
pathways with a positive normalized enrichment score (NES),
indicating an upregulation in CLL (supplemental Table 5). In
addition, 26 pathways were found with a negative NES, indicating
that these protein classes were downregulated in CLL (supple-
mental Table 6). Visualization of the 10 pathways with the largest
NES difference indicated enriched protein classes for IFN-
response, ribosomes, and metabolism (Figure 3C; supplemental
Table 5), while the proteins classes of secretory granules and
neutrophil migration were lower expressed, as shown by a negative
NES (Figure 3D; supplemental Table 6). Thus, blood neutrophils in
CLL-bearing mice reveal a distinct proteomic signature suggesting
an aberrant composition of neutrophil granular content and altered
migratory capacities.

To widen our understanding of the IFN-related alterations in the
neutrophil proteome, we focused on the most enriched pathways:
“IFNg response” and “IFNa response” (supplemental Tables 7 and
8). Based on a total of 32 differentially expressed proteins in both
pathways (Figure 4A), we identified 17 common proteins that are
ordered according to their rank metric score in the heatmap
(Figure 4B). Furthermore, a machine learning algorithm identified
IFN-dependent molecules that mostly contributed to the separation
of the proteome datasets in CLL. Here, an RFC was employed to
ensure interpretability and reproducibility. The best features of the
neutrophil proteome were obtained based on their Gini decrease,
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which itself is a measure for the goodness of feature. Such analysis
identified ISG15, immunity-related GTPase family M protein 1, and
IFN-induced protein 35 (Figure 4C), corroborating our previous
STRING analysis and GSEA.

Altered composition of neutrophil granule proteins

and dysfunctional acidification of granules in

neutrophils in CLL

Next, we extended the characterization of neutrophils in regard to
their functionality by performing GSEA of the most downregulated
proteins of the pathways “secretory vesicle” and “secretory
granules” (Figure 5A; supplemental Figures 9 and 10). The analysis
revealed proteins that are essential for neutrophil phagocytosis and
degradation of bacterial components through granular compart-
ments, such as lysozyme, elastase, and myeloperoxidase (PERM)
(Figure 5B). Notably, proteomic data also unveiled an increased
abundance of ceruloplasmin, an endogenous MPO inhibitor, in
blood neutrophils of CLL-bearing mice (Figure 5C). In order to study
whether the altered expression of the proteins from the GSEA
affects the effector functions of neutrophils in CLL, the expression
of MPO and acidification of granules after phagocytosis were
tested in blood neutrophils ex vivo through the ingestion of pH-
sensitive fluorochrome-tagged E coli. FC demonstrates that
neutrophils expressed significantly less MPO (P, .01), suggesting
impeded peroxidase activity of neutrophils in CLL (Figure 5D). In line
with this finding, we also observed a significantly reduced (P, .01)
acidification in neutrophils in CLL after phagocytosis of pH-sensitive
fluorochrome-tagged E coli (Figure 5E). Collectively, these data
show severe abnormalities of neutrophil effector functions in CLL-
bearing mice.

Compromised neutrophil migration in CLL

STRING suggested reduced migration of neutrophils, and GSEA
identified downregulation of the pathways “ECM,” “focal adhesion,”

“cell-cell adhesion," “leukocyte cell-cell adhesion," and “granulocyte
migration” (Figure 3D; supplemental Figures 11-15). In order to
identify the proteins that contributed to the high significance level in
the GSEA and to the negative NES, we extracted the proteins from
the GSEA plots (Figure 6A). We observed reduced expression of
CD62L (LYAM1) in CLL-bearing mice, implying that this protein
might be critically involved in neutrophil migration to infected organs
(Figure 6B). Notably, hemopexin, an inhibitor of neutrophil migration,
was expressed at increased levels in CLL (supplemental Figures 2
and 3). Furthermore, MMP9, a critical enzyme for neutrophil
migration,21 was decreased in CLL (Figure 6B). To evaluate
whether these changes alter neutrophil migration in vivo, we
infected mice with UPEC, and the number of recruited neutrophils
was quantified by fluorescence microscopy. We observed a signif-
icant impairment of neutrophil migration into the infected urinary
bladder (P , .01) in relation to the aggravated infection in CLL-
bearing mice (Figure 6C). Collectively, these data demonstrate
decreased migratory capacity of neutrophils in severe infections in
CLL-bearing mice.

Aberrant expression of surface molecules important

for neutrophil migration

As a result of the proteomic findings, we validated the expression
of CD62L, which was the most differentially abundant surface
molecule. We observed significant downregulation of CD62L by
FC, suggesting a more mature phenotype of neutrophils in CLL-
bearing mice. As CXCR4 is highly relevant for the egress of mature
neutrophils from the BM, we also determined the expression
of CXCR4.49 We found that neutrophils in CLL-bearing mice
expressed significantly less CXCR4 (P , .05) (Figure 7A-C;
supplemental Figure 16), corroborating the hypothesis of a more
mature phenotype of neutrophils in CLL-bearing mice. Correlation
analyses illustrated that these alterations in the expression of the
surface molecules were associated with CLL disease progression
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(Figure 7D-E). Subsequently, the downregulation of both molecules
was also assessed in a translational approach in 14 patients with
CLL. In line with our in vivo data, we also found a significant
decreased expression of CD62L (P 5 .0409) and a trend for
reduced CXCR4 expression on neutrophils in the CLL condition
(Figure 7F; supplemental Figure 17). Linear regression analysis of

the expression of these surface molecules suggested a correlation
with disease progression (Figure 7G-H). Hence, the aberrant
expression of CD62L and CXCR4 may serve as a potential
signature on neutrophils that contributes to an impaired migration
into infected organs. In our CLL cohort, we also observed frequent
bacterial infections in the lung (supplemental Table 18). The course
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of these respiratory infections is often severe in patients with CLL
and a frequent cause of death.3-7 Hence, we retrospectively
analyzed the incidence of respiratory infections in these patients
and found that the incidence of respiratory infections significantly
increased (P 5 .0341) with the CLL burden (Figure 7I), strength-
ening our hypothesis that the observed changes in the neutrophil
signature may be one important aspect leading to not only
increased UTIs but also respiratory infections in patients with CLL.

Discussion

Frequent and severe bacterial infections account for more than
two-thirds of all infections in patients with CLL.3-7,10-13 These
complications often prevent patients with CLL from undergoing

antileukemic therapies, imposing an economic and individual
burden.10 Targeting neutrophils to restore the antibacterial re-
sponse via their essential functions, such as migration, phagocy-
tosis, and degranulation, should become the focus during the
clinical development of treatment options for patients with CLL. On
the one hand, the increased risk of infections can be reduced to
avoid secondary morbidities, and on the other hand, anti-CLL
treatment regimens will not have to be interrupted.

In this study, we show an increased susceptibility of CLL-bearing
mice to UTIs. Given that neutrophils are the most critical immune
cell population during UTI, we generated a proteomic fingerprint
and performed phenotypic and functional analyses to provide novel
insights into the potential immunosuppression of neutrophils in CLL.

-2

0

2

4

IF
IT

3
IS

G
15

IF
IT

1
S

TA
T2

O
A

S
3

O
A

S
1A

D
D

X
5

8
S

TA
T1

C
M

P
K

2
IF

M
3

S
A

M
H

1
P

S
B

2
S

A
E

1
P

S
A

5
TF

R
1

H
A

1B
C

A
S

P
1

H
A

11
H

P
R

T
C

O
3

P
E

R
M

ITA
M

C
D

4
4

IT
B

2
LY

Z
2

E
LN

E
LY

A
M

1
TS

P
1

R
S

24
R

S
13

R
S

10
R

S
7

E
IF

3L
R

LA
0

R
S

4X
R

TN
4

R
L1

0A
R

S
3

R
S

18
R

LA
1

R
S

12
R

S
3A

E
IF

3A
R

S
S

A
IF

A
1

Lo
g 2

(ra
tio

 C
LL

/n
on

-C
LL

)

Interferon Granules / Migration Ribosomes

B

Interferon Granules / Migration Ribosomes

Interactions

A Interferon γ response
Interferon α response

Response to virus
Metabolism
Ribosomal constituents

Response to virus
Ribosomal subunit
Cytosolic ribosome

Protein ratio

FDR p-value

60
40
20

<0.0014
<0.0012
<0.0010

2.1 2.3

NES
2.5

Protein ratio

FDR p-value

30

20

10

<0.0035
<0.0025
<0.0015

Secretory vesicle
Secretory granules
ECM organization
Focal adhesion
Hemostasis
Cell-Cell adhesion
Leukocyte cell-cell adhesion
Granulocyte migration
Membrane region
Membrane raft

-2.3 -2.4

NES
-2.5

C

D

Figure 3. Increased IFN signaling and decreased protein expression critical for secretory granule and migration in blood neutrophils from CLL-bearing mice.

(A) STRING analysis of the significant proteins (P , .01) of blood neutrophils from CLL-bearing mice. K-means clustering indicated enriched protein-protein interactions in the

protein network. See supplemental Table 4 for a more detailed table. (B) Dot plot illustrating fold changes (log2 of CLL vs non-CLL) of individual proteins of clusters indicated

in panel A. (C-D) GSEA of the proteome of blood neutrophils in CLL vs non-CLL conditions. NESs were displayed in different sizes to reveal the FDR-adjusted P value and in

different colors to indicate the protein ratio within the indicated pathway. See supplemental Tables 5 and 6 for more detailed tables. Non-CLL, n 5 6; CLL, n 5 12.

9 MARCH 2021 x VOLUME 5, NUMBER 5 IMPAIRED NEUTROPHIL FUNCTION IN CLL 1265

D
ow

nloaded from
 http://ashpublications.net/bloodadvances/article-pdf/5/5/1259/1801455/advancesadv2020002949.pdf by guest on 08 June 2024



We describe that important functions of neutrophils, such as
MPO production, intracellular granular content, acidification of the
phagolysosome after phagocytosis of bacteria, and migration of
neutrophils into the infected urinary bladder were suppressed in
CLL-bearing mice. Thus, a molecular signature of neutrophils was
generated that might be associated with severe bacterial infections
in CLL.

Phagocytosis and degradation of UPEC critically reduce the
bacterial burden in the urinary tract.20,21 Previously, functional
defects regarding antibacterial responses were observed in
patients with CLL.27 Using enrichment analysis of the neutrophil
proteome, we observed impaired expression of neutrophil granule
proteins and upregulation of inhibitors, such as ceruloplasmin.50

Moreover, functional assays indicated impeded acidification of the
phagolysosome after phagocytosis of bacteria. Proteome analysis
of sorted neutrophils revealed that key molecules regulating the
migration, such as MMP9, were downregulated in CLL.21 Accord-
ingly, the invasion of neutrophils from the blood into the infected
urinary bladder was less efficient in CLL-bearing mice with severe

UTI. These data indicate that important antimicrobial core compe-
tencies of neutrophils are impaired in CLL. It is also conceivable that
other functions of neutrophils are impacted, such as the formation
of neutrophil extracellular traps, and production of inflammatory
cytokines that subsequently would regulate the antimicrobial re-
sponse, are equally repressed in the CLL condition.

Neutrophil migration from the blood into the infected organs also
involves adhesion molecules, chemokines, integrins, and selec-
tins.51 We observed that the reduced migratory capacity was
associated with aberrant expression of CD62L and CXCR4,
indicating a more mature and activated phenotype of blood neutrophils
in CLL. Previously, altered expression of these molecules was
described for aged neutrophils also in other disease contexts.52-54

Interestingly, a similar phenotype with low CD62L and CXCR4
expression on neutrophils has been observed as tumor-promoting
neutrophils in a solid cancer model, which might account for the
impairment of neutrophil effector functions and subsequent risk of
bacterial infections in CLL.55 Declining frequencies of CXCR4-
expressing neutrophils may have several causes, including an
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altered release of neutrophils from the BM49 or spleen56 or a more
rapid maturation in the circulation. We also observed decreased
expression of GRB2, which is critical for proliferation and
differentiation of myeloid progenitors into neutrophils.57 This
finding supports the former suggestion of an altered release of
neutrophil progenitors from the BM into the circulation.57 By
extending this finding into a clinical context, CXCR4 could be
used as a biomarker, while GRB2 might serve as a putative target
to enhance neutrophil proliferation and differentiation in patients
with CLL. This could potentially strengthen essential neutrophil
functions, such as phagocytosis and degranulation to fight off
infections. Furthermore, CD62L is being shed upon stimulation
and is thus widely described as a functional marker to determine

the activation status of neutrophils58,59; also, in CLL, reduced
expression of CD62L was recently described for neutrophils from
clinical samples.28,29 In these studies, neutrophil subsets were not
correlated to CLL load in the circulation, but compared with healthy
age-matched samples, which does not stratify neutrophil alterations
during CLL disease progression. We demonstrate a gradual loss of
CD62L in different CLL stages and, interestingly, CD62L was also
shown to be decreased by hemopexin in sepsis,60 a molecule highly
abundant in our proteome dataset in CLL-bearing mice.

Enrichment analysis indicated increased expression of proteins
involved in IFN signaling. After ligand binding to the IFN receptors,
JAK is activated via phosphorylation, subsequently culminating in
STAT1 and STAT2 pathway activation in the same manner.61 In
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particular, STAT1 activation leads to downstream activation of
immunity-related GTPase family M protein 1,62-64 which has been
shown to inhibit TLR4 signaling65 and was significantly upregulated
in our proteome dataset in CLL. Moreover, aberrant IFN signaling
has been associated with aggressive CLL, and the duration of IFN-
mediated STAT phosphorylation was prolonged in CLL with high-
risk features.66 Our proteome data indicate increased IFN signaling
in neutrophils, which may impede pattern recognition–induced
responses in neutrophils, subsequently leading to severe bacterial
infections in CLL.65 We observed reduced acidification of the
phagolysosome after phagocytosis of bacteria, suggesting im-
peded recognition of the pathogen. Interestingly, we identified
ISG15 as a critical IFN-dependent molecule, which was highly
upregulated in CLL and included in both pathway analysis and RFC-

based analysis. Previously, ISG15 has been observed in various
cancer tissues67,68 and is associated with local recurrence and
short overall and disease-free survival.69 Moreover, ISG15-
dependent production of IFN-g has recently been shown to depend
on LFA-1,70 and both subunits of LFA-1, ITAL and ITB2, displayed
reduced expression in CLL-bearing mice. Therefore, ISG15 might
play a tumor-supporting role, and our proteomic data suggest that
increased ISG15 expression in neutrophils affects their function
and migration. Interestingly, persistent JAK/STAT signaling was
found in patients with CLL,71 and treatment with ruxolitinib, a drug
that blocks IFN signaling through JAK/STAT, reduced disease-
related symptoms.72 We hypothesize that not only these disease-
related symptoms but also the molecular and functional changes in
the neutrophil population are mediated through aberrant IFN
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signaling. Targeting the IFN-signaling pathway in neutrophils may
not only be beneficial for the disease-related symptoms but also
reduce the susceptibility to infections.

In summary, molecular profiling of neutrophils in CLL reveals
phenotypical alterations and functional defects that are associated
with increased bacterial UTIs. We observed a potential role of IFN
signaling for the suppression of neutrophils in CLL and identified
altered expression of important surface molecules for neutrophil
migration, such as CD62L and CXCR4. Our study also provides

a molecular signature of neutrophils in CLL with a broad range
of proteins with biomarker or therapeutic potential, such as IFN-
induced protein with tetratricopeptide repeats, ISG15, ceruloplas-
min, hemopexin, and GRB2. Further studies are required to assess
the role of these proteins for neutrophil suppression in CLL and
greater susceptibilities to severe and frequent infections.

Our data may also be of importance for the defense against
pathogens in other organs, such as the lung, which cause serious
and life-threatening complications in patients with CLL.3-7 Indeed,
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we observed frequent lung infections in our patients with CLL, and
retrospective analysis of the incidence of respiratory infections
indicated that our patients with CLL suffered from multiple
respiratory infections, which correlated with the CLL burden. It
can therefore be concluded that the molecular signature and
functional changes in the neutrophil population described by us may
lead to the increased incidence of bacterial infections in patients
with CLL.
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